freebsd-dev/sys/dev/etherswitch/e6000sw/e6000sw.c
Justin Hibbits 74c592c047 etherswitch: Clean up whitespace after IfAPI conversion
Sponsored by:	Juniper Networks, Inc.
Fixes:		2e6a8c1ae
2023-01-31 16:26:33 -05:00

1681 lines
43 KiB
C

/*-
* Copyright (c) 2015 Semihalf
* Copyright (c) 2015 Stormshield
* Copyright (c) 2018-2019, Rubicon Communications, LLC (Netgate)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/module.h>
#include <sys/taskqueue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <dev/etherswitch/etherswitch.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include "e6000swreg.h"
#include "etherswitch_if.h"
#include "miibus_if.h"
#include "mdio_if.h"
MALLOC_DECLARE(M_E6000SW);
MALLOC_DEFINE(M_E6000SW, "e6000sw", "e6000sw switch");
#define E6000SW_LOCK(_sc) sx_xlock(&(_sc)->sx)
#define E6000SW_UNLOCK(_sc) sx_unlock(&(_sc)->sx)
#define E6000SW_LOCK_ASSERT(_sc, _what) sx_assert(&(_sc)->sx, (_what))
#define E6000SW_TRYLOCK(_sc) sx_tryxlock(&(_sc)->sx)
#define E6000SW_WAITREADY(_sc, _reg, _bit) \
e6000sw_waitready((_sc), REG_GLOBAL, (_reg), (_bit))
#define E6000SW_WAITREADY2(_sc, _reg, _bit) \
e6000sw_waitready((_sc), REG_GLOBAL2, (_reg), (_bit))
#define MDIO_READ(dev, addr, reg) \
MDIO_READREG(device_get_parent(dev), (addr), (reg))
#define MDIO_WRITE(dev, addr, reg, val) \
MDIO_WRITEREG(device_get_parent(dev), (addr), (reg), (val))
typedef struct e6000sw_softc {
device_t dev;
phandle_t node;
struct sx sx;
if_t ifp[E6000SW_MAX_PORTS];
char *ifname[E6000SW_MAX_PORTS];
device_t miibus[E6000SW_MAX_PORTS];
struct taskqueue *sc_tq;
struct timeout_task sc_tt;
int vlans[E6000SW_NUM_VLANS];
uint32_t swid;
uint32_t vlan_mode;
uint32_t cpuports_mask;
uint32_t fixed_mask;
uint32_t fixed25_mask;
uint32_t ports_mask;
int phy_base;
int sw_addr;
int num_ports;
} e6000sw_softc_t;
static etherswitch_info_t etherswitch_info = {
.es_nports = 0,
.es_nvlangroups = 0,
.es_vlan_caps = ETHERSWITCH_VLAN_PORT | ETHERSWITCH_VLAN_DOT1Q,
.es_name = "Marvell 6000 series switch"
};
static void e6000sw_identify(driver_t *, device_t);
static int e6000sw_probe(device_t);
static int e6000sw_parse_fixed_link(e6000sw_softc_t *, phandle_t, uint32_t);
static int e6000sw_parse_ethernet(e6000sw_softc_t *, phandle_t, uint32_t);
static int e6000sw_attach(device_t);
static int e6000sw_detach(device_t);
static int e6000sw_read_xmdio(device_t, int, int, int);
static int e6000sw_write_xmdio(device_t, int, int, int, int);
static int e6000sw_readphy(device_t, int, int);
static int e6000sw_writephy(device_t, int, int, int);
static int e6000sw_readphy_locked(device_t, int, int);
static int e6000sw_writephy_locked(device_t, int, int, int);
static etherswitch_info_t* e6000sw_getinfo(device_t);
static int e6000sw_getconf(device_t, etherswitch_conf_t *);
static int e6000sw_setconf(device_t, etherswitch_conf_t *);
static void e6000sw_lock(device_t);
static void e6000sw_unlock(device_t);
static int e6000sw_getport(device_t, etherswitch_port_t *);
static int e6000sw_setport(device_t, etherswitch_port_t *);
static int e6000sw_set_vlan_mode(e6000sw_softc_t *, uint32_t);
static int e6000sw_readreg_wrapper(device_t, int);
static int e6000sw_writereg_wrapper(device_t, int, int);
static int e6000sw_getvgroup_wrapper(device_t, etherswitch_vlangroup_t *);
static int e6000sw_setvgroup_wrapper(device_t, etherswitch_vlangroup_t *);
static int e6000sw_setvgroup(device_t, etherswitch_vlangroup_t *);
static int e6000sw_getvgroup(device_t, etherswitch_vlangroup_t *);
static void e6000sw_setup(device_t, e6000sw_softc_t *);
static void e6000sw_tick(void *, int);
static void e6000sw_set_atustat(device_t, e6000sw_softc_t *, int, int);
static int e6000sw_atu_flush(device_t, e6000sw_softc_t *, int);
static int e6000sw_vtu_flush(e6000sw_softc_t *);
static int e6000sw_vtu_update(e6000sw_softc_t *, int, int, int, int, int);
static __inline void e6000sw_writereg(e6000sw_softc_t *, int, int, int);
static __inline uint32_t e6000sw_readreg(e6000sw_softc_t *, int, int);
static int e6000sw_ifmedia_upd(if_t);
static void e6000sw_ifmedia_sts(if_t, struct ifmediareq *);
static int e6000sw_atu_mac_table(device_t, e6000sw_softc_t *, struct atu_opt *,
int);
static int e6000sw_get_pvid(e6000sw_softc_t *, int, int *);
static void e6000sw_set_pvid(e6000sw_softc_t *, int, int);
static __inline bool e6000sw_is_cpuport(e6000sw_softc_t *, int);
static __inline bool e6000sw_is_fixedport(e6000sw_softc_t *, int);
static __inline bool e6000sw_is_fixed25port(e6000sw_softc_t *, int);
static __inline bool e6000sw_is_phyport(e6000sw_softc_t *, int);
static __inline bool e6000sw_is_portenabled(e6000sw_softc_t *, int);
static __inline struct mii_data *e6000sw_miiforphy(e6000sw_softc_t *,
unsigned int);
static device_method_t e6000sw_methods[] = {
/* device interface */
DEVMETHOD(device_identify, e6000sw_identify),
DEVMETHOD(device_probe, e6000sw_probe),
DEVMETHOD(device_attach, e6000sw_attach),
DEVMETHOD(device_detach, e6000sw_detach),
/* bus interface */
DEVMETHOD(bus_add_child, device_add_child_ordered),
/* mii interface */
DEVMETHOD(miibus_readreg, e6000sw_readphy_locked),
DEVMETHOD(miibus_writereg, e6000sw_writephy_locked),
/* etherswitch interface */
DEVMETHOD(etherswitch_getinfo, e6000sw_getinfo),
DEVMETHOD(etherswitch_getconf, e6000sw_getconf),
DEVMETHOD(etherswitch_setconf, e6000sw_setconf),
DEVMETHOD(etherswitch_lock, e6000sw_lock),
DEVMETHOD(etherswitch_unlock, e6000sw_unlock),
DEVMETHOD(etherswitch_getport, e6000sw_getport),
DEVMETHOD(etherswitch_setport, e6000sw_setport),
DEVMETHOD(etherswitch_readreg, e6000sw_readreg_wrapper),
DEVMETHOD(etherswitch_writereg, e6000sw_writereg_wrapper),
DEVMETHOD(etherswitch_readphyreg, e6000sw_readphy),
DEVMETHOD(etherswitch_writephyreg, e6000sw_writephy),
DEVMETHOD(etherswitch_setvgroup, e6000sw_setvgroup_wrapper),
DEVMETHOD(etherswitch_getvgroup, e6000sw_getvgroup_wrapper),
DEVMETHOD_END
};
DEFINE_CLASS_0(e6000sw, e6000sw_driver, e6000sw_methods,
sizeof(e6000sw_softc_t));
DRIVER_MODULE(e6000sw, mdio, e6000sw_driver, 0, 0);
DRIVER_MODULE(etherswitch, e6000sw, etherswitch_driver, 0, 0);
DRIVER_MODULE(miibus, e6000sw, miibus_driver, 0, 0);
MODULE_DEPEND(e6000sw, mdio, 1, 1, 1);
static void
e6000sw_identify(driver_t *driver, device_t parent)
{
if (device_find_child(parent, "e6000sw", -1) == NULL)
BUS_ADD_CHILD(parent, 0, "e6000sw", -1);
}
static int
e6000sw_probe(device_t dev)
{
e6000sw_softc_t *sc;
const char *description;
phandle_t switch_node;
sc = device_get_softc(dev);
switch_node = ofw_bus_find_compatible(OF_finddevice("/"),
"marvell,mv88e6085");
if (switch_node == 0) {
switch_node = ofw_bus_find_compatible(OF_finddevice("/"),
"marvell,mv88e6190");
if (switch_node == 0)
return (ENXIO);
/*
* Trust DTS and fix the port register offset for the MV88E6190
* detection bellow.
*/
sc->swid = MV88E6190;
}
if (bootverbose)
device_printf(dev, "Found switch_node: 0x%x\n", switch_node);
sc->dev = dev;
sc->node = switch_node;
if (OF_getencprop(sc->node, "reg", &sc->sw_addr,
sizeof(sc->sw_addr)) < 0)
return (ENXIO);
if (sc->sw_addr < 0 || sc->sw_addr > 32)
return (ENXIO);
/*
* Create temporary lock, just to satisfy assertions,
* when obtaining the switch ID. Destroy immediately afterwards.
*/
sx_init(&sc->sx, "e6000sw_tmp");
E6000SW_LOCK(sc);
sc->swid = e6000sw_readreg(sc, REG_PORT(sc, 0), SWITCH_ID) & 0xfff0;
E6000SW_UNLOCK(sc);
sx_destroy(&sc->sx);
switch (sc->swid) {
case MV88E6141:
description = "Marvell 88E6141";
sc->phy_base = 0x10;
sc->num_ports = 6;
break;
case MV88E6341:
description = "Marvell 88E6341";
sc->phy_base = 0x10;
sc->num_ports = 6;
break;
case MV88E6352:
description = "Marvell 88E6352";
sc->num_ports = 7;
break;
case MV88E6172:
description = "Marvell 88E6172";
sc->num_ports = 7;
break;
case MV88E6176:
description = "Marvell 88E6176";
sc->num_ports = 7;
break;
case MV88E6190:
description = "Marvell 88E6190";
sc->num_ports = 11;
break;
default:
device_printf(dev, "Unrecognized device, id 0x%x.\n", sc->swid);
return (ENXIO);
}
device_set_desc(dev, description);
return (BUS_PROBE_DEFAULT);
}
static int
e6000sw_parse_fixed_link(e6000sw_softc_t *sc, phandle_t node, uint32_t port)
{
int speed;
phandle_t fixed_link;
fixed_link = ofw_bus_find_child(node, "fixed-link");
if (fixed_link != 0) {
sc->fixed_mask |= (1 << port);
if (OF_getencprop(fixed_link,
"speed", &speed, sizeof(speed)) < 0) {
device_printf(sc->dev,
"Port %d has a fixed-link node without a speed "
"property\n", port);
return (ENXIO);
}
if (speed == 2500 && (MVSWITCH(sc, MV88E6141) ||
MVSWITCH(sc, MV88E6341) || MVSWITCH(sc, MV88E6190)))
sc->fixed25_mask |= (1 << port);
}
return (0);
}
static int
e6000sw_parse_ethernet(e6000sw_softc_t *sc, phandle_t port_handle, uint32_t port) {
phandle_t switch_eth, switch_eth_handle;
if (OF_getencprop(port_handle, "ethernet", (void*)&switch_eth_handle,
sizeof(switch_eth_handle)) > 0) {
if (switch_eth_handle > 0) {
switch_eth = OF_node_from_xref(switch_eth_handle);
device_printf(sc->dev, "CPU port at %d\n", port);
sc->cpuports_mask |= (1 << port);
return (e6000sw_parse_fixed_link(sc, switch_eth, port));
} else
device_printf(sc->dev,
"Port %d has ethernet property but it points "
"to an invalid location\n", port);
}
return (0);
}
static int
e6000sw_parse_child_fdt(e6000sw_softc_t *sc, phandle_t child, int *pport)
{
uint32_t port;
if (pport == NULL)
return (ENXIO);
if (OF_getencprop(child, "reg", (void *)&port, sizeof(port)) < 0)
return (ENXIO);
if (port >= sc->num_ports)
return (ENXIO);
*pport = port;
if (e6000sw_parse_fixed_link(sc, child, port) != 0)
return (ENXIO);
if (e6000sw_parse_ethernet(sc, child, port) != 0)
return (ENXIO);
if ((sc->fixed_mask & (1 << port)) != 0)
device_printf(sc->dev, "fixed port at %d\n", port);
else
device_printf(sc->dev, "PHY at port %d\n", port);
return (0);
}
static int
e6000sw_init_interface(e6000sw_softc_t *sc, int port)
{
char name[IFNAMSIZ];
snprintf(name, IFNAMSIZ, "%sport", device_get_nameunit(sc->dev));
sc->ifp[port] = if_alloc(IFT_ETHER);
if (sc->ifp[port] == NULL)
return (ENOMEM);
if_setsoftc(sc->ifp[port], sc);
if_setflagbits(sc->ifp[port], IFF_UP | IFF_BROADCAST |
IFF_DRV_RUNNING | IFF_SIMPLEX, 0);
sc->ifname[port] = malloc(strlen(name) + 1, M_E6000SW, M_NOWAIT);
if (sc->ifname[port] == NULL) {
if_free(sc->ifp[port]);
return (ENOMEM);
}
memcpy(sc->ifname[port], name, strlen(name) + 1);
if_initname(sc->ifp[port], sc->ifname[port], port);
return (0);
}
static int
e6000sw_attach_miibus(e6000sw_softc_t *sc, int port)
{
int err;
err = mii_attach(sc->dev, &sc->miibus[port], sc->ifp[port],
e6000sw_ifmedia_upd, e6000sw_ifmedia_sts, BMSR_DEFCAPMASK,
port + sc->phy_base, MII_OFFSET_ANY, 0);
if (err != 0)
return (err);
return (0);
}
static void
e6000sw_serdes_power(device_t dev, int port, bool sgmii)
{
uint32_t reg;
/* SGMII */
reg = e6000sw_read_xmdio(dev, port, E6000SW_SERDES_DEV,
E6000SW_SERDES_SGMII_CTL);
if (sgmii)
reg &= ~E6000SW_SERDES_PDOWN;
else
reg |= E6000SW_SERDES_PDOWN;
e6000sw_write_xmdio(dev, port, E6000SW_SERDES_DEV,
E6000SW_SERDES_SGMII_CTL, reg);
/* 10GBASE-R/10GBASE-X4/X2 */
reg = e6000sw_read_xmdio(dev, port, E6000SW_SERDES_DEV,
E6000SW_SERDES_PCS_CTL1);
if (sgmii)
reg |= E6000SW_SERDES_PDOWN;
else
reg &= ~E6000SW_SERDES_PDOWN;
e6000sw_write_xmdio(dev, port, E6000SW_SERDES_DEV,
E6000SW_SERDES_PCS_CTL1, reg);
}
static int
e6000sw_attach(device_t dev)
{
bool sgmii;
e6000sw_softc_t *sc;
phandle_t child, ports;
int err, port;
uint32_t reg;
err = 0;
sc = device_get_softc(dev);
/*
* According to the Linux source code, all of the Switch IDs we support
* are multi_chip capable, and should go into multi-chip mode if the
* sw_addr != 0.
*/
if (MVSWITCH_MULTICHIP(sc))
device_printf(dev, "multi-chip addressing mode (%#x)\n",
sc->sw_addr);
else
device_printf(dev, "single-chip addressing mode\n");
sx_init(&sc->sx, "e6000sw");
E6000SW_LOCK(sc);
e6000sw_setup(dev, sc);
ports = ofw_bus_find_child(sc->node, "ports");
sc->sc_tq = taskqueue_create("e6000sw_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->sc_tq);
TIMEOUT_TASK_INIT(sc->sc_tq, &sc->sc_tt, 0, e6000sw_tick, sc);
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(dev));
if (ports == 0) {
device_printf(dev, "failed to parse DTS: no ports found for "
"switch\n");
E6000SW_UNLOCK(sc);
return (ENXIO);
}
for (child = OF_child(ports); child != 0; child = OF_peer(child)) {
err = e6000sw_parse_child_fdt(sc, child, &port);
if (err != 0) {
device_printf(sc->dev, "failed to parse DTS\n");
goto out_fail;
}
/* Port is in use. */
sc->ports_mask |= (1 << port);
err = e6000sw_init_interface(sc, port);
if (err != 0) {
device_printf(sc->dev, "failed to init interface\n");
goto out_fail;
}
if (e6000sw_is_fixedport(sc, port)) {
/* Link must be down to change speed force value. */
reg = e6000sw_readreg(sc, REG_PORT(sc, port),
PSC_CONTROL);
reg &= ~PSC_CONTROL_LINK_UP;
reg |= PSC_CONTROL_FORCED_LINK;
e6000sw_writereg(sc, REG_PORT(sc, port), PSC_CONTROL,
reg);
/*
* Force speed, full-duplex, EEE off and flow-control
* on.
*/
reg &= ~(PSC_CONTROL_SPD2500 | PSC_CONTROL_ALT_SPD |
PSC_CONTROL_FORCED_FC | PSC_CONTROL_FC_ON |
PSC_CONTROL_FORCED_EEE);
if (e6000sw_is_fixed25port(sc, port))
reg |= PSC_CONTROL_SPD2500;
else
reg |= PSC_CONTROL_SPD1000;
if (MVSWITCH(sc, MV88E6190) &&
e6000sw_is_fixed25port(sc, port))
reg |= PSC_CONTROL_ALT_SPD;
reg |= PSC_CONTROL_FORCED_DPX | PSC_CONTROL_FULLDPX |
PSC_CONTROL_FORCED_LINK | PSC_CONTROL_LINK_UP |
PSC_CONTROL_FORCED_SPD;
if (!MVSWITCH(sc, MV88E6190))
reg |= PSC_CONTROL_FORCED_FC | PSC_CONTROL_FC_ON;
if (MVSWITCH(sc, MV88E6141) ||
MVSWITCH(sc, MV88E6341) ||
MVSWITCH(sc, MV88E6190))
reg |= PSC_CONTROL_FORCED_EEE;
e6000sw_writereg(sc, REG_PORT(sc, port), PSC_CONTROL,
reg);
/* Power on the SERDES interfaces. */
if (MVSWITCH(sc, MV88E6190) &&
(port == 9 || port == 10)) {
if (e6000sw_is_fixed25port(sc, port))
sgmii = false;
else
sgmii = true;
e6000sw_serdes_power(sc->dev, port, sgmii);
}
}
/* Don't attach miibus at CPU/fixed ports */
if (!e6000sw_is_phyport(sc, port))
continue;
err = e6000sw_attach_miibus(sc, port);
if (err != 0) {
device_printf(sc->dev, "failed to attach miibus\n");
goto out_fail;
}
}
etherswitch_info.es_nports = sc->num_ports;
/* Default to port vlan. */
e6000sw_set_vlan_mode(sc, ETHERSWITCH_VLAN_PORT);
reg = e6000sw_readreg(sc, REG_GLOBAL, SWITCH_GLOBAL_STATUS);
if (reg & SWITCH_GLOBAL_STATUS_IR)
device_printf(dev, "switch is ready.\n");
E6000SW_UNLOCK(sc);
bus_generic_probe(dev);
bus_generic_attach(dev);
taskqueue_enqueue_timeout(sc->sc_tq, &sc->sc_tt, hz);
return (0);
out_fail:
e6000sw_detach(dev);
return (err);
}
static int
e6000sw_waitready(e6000sw_softc_t *sc, uint32_t phy, uint32_t reg,
uint32_t busybit)
{
int i;
for (i = 0; i < E6000SW_RETRIES; i++) {
if ((e6000sw_readreg(sc, phy, reg) & busybit) == 0)
return (0);
DELAY(1);
}
return (1);
}
/* XMDIO/Clause 45 access. */
static int
e6000sw_read_xmdio(device_t dev, int phy, int devaddr, int devreg)
{
e6000sw_softc_t *sc;
uint32_t reg;
sc = device_get_softc(dev);
E6000SW_LOCK_ASSERT(sc, SA_XLOCKED);
if (E6000SW_WAITREADY2(sc, SMI_PHY_CMD_REG, SMI_CMD_BUSY)) {
device_printf(dev, "Timeout while waiting for switch\n");
return (ETIMEDOUT);
}
reg = devaddr & SMI_CMD_REG_ADDR_MASK;
reg |= (phy << SMI_CMD_DEV_ADDR) & SMI_CMD_DEV_ADDR_MASK;
/* Load C45 register address. */
e6000sw_writereg(sc, REG_GLOBAL2, SMI_PHY_DATA_REG, devreg);
e6000sw_writereg(sc, REG_GLOBAL2, SMI_PHY_CMD_REG,
reg | SMI_CMD_OP_C45_ADDR);
if (E6000SW_WAITREADY2(sc, SMI_PHY_CMD_REG, SMI_CMD_BUSY)) {
device_printf(dev, "Timeout while waiting for switch\n");
return (ETIMEDOUT);
}
/* Start C45 read operation. */
e6000sw_writereg(sc, REG_GLOBAL2, SMI_PHY_CMD_REG,
reg | SMI_CMD_OP_C45_READ);
if (E6000SW_WAITREADY2(sc, SMI_PHY_CMD_REG, SMI_CMD_BUSY)) {
device_printf(dev, "Timeout while waiting for switch\n");
return (ETIMEDOUT);
}
/* Read C45 data. */
reg = e6000sw_readreg(sc, REG_GLOBAL2, SMI_PHY_DATA_REG);
return (reg & PHY_DATA_MASK);
}
static int
e6000sw_write_xmdio(device_t dev, int phy, int devaddr, int devreg, int val)
{
e6000sw_softc_t *sc;
uint32_t reg;
sc = device_get_softc(dev);
E6000SW_LOCK_ASSERT(sc, SA_XLOCKED);
if (E6000SW_WAITREADY2(sc, SMI_PHY_CMD_REG, SMI_CMD_BUSY)) {
device_printf(dev, "Timeout while waiting for switch\n");
return (ETIMEDOUT);
}
reg = devaddr & SMI_CMD_REG_ADDR_MASK;
reg |= (phy << SMI_CMD_DEV_ADDR) & SMI_CMD_DEV_ADDR_MASK;
/* Load C45 register address. */
e6000sw_writereg(sc, REG_GLOBAL2, SMI_PHY_DATA_REG, devreg);
e6000sw_writereg(sc, REG_GLOBAL2, SMI_PHY_CMD_REG,
reg | SMI_CMD_OP_C45_ADDR);
if (E6000SW_WAITREADY2(sc, SMI_PHY_CMD_REG, SMI_CMD_BUSY)) {
device_printf(dev, "Timeout while waiting for switch\n");
return (ETIMEDOUT);
}
/* Load data and start the C45 write operation. */
e6000sw_writereg(sc, REG_GLOBAL2, SMI_PHY_DATA_REG, devreg);
e6000sw_writereg(sc, REG_GLOBAL2, SMI_PHY_CMD_REG,
reg | SMI_CMD_OP_C45_WRITE);
return (0);
}
static int e6000sw_readphy(device_t dev, int phy, int reg)
{
e6000sw_softc_t *sc;
int ret;
sc = device_get_softc(dev);
E6000SW_LOCK_ASSERT(sc, SA_UNLOCKED);
E6000SW_LOCK(sc);
ret = e6000sw_readphy_locked(dev, phy, reg);
E6000SW_UNLOCK(sc);
return (ret);
}
/*
* PHY registers are paged. Put page index in reg 22 (accessible from every
* page), then access specific register.
*/
static int
e6000sw_readphy_locked(device_t dev, int phy, int reg)
{
e6000sw_softc_t *sc;
uint32_t val;
sc = device_get_softc(dev);
E6000SW_LOCK_ASSERT(sc, SA_XLOCKED);
if (!e6000sw_is_phyport(sc, phy) || reg >= E6000SW_NUM_PHY_REGS) {
device_printf(dev, "Wrong register address.\n");
return (EINVAL);
}
if (E6000SW_WAITREADY2(sc, SMI_PHY_CMD_REG, SMI_CMD_BUSY)) {
device_printf(dev, "Timeout while waiting for switch\n");
return (ETIMEDOUT);
}
e6000sw_writereg(sc, REG_GLOBAL2, SMI_PHY_CMD_REG,
SMI_CMD_OP_C22_READ | (reg & SMI_CMD_REG_ADDR_MASK) |
((phy << SMI_CMD_DEV_ADDR) & SMI_CMD_DEV_ADDR_MASK));
if (E6000SW_WAITREADY2(sc, SMI_PHY_CMD_REG, SMI_CMD_BUSY)) {
device_printf(dev, "Timeout while waiting for switch\n");
return (ETIMEDOUT);
}
val = e6000sw_readreg(sc, REG_GLOBAL2, SMI_PHY_DATA_REG);
return (val & PHY_DATA_MASK);
}
static int e6000sw_writephy(device_t dev, int phy, int reg, int data)
{
e6000sw_softc_t *sc;
int ret;
sc = device_get_softc(dev);
E6000SW_LOCK_ASSERT(sc, SA_UNLOCKED);
E6000SW_LOCK(sc);
ret = e6000sw_writephy_locked(dev, phy, reg, data);
E6000SW_UNLOCK(sc);
return (ret);
}
static int
e6000sw_writephy_locked(device_t dev, int phy, int reg, int data)
{
e6000sw_softc_t *sc;
sc = device_get_softc(dev);
E6000SW_LOCK_ASSERT(sc, SA_XLOCKED);
if (!e6000sw_is_phyport(sc, phy) || reg >= E6000SW_NUM_PHY_REGS) {
device_printf(dev, "Wrong register address.\n");
return (EINVAL);
}
if (E6000SW_WAITREADY2(sc, SMI_PHY_CMD_REG, SMI_CMD_BUSY)) {
device_printf(dev, "Timeout while waiting for switch\n");
return (ETIMEDOUT);
}
e6000sw_writereg(sc, REG_GLOBAL2, SMI_PHY_DATA_REG,
data & PHY_DATA_MASK);
e6000sw_writereg(sc, REG_GLOBAL2, SMI_PHY_CMD_REG,
SMI_CMD_OP_C22_WRITE | (reg & SMI_CMD_REG_ADDR_MASK) |
((phy << SMI_CMD_DEV_ADDR) & SMI_CMD_DEV_ADDR_MASK));
return (0);
}
static int
e6000sw_detach(device_t dev)
{
int phy;
e6000sw_softc_t *sc;
sc = device_get_softc(dev);
if (device_is_attached(dev))
taskqueue_drain_timeout(sc->sc_tq, &sc->sc_tt);
if (sc->sc_tq != NULL)
taskqueue_free(sc->sc_tq);
device_delete_children(dev);
sx_destroy(&sc->sx);
for (phy = 0; phy < sc->num_ports; phy++) {
if (sc->ifp[phy] != NULL)
if_free(sc->ifp[phy]);
if (sc->ifname[phy] != NULL)
free(sc->ifname[phy], M_E6000SW);
}
return (0);
}
static etherswitch_info_t*
e6000sw_getinfo(device_t dev)
{
return (&etherswitch_info);
}
static int
e6000sw_getconf(device_t dev, etherswitch_conf_t *conf)
{
struct e6000sw_softc *sc;
/* Return the VLAN mode. */
sc = device_get_softc(dev);
conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
conf->vlan_mode = sc->vlan_mode;
return (0);
}
static int
e6000sw_setconf(device_t dev, etherswitch_conf_t *conf)
{
struct e6000sw_softc *sc;
/* Set the VLAN mode. */
sc = device_get_softc(dev);
if (conf->cmd & ETHERSWITCH_CONF_VLAN_MODE) {
E6000SW_LOCK(sc);
e6000sw_set_vlan_mode(sc, conf->vlan_mode);
E6000SW_UNLOCK(sc);
}
return (0);
}
static void
e6000sw_lock(device_t dev)
{
struct e6000sw_softc *sc;
sc = device_get_softc(dev);
E6000SW_LOCK_ASSERT(sc, SA_UNLOCKED);
E6000SW_LOCK(sc);
}
static void
e6000sw_unlock(device_t dev)
{
struct e6000sw_softc *sc;
sc = device_get_softc(dev);
E6000SW_LOCK_ASSERT(sc, SA_XLOCKED);
E6000SW_UNLOCK(sc);
}
static int
e6000sw_getport(device_t dev, etherswitch_port_t *p)
{
struct mii_data *mii;
int err;
struct ifmediareq *ifmr;
uint32_t reg;
e6000sw_softc_t *sc = device_get_softc(dev);
E6000SW_LOCK_ASSERT(sc, SA_UNLOCKED);
if (p->es_port >= sc->num_ports || p->es_port < 0)
return (EINVAL);
if (!e6000sw_is_portenabled(sc, p->es_port))
return (0);
E6000SW_LOCK(sc);
e6000sw_get_pvid(sc, p->es_port, &p->es_pvid);
/* Port flags. */
reg = e6000sw_readreg(sc, REG_PORT(sc, p->es_port), PORT_CONTROL2);
if (reg & PORT_CONTROL2_DISC_TAGGED)
p->es_flags |= ETHERSWITCH_PORT_DROPTAGGED;
if (reg & PORT_CONTROL2_DISC_UNTAGGED)
p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
err = 0;
if (e6000sw_is_fixedport(sc, p->es_port)) {
if (e6000sw_is_cpuport(sc, p->es_port))
p->es_flags |= ETHERSWITCH_PORT_CPU;
ifmr = &p->es_ifmr;
ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
ifmr->ifm_count = 0;
if (e6000sw_is_fixed25port(sc, p->es_port))
ifmr->ifm_active = IFM_2500_T;
else
ifmr->ifm_active = IFM_1000_T;
ifmr->ifm_active |= IFM_ETHER | IFM_FDX;
ifmr->ifm_current = ifmr->ifm_active;
ifmr->ifm_mask = 0;
} else {
mii = e6000sw_miiforphy(sc, p->es_port);
err = ifmedia_ioctl(mii->mii_ifp, &p->es_ifr,
&mii->mii_media, SIOCGIFMEDIA);
}
E6000SW_UNLOCK(sc);
return (err);
}
static int
e6000sw_setport(device_t dev, etherswitch_port_t *p)
{
e6000sw_softc_t *sc;
int err;
struct mii_data *mii;
uint32_t reg;
sc = device_get_softc(dev);
E6000SW_LOCK_ASSERT(sc, SA_UNLOCKED);
if (p->es_port >= sc->num_ports || p->es_port < 0)
return (EINVAL);
if (!e6000sw_is_portenabled(sc, p->es_port))
return (0);
E6000SW_LOCK(sc);
/* Port flags. */
reg = e6000sw_readreg(sc, REG_PORT(sc, p->es_port), PORT_CONTROL2);
if (p->es_flags & ETHERSWITCH_PORT_DROPTAGGED)
reg |= PORT_CONTROL2_DISC_TAGGED;
else
reg &= ~PORT_CONTROL2_DISC_TAGGED;
if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
reg |= PORT_CONTROL2_DISC_UNTAGGED;
else
reg &= ~PORT_CONTROL2_DISC_UNTAGGED;
e6000sw_writereg(sc, REG_PORT(sc, p->es_port), PORT_CONTROL2, reg);
err = 0;
if (p->es_pvid != 0)
e6000sw_set_pvid(sc, p->es_port, p->es_pvid);
if (e6000sw_is_phyport(sc, p->es_port)) {
mii = e6000sw_miiforphy(sc, p->es_port);
err = ifmedia_ioctl(mii->mii_ifp, &p->es_ifr, &mii->mii_media,
SIOCSIFMEDIA);
}
E6000SW_UNLOCK(sc);
return (err);
}
static __inline void
e6000sw_port_vlan_assign(e6000sw_softc_t *sc, int port, uint32_t fid,
uint32_t members)
{
uint32_t reg;
reg = e6000sw_readreg(sc, REG_PORT(sc, port), PORT_VLAN_MAP);
reg &= ~(PORT_MASK(sc) | PORT_VLAN_MAP_FID_MASK);
reg |= members & PORT_MASK(sc) & ~(1 << port);
reg |= (fid << PORT_VLAN_MAP_FID) & PORT_VLAN_MAP_FID_MASK;
e6000sw_writereg(sc, REG_PORT(sc, port), PORT_VLAN_MAP, reg);
reg = e6000sw_readreg(sc, REG_PORT(sc, port), PORT_CONTROL1);
reg &= ~PORT_CONTROL1_FID_MASK;
reg |= (fid >> 4) & PORT_CONTROL1_FID_MASK;
e6000sw_writereg(sc, REG_PORT(sc, port), PORT_CONTROL1, reg);
}
static int
e6000sw_init_vlan(struct e6000sw_softc *sc)
{
int i, port, ret;
uint32_t members;
/* Disable all ports */
for (port = 0; port < sc->num_ports; port++) {
ret = e6000sw_readreg(sc, REG_PORT(sc, port), PORT_CONTROL);
e6000sw_writereg(sc, REG_PORT(sc, port), PORT_CONTROL,
(ret & ~PORT_CONTROL_ENABLE));
}
/* Flush VTU. */
e6000sw_vtu_flush(sc);
for (port = 0; port < sc->num_ports; port++) {
/* Reset the egress and frame mode. */
ret = e6000sw_readreg(sc, REG_PORT(sc, port), PORT_CONTROL);
ret &= ~(PORT_CONTROL_EGRESS | PORT_CONTROL_FRAME);
e6000sw_writereg(sc, REG_PORT(sc, port), PORT_CONTROL, ret);
/* Set the 802.1q mode. */
ret = e6000sw_readreg(sc, REG_PORT(sc, port), PORT_CONTROL2);
ret &= ~PORT_CONTROL2_DOT1Q;
if (sc->vlan_mode == ETHERSWITCH_VLAN_DOT1Q)
ret |= PORT_CONTROL2_DOT1Q;
e6000sw_writereg(sc, REG_PORT(sc, port), PORT_CONTROL2, ret);
}
for (port = 0; port < sc->num_ports; port++) {
if (!e6000sw_is_portenabled(sc, port))
continue;
ret = e6000sw_readreg(sc, REG_PORT(sc, port), PORT_VID);
/* Set port priority */
ret &= ~PORT_VID_PRIORITY_MASK;
/* Set VID map */
ret &= ~PORT_VID_DEF_VID_MASK;
if (sc->vlan_mode == ETHERSWITCH_VLAN_DOT1Q)
ret |= 1;
else
ret |= (port + 1);
e6000sw_writereg(sc, REG_PORT(sc, port), PORT_VID, ret);
}
/* Assign the member ports to each origin port. */
for (port = 0; port < sc->num_ports; port++) {
members = 0;
if (e6000sw_is_portenabled(sc, port)) {
for (i = 0; i < sc->num_ports; i++) {
if (i == port || !e6000sw_is_portenabled(sc, i))
continue;
members |= (1 << i);
}
}
/* Default to FID 0. */
e6000sw_port_vlan_assign(sc, port, 0, members);
}
/* Reset internal VLAN table. */
for (i = 0; i < nitems(sc->vlans); i++)
sc->vlans[i] = 0;
/* Create default VLAN (1). */
if (sc->vlan_mode == ETHERSWITCH_VLAN_DOT1Q) {
sc->vlans[0] = 1;
e6000sw_vtu_update(sc, 0, sc->vlans[0], 1, 0, sc->ports_mask);
}
/* Enable all ports */
for (port = 0; port < sc->num_ports; port++) {
if (!e6000sw_is_portenabled(sc, port))
continue;
ret = e6000sw_readreg(sc, REG_PORT(sc, port), PORT_CONTROL);
e6000sw_writereg(sc, REG_PORT(sc, port), PORT_CONTROL,
(ret | PORT_CONTROL_ENABLE));
}
return (0);
}
static int
e6000sw_set_vlan_mode(struct e6000sw_softc *sc, uint32_t mode)
{
E6000SW_LOCK_ASSERT(sc, SA_XLOCKED);
switch (mode) {
case ETHERSWITCH_VLAN_PORT:
sc->vlan_mode = ETHERSWITCH_VLAN_PORT;
etherswitch_info.es_nvlangroups = sc->num_ports;
return (e6000sw_init_vlan(sc));
break;
case ETHERSWITCH_VLAN_DOT1Q:
sc->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
etherswitch_info.es_nvlangroups = E6000SW_NUM_VLANS;
return (e6000sw_init_vlan(sc));
break;
default:
return (EINVAL);
}
}
/*
* Registers in this switch are divided into sections, specified in
* documentation. So as to access any of them, section index and reg index
* is necessary. etherswitchcfg uses only one variable, so indexes were
* compressed into addr_reg: 32 * section_index + reg_index.
*/
static int
e6000sw_readreg_wrapper(device_t dev, int addr_reg)
{
e6000sw_softc_t *sc;
sc = device_get_softc(dev);
if ((addr_reg > (REG_GLOBAL2 * 32 + REG_NUM_MAX)) ||
(addr_reg < (REG_PORT(sc, 0) * 32))) {
device_printf(dev, "Wrong register address.\n");
return (EINVAL);
}
return (e6000sw_readreg(device_get_softc(dev), addr_reg / 32,
addr_reg % 32));
}
static int
e6000sw_writereg_wrapper(device_t dev, int addr_reg, int val)
{
e6000sw_softc_t *sc;
sc = device_get_softc(dev);
if ((addr_reg > (REG_GLOBAL2 * 32 + REG_NUM_MAX)) ||
(addr_reg < (REG_PORT(sc, 0) * 32))) {
device_printf(dev, "Wrong register address.\n");
return (EINVAL);
}
e6000sw_writereg(device_get_softc(dev), addr_reg / 32,
addr_reg % 32, val);
return (0);
}
/*
* setvgroup/getvgroup called from etherswitchfcg need to be locked,
* while internal calls do not.
*/
static int
e6000sw_setvgroup_wrapper(device_t dev, etherswitch_vlangroup_t *vg)
{
e6000sw_softc_t *sc;
int ret;
sc = device_get_softc(dev);
E6000SW_LOCK_ASSERT(sc, SA_UNLOCKED);
E6000SW_LOCK(sc);
ret = e6000sw_setvgroup(dev, vg);
E6000SW_UNLOCK(sc);
return (ret);
}
static int
e6000sw_getvgroup_wrapper(device_t dev, etherswitch_vlangroup_t *vg)
{
e6000sw_softc_t *sc;
int ret;
sc = device_get_softc(dev);
E6000SW_LOCK_ASSERT(sc, SA_UNLOCKED);
E6000SW_LOCK(sc);
ret = e6000sw_getvgroup(dev, vg);
E6000SW_UNLOCK(sc);
return (ret);
}
static int
e6000sw_set_port_vlan(e6000sw_softc_t *sc, etherswitch_vlangroup_t *vg)
{
uint32_t port;
port = vg->es_vlangroup;
if (port > sc->num_ports)
return (EINVAL);
if (vg->es_member_ports != vg->es_untagged_ports) {
device_printf(sc->dev, "Tagged ports not supported.\n");
return (EINVAL);
}
e6000sw_port_vlan_assign(sc, port, 0, vg->es_untagged_ports);
vg->es_vid = port | ETHERSWITCH_VID_VALID;
return (0);
}
static int
e6000sw_set_dot1q_vlan(e6000sw_softc_t *sc, etherswitch_vlangroup_t *vg)
{
int i, vlan;
vlan = vg->es_vid & ETHERSWITCH_VID_MASK;
/* Set VLAN to '0' removes it from table. */
if (vlan == 0) {
e6000sw_vtu_update(sc, VTU_PURGE,
sc->vlans[vg->es_vlangroup], 0, 0, 0);
sc->vlans[vg->es_vlangroup] = 0;
return (0);
}
/* Is this VLAN already in table ? */
for (i = 0; i < etherswitch_info.es_nvlangroups; i++)
if (i != vg->es_vlangroup && vlan == sc->vlans[i])
return (EINVAL);
sc->vlans[vg->es_vlangroup] = vlan;
e6000sw_vtu_update(sc, 0, vlan, vg->es_vlangroup + 1,
vg->es_member_ports & sc->ports_mask,
vg->es_untagged_ports & sc->ports_mask);
return (0);
}
static int
e6000sw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
{
e6000sw_softc_t *sc;
sc = device_get_softc(dev);
E6000SW_LOCK_ASSERT(sc, SA_XLOCKED);
if (sc->vlan_mode == ETHERSWITCH_VLAN_PORT)
return (e6000sw_set_port_vlan(sc, vg));
else if (sc->vlan_mode == ETHERSWITCH_VLAN_DOT1Q)
return (e6000sw_set_dot1q_vlan(sc, vg));
return (EINVAL);
}
static int
e6000sw_get_port_vlan(e6000sw_softc_t *sc, etherswitch_vlangroup_t *vg)
{
uint32_t port, reg;
port = vg->es_vlangroup;
if (port > sc->num_ports)
return (EINVAL);
if (!e6000sw_is_portenabled(sc, port)) {
vg->es_vid = port;
return (0);
}
reg = e6000sw_readreg(sc, REG_PORT(sc, port), PORT_VLAN_MAP);
vg->es_untagged_ports = vg->es_member_ports = reg & PORT_MASK(sc);
vg->es_vid = port | ETHERSWITCH_VID_VALID;
vg->es_fid = (reg & PORT_VLAN_MAP_FID_MASK) >> PORT_VLAN_MAP_FID;
reg = e6000sw_readreg(sc, REG_PORT(sc, port), PORT_CONTROL1);
vg->es_fid |= (reg & PORT_CONTROL1_FID_MASK) << 4;
return (0);
}
static int
e6000sw_get_dot1q_vlan(e6000sw_softc_t *sc, etherswitch_vlangroup_t *vg)
{
int i, port;
uint32_t reg;
vg->es_fid = 0;
vg->es_vid = sc->vlans[vg->es_vlangroup];
vg->es_untagged_ports = vg->es_member_ports = 0;
if (vg->es_vid == 0)
return (0);
if (E6000SW_WAITREADY(sc, VTU_OPERATION, VTU_BUSY)) {
device_printf(sc->dev, "VTU unit is busy, cannot access\n");
return (EBUSY);
}
e6000sw_writereg(sc, REG_GLOBAL, VTU_VID, vg->es_vid - 1);
reg = e6000sw_readreg(sc, REG_GLOBAL, VTU_OPERATION);
reg &= ~VTU_OP_MASK;
reg |= VTU_GET_NEXT | VTU_BUSY;
e6000sw_writereg(sc, REG_GLOBAL, VTU_OPERATION, reg);
if (E6000SW_WAITREADY(sc, VTU_OPERATION, VTU_BUSY)) {
device_printf(sc->dev, "Timeout while reading\n");
return (EBUSY);
}
reg = e6000sw_readreg(sc, REG_GLOBAL, VTU_VID);
if (reg == VTU_VID_MASK || (reg & VTU_VID_VALID) == 0)
return (EINVAL);
if ((reg & VTU_VID_MASK) != vg->es_vid)
return (EINVAL);
vg->es_vid |= ETHERSWITCH_VID_VALID;
reg = e6000sw_readreg(sc, REG_GLOBAL, VTU_DATA);
for (i = 0; i < sc->num_ports; i++) {
if (i == VTU_PPREG(sc))
reg = e6000sw_readreg(sc, REG_GLOBAL, VTU_DATA2);
port = (reg >> VTU_PORT(sc, i)) & VTU_PORT_MASK;
if (port == VTU_PORT_UNTAGGED) {
vg->es_untagged_ports |= (1 << i);
vg->es_member_ports |= (1 << i);
} else if (port == VTU_PORT_TAGGED)
vg->es_member_ports |= (1 << i);
}
return (0);
}
static int
e6000sw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
{
e6000sw_softc_t *sc;
sc = device_get_softc(dev);
E6000SW_LOCK_ASSERT(sc, SA_XLOCKED);
if (sc->vlan_mode == ETHERSWITCH_VLAN_PORT)
return (e6000sw_get_port_vlan(sc, vg));
else if (sc->vlan_mode == ETHERSWITCH_VLAN_DOT1Q)
return (e6000sw_get_dot1q_vlan(sc, vg));
return (EINVAL);
}
static __inline struct mii_data*
e6000sw_miiforphy(e6000sw_softc_t *sc, unsigned int phy)
{
if (!e6000sw_is_phyport(sc, phy))
return (NULL);
return (device_get_softc(sc->miibus[phy]));
}
static int
e6000sw_ifmedia_upd(if_t ifp)
{
e6000sw_softc_t *sc;
struct mii_data *mii;
sc = if_getsoftc(ifp);
mii = e6000sw_miiforphy(sc, if_getdunit(ifp));
if (mii == NULL)
return (ENXIO);
mii_mediachg(mii);
return (0);
}
static void
e6000sw_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
{
e6000sw_softc_t *sc;
struct mii_data *mii;
sc = if_getsoftc(ifp);
mii = e6000sw_miiforphy(sc, if_getdunit(ifp));
if (mii == NULL)
return;
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
static int
e6000sw_smi_waitready(e6000sw_softc_t *sc, int phy)
{
int i;
for (i = 0; i < E6000SW_SMI_TIMEOUT; i++) {
if ((MDIO_READ(sc->dev, phy, SMI_CMD) & SMI_CMD_BUSY) == 0)
return (0);
DELAY(1);
}
return (1);
}
static __inline uint32_t
e6000sw_readreg(e6000sw_softc_t *sc, int addr, int reg)
{
E6000SW_LOCK_ASSERT(sc, SA_XLOCKED);
if (!MVSWITCH_MULTICHIP(sc))
return (MDIO_READ(sc->dev, addr, reg) & 0xffff);
if (e6000sw_smi_waitready(sc, sc->sw_addr)) {
printf("e6000sw: readreg timeout\n");
return (0xffff);
}
MDIO_WRITE(sc->dev, sc->sw_addr, SMI_CMD,
SMI_CMD_OP_C22_READ | (reg & SMI_CMD_REG_ADDR_MASK) |
((addr << SMI_CMD_DEV_ADDR) & SMI_CMD_DEV_ADDR_MASK));
if (e6000sw_smi_waitready(sc, sc->sw_addr)) {
printf("e6000sw: readreg timeout\n");
return (0xffff);
}
return (MDIO_READ(sc->dev, sc->sw_addr, SMI_DATA) & 0xffff);
}
static __inline void
e6000sw_writereg(e6000sw_softc_t *sc, int addr, int reg, int val)
{
E6000SW_LOCK_ASSERT(sc, SA_XLOCKED);
if (!MVSWITCH_MULTICHIP(sc)) {
MDIO_WRITE(sc->dev, addr, reg, val);
return;
}
if (e6000sw_smi_waitready(sc, sc->sw_addr)) {
printf("e6000sw: readreg timeout\n");
return;
}
MDIO_WRITE(sc->dev, sc->sw_addr, SMI_DATA, val);
MDIO_WRITE(sc->dev, sc->sw_addr, SMI_CMD,
SMI_CMD_OP_C22_WRITE | (reg & SMI_CMD_REG_ADDR_MASK) |
((addr << SMI_CMD_DEV_ADDR) & SMI_CMD_DEV_ADDR_MASK));
}
static __inline bool
e6000sw_is_cpuport(e6000sw_softc_t *sc, int port)
{
return ((sc->cpuports_mask & (1 << port)) ? true : false);
}
static __inline bool
e6000sw_is_fixedport(e6000sw_softc_t *sc, int port)
{
return ((sc->fixed_mask & (1 << port)) ? true : false);
}
static __inline bool
e6000sw_is_fixed25port(e6000sw_softc_t *sc, int port)
{
return ((sc->fixed25_mask & (1 << port)) ? true : false);
}
static __inline bool
e6000sw_is_phyport(e6000sw_softc_t *sc, int port)
{
uint32_t phy_mask;
phy_mask = ~(sc->fixed_mask | sc->cpuports_mask);
return ((phy_mask & (1 << port)) ? true : false);
}
static __inline bool
e6000sw_is_portenabled(e6000sw_softc_t *sc, int port)
{
return ((sc->ports_mask & (1 << port)) ? true : false);
}
static __inline void
e6000sw_set_pvid(e6000sw_softc_t *sc, int port, int pvid)
{
uint32_t reg;
reg = e6000sw_readreg(sc, REG_PORT(sc, port), PORT_VID);
reg &= ~PORT_VID_DEF_VID_MASK;
reg |= (pvid & PORT_VID_DEF_VID_MASK);
e6000sw_writereg(sc, REG_PORT(sc, port), PORT_VID, reg);
}
static __inline int
e6000sw_get_pvid(e6000sw_softc_t *sc, int port, int *pvid)
{
if (pvid == NULL)
return (ENXIO);
*pvid = e6000sw_readreg(sc, REG_PORT(sc, port), PORT_VID) &
PORT_VID_DEF_VID_MASK;
return (0);
}
/*
* Convert port status to ifmedia.
*/
static void
e6000sw_update_ifmedia(uint16_t portstatus, u_int *media_status, u_int *media_active)
{
*media_active = IFM_ETHER;
*media_status = IFM_AVALID;
if ((portstatus & PORT_STATUS_LINK_MASK) != 0)
*media_status |= IFM_ACTIVE;
else {
*media_active |= IFM_NONE;
return;
}
switch (portstatus & PORT_STATUS_SPEED_MASK) {
case PORT_STATUS_SPEED_10:
*media_active |= IFM_10_T;
break;
case PORT_STATUS_SPEED_100:
*media_active |= IFM_100_TX;
break;
case PORT_STATUS_SPEED_1000:
*media_active |= IFM_1000_T;
break;
}
if ((portstatus & PORT_STATUS_DUPLEX_MASK) == 0)
*media_active |= IFM_FDX;
else
*media_active |= IFM_HDX;
}
static void
e6000sw_tick(void *arg, int p __unused)
{
e6000sw_softc_t *sc;
struct mii_data *mii;
struct mii_softc *miisc;
uint16_t portstatus;
int port;
sc = arg;
E6000SW_LOCK_ASSERT(sc, SA_UNLOCKED);
E6000SW_LOCK(sc);
for (port = 0; port < sc->num_ports; port++) {
/* Tick only on PHY ports */
if (!e6000sw_is_portenabled(sc, port) ||
!e6000sw_is_phyport(sc, port))
continue;
mii = e6000sw_miiforphy(sc, port);
if (mii == NULL)
continue;
portstatus = e6000sw_readreg(sc, REG_PORT(sc, port),
PORT_STATUS);
e6000sw_update_ifmedia(portstatus,
&mii->mii_media_status, &mii->mii_media_active);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
if (IFM_INST(mii->mii_media.ifm_cur->ifm_media)
!= miisc->mii_inst)
continue;
mii_phy_update(miisc, MII_POLLSTAT);
}
}
E6000SW_UNLOCK(sc);
}
static void
e6000sw_setup(device_t dev, e6000sw_softc_t *sc)
{
uint32_t atu_ctrl;
/* Set aging time. */
atu_ctrl = e6000sw_readreg(sc, REG_GLOBAL, ATU_CONTROL);
atu_ctrl &= ~ATU_CONTROL_AGETIME_MASK;
atu_ctrl |= E6000SW_DEFAULT_AGETIME << ATU_CONTROL_AGETIME;
e6000sw_writereg(sc, REG_GLOBAL, ATU_CONTROL, atu_ctrl);
/* Send all with specific mac address to cpu port */
e6000sw_writereg(sc, REG_GLOBAL2, MGMT_EN_2x, MGMT_EN_ALL);
e6000sw_writereg(sc, REG_GLOBAL2, MGMT_EN_0x, MGMT_EN_ALL);
/* Disable Remote Management */
e6000sw_writereg(sc, REG_GLOBAL, SWITCH_GLOBAL_CONTROL2, 0);
/* Disable loopback filter and flow control messages */
e6000sw_writereg(sc, REG_GLOBAL2, SWITCH_MGMT,
SWITCH_MGMT_PRI_MASK |
(1 << SWITCH_MGMT_RSVD2CPU) |
SWITCH_MGMT_FC_PRI_MASK |
(1 << SWITCH_MGMT_FORCEFLOW));
e6000sw_atu_flush(dev, sc, NO_OPERATION);
e6000sw_atu_mac_table(dev, sc, NULL, NO_OPERATION);
e6000sw_set_atustat(dev, sc, 0, COUNT_ALL);
}
static void
e6000sw_set_atustat(device_t dev, e6000sw_softc_t *sc, int bin, int flag)
{
e6000sw_readreg(sc, REG_GLOBAL2, ATU_STATS);
e6000sw_writereg(sc, REG_GLOBAL2, ATU_STATS, (bin << ATU_STATS_BIN ) |
(flag << ATU_STATS_FLAG));
}
static int
e6000sw_atu_mac_table(device_t dev, e6000sw_softc_t *sc, struct atu_opt *atu,
int flag)
{
uint16_t ret_opt;
uint16_t ret_data;
if (flag == NO_OPERATION)
return (0);
else if ((flag & (LOAD_FROM_FIB | PURGE_FROM_FIB | GET_NEXT_IN_FIB |
GET_VIOLATION_DATA | CLEAR_VIOLATION_DATA)) == 0) {
device_printf(dev, "Wrong Opcode for ATU operation\n");
return (EINVAL);
}
if (E6000SW_WAITREADY(sc, ATU_OPERATION, ATU_UNIT_BUSY)) {
device_printf(dev, "ATU unit is busy, cannot access\n");
return (EBUSY);
}
ret_opt = e6000sw_readreg(sc, REG_GLOBAL, ATU_OPERATION);
if (flag & LOAD_FROM_FIB) {
ret_data = e6000sw_readreg(sc, REG_GLOBAL, ATU_DATA);
e6000sw_writereg(sc, REG_GLOBAL2, ATU_DATA, (ret_data &
~ENTRY_STATE));
}
e6000sw_writereg(sc, REG_GLOBAL, ATU_MAC_ADDR01, atu->mac_01);
e6000sw_writereg(sc, REG_GLOBAL, ATU_MAC_ADDR23, atu->mac_23);
e6000sw_writereg(sc, REG_GLOBAL, ATU_MAC_ADDR45, atu->mac_45);
e6000sw_writereg(sc, REG_GLOBAL, ATU_FID, atu->fid);
e6000sw_writereg(sc, REG_GLOBAL, ATU_OPERATION,
(ret_opt | ATU_UNIT_BUSY | flag));
if (E6000SW_WAITREADY(sc, ATU_OPERATION, ATU_UNIT_BUSY))
device_printf(dev, "Timeout while waiting ATU\n");
else if (flag & GET_NEXT_IN_FIB) {
atu->mac_01 = e6000sw_readreg(sc, REG_GLOBAL,
ATU_MAC_ADDR01);
atu->mac_23 = e6000sw_readreg(sc, REG_GLOBAL,
ATU_MAC_ADDR23);
atu->mac_45 = e6000sw_readreg(sc, REG_GLOBAL,
ATU_MAC_ADDR45);
}
return (0);
}
static int
e6000sw_atu_flush(device_t dev, e6000sw_softc_t *sc, int flag)
{
uint32_t reg;
if (flag == NO_OPERATION)
return (0);
if (E6000SW_WAITREADY(sc, ATU_OPERATION, ATU_UNIT_BUSY)) {
device_printf(dev, "ATU unit is busy, cannot access\n");
return (EBUSY);
}
reg = e6000sw_readreg(sc, REG_GLOBAL, ATU_OPERATION);
e6000sw_writereg(sc, REG_GLOBAL, ATU_OPERATION,
(reg | ATU_UNIT_BUSY | flag));
if (E6000SW_WAITREADY(sc, ATU_OPERATION, ATU_UNIT_BUSY))
device_printf(dev, "Timeout while flushing ATU\n");
return (0);
}
static int
e6000sw_vtu_flush(e6000sw_softc_t *sc)
{
if (E6000SW_WAITREADY(sc, VTU_OPERATION, VTU_BUSY)) {
device_printf(sc->dev, "VTU unit is busy, cannot access\n");
return (EBUSY);
}
e6000sw_writereg(sc, REG_GLOBAL, VTU_OPERATION, VTU_FLUSH | VTU_BUSY);
if (E6000SW_WAITREADY(sc, VTU_OPERATION, VTU_BUSY)) {
device_printf(sc->dev, "Timeout while flushing VTU\n");
return (ETIMEDOUT);
}
return (0);
}
static int
e6000sw_vtu_update(e6000sw_softc_t *sc, int purge, int vid, int fid,
int members, int untagged)
{
int i, op;
uint32_t data[2];
if (E6000SW_WAITREADY(sc, VTU_OPERATION, VTU_BUSY)) {
device_printf(sc->dev, "VTU unit is busy, cannot access\n");
return (EBUSY);
}
*data = (vid & VTU_VID_MASK);
if (purge == 0)
*data |= VTU_VID_VALID;
e6000sw_writereg(sc, REG_GLOBAL, VTU_VID, *data);
if (purge == 0) {
data[0] = 0;
data[1] = 0;
for (i = 0; i < sc->num_ports; i++) {
if ((untagged & (1 << i)) != 0)
data[i / VTU_PPREG(sc)] |=
VTU_PORT_UNTAGGED << VTU_PORT(sc, i);
else if ((members & (1 << i)) != 0)
data[i / VTU_PPREG(sc)] |=
VTU_PORT_TAGGED << VTU_PORT(sc, i);
else
data[i / VTU_PPREG(sc)] |=
VTU_PORT_DISCARD << VTU_PORT(sc, i);
}
e6000sw_writereg(sc, REG_GLOBAL, VTU_DATA, data[0]);
e6000sw_writereg(sc, REG_GLOBAL, VTU_DATA2, data[1]);
e6000sw_writereg(sc, REG_GLOBAL, VTU_FID,
fid & VTU_FID_MASK(sc));
op = VTU_LOAD;
} else
op = VTU_PURGE;
e6000sw_writereg(sc, REG_GLOBAL, VTU_OPERATION, op | VTU_BUSY);
if (E6000SW_WAITREADY(sc, VTU_OPERATION, VTU_BUSY)) {
device_printf(sc->dev, "Timeout while flushing VTU\n");
return (ETIMEDOUT);
}
return (0);
}