freebsd-dev/sys/netlink/netlink_io.c
Kristof Provost fa554de774 netlink: reduce default log levels
Reduce the default log level for netlink to LOG_INFO. This removes a
number of messages such as

> [nl_iface] dump_sa: unsupported family: 0, skipping
or
> [nl_iface] get_operstate_ether: error calling SIOCGIFMEDIA on vlan0: 22

that are useful for debugging, but not for most users.

Reviewed by:	melifaro
Sponsored by:	Rubicon Communications, LLC ("Netgate")
Differential Revision:	https://reviews.freebsd.org/D40062
2023-05-12 14:32:57 +02:00

603 lines
14 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2021 Ng Peng Nam Sean
* Copyright (c) 2022 Alexander V. Chernikov <melifaro@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_netlink.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/ck.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/syslog.h>
#include <netlink/netlink.h>
#include <netlink/netlink_ctl.h>
#include <netlink/netlink_linux.h>
#include <netlink/netlink_var.h>
#define DEBUG_MOD_NAME nl_io
#define DEBUG_MAX_LEVEL LOG_DEBUG3
#include <netlink/netlink_debug.h>
_DECLARE_DEBUG(LOG_INFO);
/*
* The logic below provide a p2p interface for receiving and
* sending netlink data between the kernel and userland.
*/
static const struct sockaddr_nl _nl_empty_src = {
.nl_len = sizeof(struct sockaddr_nl),
.nl_family = PF_NETLINK,
.nl_pid = 0 /* comes from the kernel */
};
static const struct sockaddr *nl_empty_src = (const struct sockaddr *)&_nl_empty_src;
static struct mbuf *nl_process_mbuf(struct mbuf *m, struct nlpcb *nlp);
static void
queue_push(struct nl_io_queue *q, struct mbuf *mq)
{
while (mq != NULL) {
struct mbuf *m = mq;
mq = mq->m_nextpkt;
m->m_nextpkt = NULL;
q->length += m_length(m, NULL);
STAILQ_INSERT_TAIL(&q->head, m, m_stailqpkt);
}
}
static void
queue_push_head(struct nl_io_queue *q, struct mbuf *m)
{
MPASS(m->m_nextpkt == NULL);
q->length += m_length(m, NULL);
STAILQ_INSERT_HEAD(&q->head, m, m_stailqpkt);
}
static struct mbuf *
queue_pop(struct nl_io_queue *q)
{
if (!STAILQ_EMPTY(&q->head)) {
struct mbuf *m = STAILQ_FIRST(&q->head);
STAILQ_REMOVE_HEAD(&q->head, m_stailqpkt);
m->m_nextpkt = NULL;
q->length -= m_length(m, NULL);
return (m);
}
return (NULL);
}
static struct mbuf *
queue_head(const struct nl_io_queue *q)
{
return (STAILQ_FIRST(&q->head));
}
static inline bool
queue_empty(const struct nl_io_queue *q)
{
return (q->length == 0);
}
static void
queue_free(struct nl_io_queue *q)
{
while (!STAILQ_EMPTY(&q->head)) {
struct mbuf *m = STAILQ_FIRST(&q->head);
STAILQ_REMOVE_HEAD(&q->head, m_stailqpkt);
m->m_nextpkt = NULL;
m_freem(m);
}
q->length = 0;
}
void
nl_add_msg_info(struct mbuf *m)
{
struct nlpcb *nlp = nl_get_thread_nlp(curthread);
NL_LOG(LOG_DEBUG2, "Trying to recover nlp from thread %p: %p",
curthread, nlp);
if (nlp == NULL)
return;
/* Prepare what we want to encode - PID, socket PID & msg seq */
struct {
struct nlattr nla;
uint32_t val;
} data[] = {
{
.nla.nla_len = sizeof(struct nlattr) + sizeof(uint32_t),
.nla.nla_type = NLMSGINFO_ATTR_PROCESS_ID,
.val = nlp->nl_process_id,
},
{
.nla.nla_len = sizeof(struct nlattr) + sizeof(uint32_t),
.nla.nla_type = NLMSGINFO_ATTR_PORT_ID,
.val = nlp->nl_port,
},
};
while (m->m_next != NULL)
m = m->m_next;
m->m_next = sbcreatecontrol(data, sizeof(data),
NETLINK_MSG_INFO, SOL_NETLINK, M_NOWAIT);
NL_LOG(LOG_DEBUG2, "Storing %u bytes of data, ctl: %p",
(unsigned)sizeof(data), m->m_next);
}
static __noinline struct mbuf *
extract_msg_info(struct mbuf *m)
{
while (m->m_next != NULL) {
if (m->m_next->m_type == MT_CONTROL) {
struct mbuf *ctl = m->m_next;
m->m_next = NULL;
return (ctl);
}
m = m->m_next;
}
return (NULL);
}
static void
nl_schedule_taskqueue(struct nlpcb *nlp)
{
if (!nlp->nl_task_pending) {
nlp->nl_task_pending = true;
taskqueue_enqueue(nlp->nl_taskqueue, &nlp->nl_task);
NL_LOG(LOG_DEBUG3, "taskqueue scheduled");
} else {
NL_LOG(LOG_DEBUG3, "taskqueue schedule skipped");
}
}
int
nl_receive_async(struct mbuf *m, struct socket *so)
{
struct nlpcb *nlp = sotonlpcb(so);
int error = 0;
m->m_nextpkt = NULL;
NLP_LOCK(nlp);
if ((__predict_true(nlp->nl_active))) {
sbappend(&so->so_snd, m, 0);
NL_LOG(LOG_DEBUG3, "enqueue %u bytes", m_length(m, NULL));
nl_schedule_taskqueue(nlp);
} else {
NL_LOG(LOG_DEBUG, "ignoring %u bytes on non-active socket",
m_length(m, NULL));
m_free(m);
error = EINVAL;
}
NLP_UNLOCK(nlp);
return (error);
}
static bool
tx_check_locked(struct nlpcb *nlp)
{
if (queue_empty(&nlp->tx_queue))
return (true);
/*
* Check if something can be moved from the internal TX queue
* to the socket queue.
*/
bool appended = false;
struct sockbuf *sb = &nlp->nl_socket->so_rcv;
SOCKBUF_LOCK(sb);
while (true) {
struct mbuf *m = queue_head(&nlp->tx_queue);
if (m != NULL) {
struct mbuf *ctl = NULL;
if (__predict_false(m->m_next != NULL))
ctl = extract_msg_info(m);
if (sbappendaddr_locked(sb, nl_empty_src, m, ctl) != 0) {
/* appended successfully */
queue_pop(&nlp->tx_queue);
appended = true;
} else
break;
} else
break;
}
SOCKBUF_UNLOCK(sb);
if (appended)
sorwakeup(nlp->nl_socket);
return (queue_empty(&nlp->tx_queue));
}
static bool
nl_process_received_one(struct nlpcb *nlp)
{
bool reschedule = false;
NLP_LOCK(nlp);
nlp->nl_task_pending = false;
if (!tx_check_locked(nlp)) {
/* TX overflow queue still not empty, ignore RX */
NLP_UNLOCK(nlp);
return (false);
}
if (queue_empty(&nlp->rx_queue)) {
/*
* Grab all data we have from the socket TX queue
* and store it the internal queue, so it can be worked on
* w/o holding socket lock.
*/
struct sockbuf *sb = &nlp->nl_socket->so_snd;
SOCKBUF_LOCK(sb);
unsigned int avail = sbavail(sb);
if (avail > 0) {
NL_LOG(LOG_DEBUG3, "grabbed %u bytes", avail);
queue_push(&nlp->rx_queue, sbcut_locked(sb, avail));
}
SOCKBUF_UNLOCK(sb);
} else {
/* Schedule another pass to read from the socket queue */
reschedule = true;
}
int prev_hiwat = nlp->tx_queue.hiwat;
NLP_UNLOCK(nlp);
while (!queue_empty(&nlp->rx_queue)) {
struct mbuf *m = queue_pop(&nlp->rx_queue);
m = nl_process_mbuf(m, nlp);
if (m != NULL) {
queue_push_head(&nlp->rx_queue, m);
reschedule = false;
break;
}
}
if (nlp->tx_queue.hiwat > prev_hiwat) {
NLP_LOG(LOG_DEBUG, nlp, "TX override peaked to %d", nlp->tx_queue.hiwat);
}
return (reschedule);
}
static void
nl_process_received(struct nlpcb *nlp)
{
NL_LOG(LOG_DEBUG3, "taskqueue called");
if (__predict_false(nlp->nl_need_thread_setup)) {
nl_set_thread_nlp(curthread, nlp);
NLP_LOCK(nlp);
nlp->nl_need_thread_setup = false;
NLP_UNLOCK(nlp);
}
while (nl_process_received_one(nlp))
;
}
void
nl_init_io(struct nlpcb *nlp)
{
STAILQ_INIT(&nlp->rx_queue.head);
STAILQ_INIT(&nlp->tx_queue.head);
}
void
nl_free_io(struct nlpcb *nlp)
{
queue_free(&nlp->rx_queue);
queue_free(&nlp->tx_queue);
}
/*
* Called after some data have been read from the socket.
*/
void
nl_on_transmit(struct nlpcb *nlp)
{
NLP_LOCK(nlp);
struct socket *so = nlp->nl_socket;
if (__predict_false(nlp->nl_dropped_bytes > 0 && so != NULL)) {
unsigned long dropped_bytes = nlp->nl_dropped_bytes;
unsigned long dropped_messages = nlp->nl_dropped_messages;
nlp->nl_dropped_bytes = 0;
nlp->nl_dropped_messages = 0;
struct sockbuf *sb = &so->so_rcv;
NLP_LOG(LOG_DEBUG, nlp,
"socket RX overflowed, %lu messages (%lu bytes) dropped. "
"bytes: [%u/%u] mbufs: [%u/%u]", dropped_messages, dropped_bytes,
sb->sb_ccc, sb->sb_hiwat, sb->sb_mbcnt, sb->sb_mbmax);
/* TODO: send netlink message */
}
nl_schedule_taskqueue(nlp);
NLP_UNLOCK(nlp);
}
void
nl_taskqueue_handler(void *_arg, int pending)
{
struct nlpcb *nlp = (struct nlpcb *)_arg;
CURVNET_SET(nlp->nl_socket->so_vnet);
nl_process_received(nlp);
CURVNET_RESTORE();
}
static __noinline void
queue_push_tx(struct nlpcb *nlp, struct mbuf *m)
{
queue_push(&nlp->tx_queue, m);
nlp->nl_tx_blocked = true;
if (nlp->tx_queue.length > nlp->tx_queue.hiwat)
nlp->tx_queue.hiwat = nlp->tx_queue.length;
}
/*
* Tries to send @m to the socket @nlp.
*
* @m: mbuf(s) to send to. Consumed in any case.
* @nlp: socket to send to
* @cnt: number of messages in @m
* @io_flags: combination of NL_IOF_* flags
*
* Returns true on success.
* If no queue overrunes happened, wakes up socket owner.
*/
bool
nl_send_one(struct mbuf *m, struct nlpcb *nlp, int num_messages, int io_flags)
{
bool untranslated = io_flags & NL_IOF_UNTRANSLATED;
bool ignore_limits = io_flags & NL_IOF_IGNORE_LIMIT;
bool result = true;
IF_DEBUG_LEVEL(LOG_DEBUG2) {
struct nlmsghdr *hdr = mtod(m, struct nlmsghdr *);
NLP_LOG(LOG_DEBUG2, nlp,
"TX mbuf len %u msgs %u msg type %d first hdrlen %u io_flags %X",
m_length(m, NULL), num_messages, hdr->nlmsg_type, hdr->nlmsg_len,
io_flags);
}
if (__predict_false(nlp->nl_linux && linux_netlink_p != NULL && untranslated)) {
m = linux_netlink_p->mbufs_to_linux(nlp->nl_proto, m, nlp);
if (m == NULL)
return (false);
}
NLP_LOCK(nlp);
if (__predict_false(nlp->nl_socket == NULL)) {
NLP_UNLOCK(nlp);
m_freem(m);
return (false);
}
if (!queue_empty(&nlp->tx_queue)) {
if (ignore_limits) {
queue_push_tx(nlp, m);
} else {
m_free(m);
result = false;
}
NLP_UNLOCK(nlp);
return (result);
}
struct socket *so = nlp->nl_socket;
struct mbuf *ctl = NULL;
if (__predict_false(m->m_next != NULL))
ctl = extract_msg_info(m);
if (sbappendaddr(&so->so_rcv, nl_empty_src, m, ctl) != 0) {
sorwakeup(so);
NLP_LOG(LOG_DEBUG3, nlp, "appended data & woken up");
} else {
if (ignore_limits) {
queue_push_tx(nlp, m);
} else {
/*
* Store dropped data so it can be reported
* on the next read
*/
nlp->nl_dropped_bytes += m_length(m, NULL);
nlp->nl_dropped_messages += num_messages;
NLP_LOG(LOG_DEBUG2, nlp, "RX oveflow: %lu m (+%d), %lu b (+%d)",
(unsigned long)nlp->nl_dropped_messages, num_messages,
(unsigned long)nlp->nl_dropped_bytes, m_length(m, NULL));
soroverflow(so);
m_freem(m);
result = false;
}
}
NLP_UNLOCK(nlp);
return (result);
}
static int
nl_receive_message(struct nlmsghdr *hdr, int remaining_length,
struct nlpcb *nlp, struct nl_pstate *npt)
{
nl_handler_f handler = nl_handlers[nlp->nl_proto].cb;
int error = 0;
NLP_LOG(LOG_DEBUG2, nlp, "msg len: %u type: %d: flags: 0x%X seq: %u pid: %u",
hdr->nlmsg_len, hdr->nlmsg_type, hdr->nlmsg_flags, hdr->nlmsg_seq,
hdr->nlmsg_pid);
if (__predict_false(hdr->nlmsg_len > remaining_length)) {
NLP_LOG(LOG_DEBUG, nlp, "message is not entirely present: want %d got %d",
hdr->nlmsg_len, remaining_length);
return (EINVAL);
} else if (__predict_false(hdr->nlmsg_len < sizeof(*hdr))) {
NL_LOG(LOG_DEBUG, "message too short: %d", hdr->nlmsg_len);
return (EINVAL);
}
/* Stamp each message with sender pid */
hdr->nlmsg_pid = nlp->nl_port;
npt->hdr = hdr;
if (hdr->nlmsg_flags & NLM_F_REQUEST && hdr->nlmsg_type >= NLMSG_MIN_TYPE) {
NL_LOG(LOG_DEBUG2, "handling message with msg type: %d",
hdr->nlmsg_type);
if (nlp->nl_linux && linux_netlink_p != NULL) {
struct nlmsghdr *hdr_orig = hdr;
hdr = linux_netlink_p->msg_from_linux(nlp->nl_proto, hdr, npt);
if (hdr == NULL) {
/* Failed to translate to kernel format. Report an error back */
hdr = hdr_orig;
npt->hdr = hdr;
if (hdr->nlmsg_flags & NLM_F_ACK)
nlmsg_ack(nlp, EOPNOTSUPP, hdr, npt);
return (0);
}
}
error = handler(hdr, npt);
NL_LOG(LOG_DEBUG2, "retcode: %d", error);
}
if ((hdr->nlmsg_flags & NLM_F_ACK) || (error != 0 && error != EINTR)) {
if (!npt->nw->suppress_ack) {
NL_LOG(LOG_DEBUG3, "ack");
nlmsg_ack(nlp, error, hdr, npt);
}
}
return (0);
}
static void
npt_clear(struct nl_pstate *npt)
{
lb_clear(&npt->lb);
npt->error = 0;
npt->err_msg = NULL;
npt->err_off = 0;
npt->hdr = NULL;
npt->nw->suppress_ack = false;
}
/*
* Processes an incoming packet, which can contain multiple netlink messages
*/
static struct mbuf *
nl_process_mbuf(struct mbuf *m, struct nlpcb *nlp)
{
int offset, buffer_length;
struct nlmsghdr *hdr;
char *buffer;
int error;
NL_LOG(LOG_DEBUG3, "RX netlink mbuf %p on %p", m, nlp->nl_socket);
struct nl_writer nw = {};
if (!nlmsg_get_unicast_writer(&nw, NLMSG_SMALL, nlp)) {
m_freem(m);
NL_LOG(LOG_DEBUG, "error allocating socket writer");
return (NULL);
}
nlmsg_ignore_limit(&nw);
/* TODO: alloc this buf once for nlp */
int data_length = m_length(m, NULL);
buffer_length = roundup2(data_length, 8) + SCRATCH_BUFFER_SIZE;
if (nlp->nl_linux)
buffer_length += roundup2(data_length, 8);
buffer = malloc(buffer_length, M_NETLINK, M_NOWAIT | M_ZERO);
if (buffer == NULL) {
m_freem(m);
nlmsg_flush(&nw);
NL_LOG(LOG_DEBUG, "Unable to allocate %d bytes of memory",
buffer_length);
return (NULL);
}
m_copydata(m, 0, data_length, buffer);
struct nl_pstate npt = {
.nlp = nlp,
.lb.base = &buffer[roundup2(data_length, 8)],
.lb.size = buffer_length - roundup2(data_length, 8),
.nw = &nw,
.strict = nlp->nl_flags & NLF_STRICT,
};
for (offset = 0; offset + sizeof(struct nlmsghdr) <= data_length;) {
hdr = (struct nlmsghdr *)&buffer[offset];
/* Save length prior to calling handler */
int msglen = NLMSG_ALIGN(hdr->nlmsg_len);
NL_LOG(LOG_DEBUG3, "parsing offset %d/%d", offset, data_length);
npt_clear(&npt);
error = nl_receive_message(hdr, data_length - offset, nlp, &npt);
offset += msglen;
if (__predict_false(error != 0 || nlp->nl_tx_blocked))
break;
}
NL_LOG(LOG_DEBUG3, "packet parsing done");
free(buffer, M_NETLINK);
nlmsg_flush(&nw);
if (nlp->nl_tx_blocked) {
NLP_LOCK(nlp);
nlp->nl_tx_blocked = false;
NLP_UNLOCK(nlp);
m_adj(m, offset);
return (m);
} else {
m_freem(m);
return (NULL);
}
}