freebsd-dev/usr.bin/sockstat/sockstat.c
Gleb Smirnoff d961ccd350 sockstat(1): print PID adjusted to the right
This allows for easy copy-and-paste of a unix(4) peer name for lookup.
With current implementation it is guaranteed that a peer listed could be
found in the output.

Differential revision:	https://reviews.freebsd.org/D35727
2022-07-06 22:19:08 -07:00

1582 lines
38 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2002 Dag-Erling Coïdan Smørgrav
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/file.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/jail.h>
#include <sys/user.h>
#include <sys/queue.h>
#include <sys/tree.h>
#include <sys/un.h>
#include <sys/unpcb.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/sctp.h>
#include <netinet/tcp.h>
#define TCPSTATES /* load state names */
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_var.h>
#include <arpa/inet.h>
#include <capsicum_helpers.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <inttypes.h>
#include <jail.h>
#include <netdb.h>
#include <pwd.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <libcasper.h>
#include <casper/cap_net.h>
#include <casper/cap_netdb.h>
#include <casper/cap_pwd.h>
#include <casper/cap_sysctl.h>
#define sstosin(ss) ((struct sockaddr_in *)(ss))
#define sstosin6(ss) ((struct sockaddr_in6 *)(ss))
#define sstosun(ss) ((struct sockaddr_un *)(ss))
#define sstosa(ss) ((struct sockaddr *)(ss))
static int opt_4; /* Show IPv4 sockets */
static int opt_6; /* Show IPv6 sockets */
static int opt_C; /* Show congestion control */
static int opt_c; /* Show connected sockets */
static int opt_i; /* Show inp_gencnt */
static int opt_j; /* Show specified jail */
static int opt_L; /* Don't show IPv4 or IPv6 loopback sockets */
static int opt_l; /* Show listening sockets */
static int opt_n; /* Don't resolve UIDs to user names */
static int opt_q; /* Don't show header */
static int opt_S; /* Show protocol stack if applicable */
static int opt_s; /* Show protocol state if applicable */
static int opt_U; /* Show remote UDP encapsulation port number */
static int opt_u; /* Show Unix domain sockets */
static int opt_v; /* Verbose mode */
static int opt_w; /* Wide print area for addresses */
/*
* Default protocols to use if no -P was defined.
*/
static const char *default_protos[] = {"sctp", "tcp", "udp", "divert" };
static size_t default_numprotos = nitems(default_protos);
static int *protos; /* protocols to use */
static size_t numprotos; /* allocated size of protos[] */
static int *ports;
#define INT_BIT (sizeof(int)*CHAR_BIT)
#define SET_PORT(p) do { ports[p / INT_BIT] |= 1 << (p % INT_BIT); } while (0)
#define CHK_PORT(p) (ports[p / INT_BIT] & (1 << (p % INT_BIT)))
struct addr {
union {
struct sockaddr_storage address;
struct { /* unix(4) faddr */
kvaddr_t conn;
kvaddr_t firstref;
kvaddr_t nextref;
};
};
unsigned int encaps_port;
int state;
struct addr *next;
};
struct sock {
union {
RB_ENTRY(sock) socket_tree; /* tree of pcbs with socket */
SLIST_ENTRY(sock) socket_list; /* list of pcbs w/o socket */
};
RB_ENTRY(sock) pcb_tree;
kvaddr_t socket;
kvaddr_t pcb;
uint64_t inp_gencnt;
int shown;
int vflag;
int family;
int proto;
int state;
const char *protoname;
char stack[TCP_FUNCTION_NAME_LEN_MAX];
char cc[TCP_CA_NAME_MAX];
struct addr *laddr;
struct addr *faddr;
};
static RB_HEAD(socks_t, sock) socks = RB_INITIALIZER(&socks);
static int64_t
socket_compare(const struct sock *a, const struct sock *b)
{
return ((int64_t)(a->socket/2 - b->socket/2));
}
RB_GENERATE_STATIC(socks_t, sock, socket_tree, socket_compare);
static RB_HEAD(pcbs_t, sock) pcbs = RB_INITIALIZER(&pcbs);
static int64_t
pcb_compare(const struct sock *a, const struct sock *b)
{
return ((int64_t)(a->pcb/2 - b->pcb/2));
}
RB_GENERATE_STATIC(pcbs_t, sock, pcb_tree, pcb_compare);
static SLIST_HEAD(, sock) nosocks = SLIST_HEAD_INITIALIZER(&nosocks);
struct file {
RB_ENTRY(file) file_tree;
kvaddr_t xf_data;
pid_t xf_pid;
uid_t xf_uid;
int xf_fd;
};
static RB_HEAD(files_t, file) ftree = RB_INITIALIZER(&ftree);
static int64_t
file_compare(const struct file *a, const struct file *b)
{
return ((int64_t)(a->xf_data/2 - b->xf_data/2));
}
RB_GENERATE_STATIC(files_t, file, file_tree, file_compare);
static struct file *files;
static int nfiles;
static cap_channel_t *capnet;
static cap_channel_t *capnetdb;
static cap_channel_t *capsysctl;
static cap_channel_t *cappwd;
static int
xprintf(const char *fmt, ...)
{
va_list ap;
int len;
va_start(ap, fmt);
len = vprintf(fmt, ap);
va_end(ap);
if (len < 0)
err(1, "printf()");
return (len);
}
static bool
_check_ksize(size_t received_size, size_t expected_size, const char *struct_name)
{
if (received_size != expected_size) {
warnx("%s size mismatch: expected %zd, received %zd",
struct_name, expected_size, received_size);
return false;
}
return true;
}
#define check_ksize(_sz, _struct) (_check_ksize(_sz, sizeof(_struct), #_struct))
static void
_enforce_ksize(size_t received_size, size_t expected_size, const char *struct_name)
{
if (received_size != expected_size) {
errx(1, "fatal: struct %s size mismatch: expected %zd, received %zd",
struct_name, expected_size, received_size);
}
}
#define enforce_ksize(_sz, _struct) (_enforce_ksize(_sz, sizeof(_struct), #_struct))
static int
get_proto_type(const char *proto)
{
struct protoent *pent;
if (strlen(proto) == 0)
return (0);
if (capnetdb != NULL)
pent = cap_getprotobyname(capnetdb, proto);
else
pent = getprotobyname(proto);
if (pent == NULL) {
warn("cap_getprotobyname");
return (-1);
}
return (pent->p_proto);
}
static void
init_protos(int num)
{
int proto_count = 0;
if (num > 0) {
proto_count = num;
} else {
/* Find the maximum number of possible protocols. */
while (getprotoent() != NULL)
proto_count++;
endprotoent();
}
if ((protos = malloc(sizeof(int) * proto_count)) == NULL)
err(1, "malloc");
numprotos = proto_count;
}
static int
parse_protos(char *protospec)
{
char *prot;
int proto_type, proto_index;
if (protospec == NULL)
return (-1);
init_protos(0);
proto_index = 0;
while ((prot = strsep(&protospec, ",")) != NULL) {
if (strlen(prot) == 0)
continue;
proto_type = get_proto_type(prot);
if (proto_type != -1)
protos[proto_index++] = proto_type;
}
numprotos = proto_index;
return (proto_index);
}
static void
parse_ports(const char *portspec)
{
const char *p, *q;
int port, end;
if (ports == NULL)
if ((ports = calloc(65536 / INT_BIT, sizeof(int))) == NULL)
err(1, "calloc()");
p = portspec;
while (*p != '\0') {
if (!isdigit(*p))
errx(1, "syntax error in port range");
for (q = p; *q != '\0' && isdigit(*q); ++q)
/* nothing */ ;
for (port = 0; p < q; ++p)
port = port * 10 + digittoint(*p);
if (port < 0 || port > 65535)
errx(1, "invalid port number");
SET_PORT(port);
switch (*p) {
case '-':
++p;
break;
case ',':
++p;
/* fall through */
case '\0':
default:
continue;
}
for (q = p; *q != '\0' && isdigit(*q); ++q)
/* nothing */ ;
for (end = 0; p < q; ++p)
end = end * 10 + digittoint(*p);
if (end < port || end > 65535)
errx(1, "invalid port number");
while (port++ < end)
SET_PORT(port);
if (*p == ',')
++p;
}
}
static void
sockaddr(struct sockaddr_storage *ss, int af, void *addr, int port)
{
struct sockaddr_in *sin4;
struct sockaddr_in6 *sin6;
bzero(ss, sizeof(*ss));
switch (af) {
case AF_INET:
sin4 = sstosin(ss);
sin4->sin_len = sizeof(*sin4);
sin4->sin_family = af;
sin4->sin_port = port;
sin4->sin_addr = *(struct in_addr *)addr;
break;
case AF_INET6:
sin6 = sstosin6(ss);
sin6->sin6_len = sizeof(*sin6);
sin6->sin6_family = af;
sin6->sin6_port = port;
sin6->sin6_addr = *(struct in6_addr *)addr;
#define s6_addr16 __u6_addr.__u6_addr16
if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
sin6->sin6_scope_id =
ntohs(sin6->sin6_addr.s6_addr16[1]);
sin6->sin6_addr.s6_addr16[1] = 0;
}
break;
default:
abort();
}
}
static void
free_socket(struct sock *sock)
{
struct addr *cur, *next;
cur = sock->laddr;
while (cur != NULL) {
next = cur->next;
free(cur);
cur = next;
}
cur = sock->faddr;
while (cur != NULL) {
next = cur->next;
free(cur);
cur = next;
}
free(sock);
}
static void
gather_sctp(void)
{
struct sock *sock;
struct addr *laddr, *prev_laddr, *faddr, *prev_faddr;
struct xsctp_inpcb *xinpcb;
struct xsctp_tcb *xstcb;
struct xsctp_raddr *xraddr;
struct xsctp_laddr *xladdr;
const char *varname;
size_t len, offset;
char *buf;
int vflag;
int no_stcb, local_all_loopback, foreign_all_loopback;
vflag = 0;
if (opt_4)
vflag |= INP_IPV4;
if (opt_6)
vflag |= INP_IPV6;
varname = "net.inet.sctp.assoclist";
if (cap_sysctlbyname(capsysctl, varname, 0, &len, 0, 0) < 0) {
if (errno != ENOENT)
err(1, "cap_sysctlbyname()");
return;
}
if ((buf = (char *)malloc(len)) == NULL) {
err(1, "malloc()");
return;
}
if (cap_sysctlbyname(capsysctl, varname, buf, &len, 0, 0) < 0) {
err(1, "cap_sysctlbyname()");
free(buf);
return;
}
xinpcb = (struct xsctp_inpcb *)(void *)buf;
offset = sizeof(struct xsctp_inpcb);
while ((offset < len) && (xinpcb->last == 0)) {
if ((sock = calloc(1, sizeof *sock)) == NULL)
err(1, "malloc()");
sock->socket = xinpcb->socket;
sock->proto = IPPROTO_SCTP;
sock->protoname = "sctp";
if (xinpcb->maxqlen == 0)
sock->state = SCTP_CLOSED;
else
sock->state = SCTP_LISTEN;
if (xinpcb->flags & SCTP_PCB_FLAGS_BOUND_V6) {
sock->family = AF_INET6;
/*
* Currently there is no way to distinguish between
* IPv6 only sockets or dual family sockets.
* So mark it as dual socket.
*/
sock->vflag = INP_IPV6 | INP_IPV4;
} else {
sock->family = AF_INET;
sock->vflag = INP_IPV4;
}
prev_laddr = NULL;
local_all_loopback = 1;
while (offset < len) {
xladdr = (struct xsctp_laddr *)(void *)(buf + offset);
offset += sizeof(struct xsctp_laddr);
if (xladdr->last == 1)
break;
if ((laddr = calloc(1, sizeof(struct addr))) == NULL)
err(1, "malloc()");
switch (xladdr->address.sa.sa_family) {
case AF_INET:
#define __IN_IS_ADDR_LOOPBACK(pina) \
((ntohl((pina)->s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)
if (!__IN_IS_ADDR_LOOPBACK(
&xladdr->address.sin.sin_addr))
local_all_loopback = 0;
#undef __IN_IS_ADDR_LOOPBACK
sockaddr(&laddr->address, AF_INET,
&xladdr->address.sin.sin_addr,
htons(xinpcb->local_port));
break;
case AF_INET6:
if (!IN6_IS_ADDR_LOOPBACK(
&xladdr->address.sin6.sin6_addr))
local_all_loopback = 0;
sockaddr(&laddr->address, AF_INET6,
&xladdr->address.sin6.sin6_addr,
htons(xinpcb->local_port));
break;
default:
errx(1, "address family %d not supported",
xladdr->address.sa.sa_family);
}
laddr->next = NULL;
if (prev_laddr == NULL)
sock->laddr = laddr;
else
prev_laddr->next = laddr;
prev_laddr = laddr;
}
if (sock->laddr == NULL) {
if ((sock->laddr =
calloc(1, sizeof(struct addr))) == NULL)
err(1, "malloc()");
sock->laddr->address.ss_family = sock->family;
if (sock->family == AF_INET)
sock->laddr->address.ss_len =
sizeof(struct sockaddr_in);
else
sock->laddr->address.ss_len =
sizeof(struct sockaddr_in6);
local_all_loopback = 0;
}
if ((sock->faddr = calloc(1, sizeof(struct addr))) == NULL)
err(1, "malloc()");
sock->faddr->address.ss_family = sock->family;
if (sock->family == AF_INET)
sock->faddr->address.ss_len =
sizeof(struct sockaddr_in);
else
sock->faddr->address.ss_len =
sizeof(struct sockaddr_in6);
no_stcb = 1;
while (offset < len) {
xstcb = (struct xsctp_tcb *)(void *)(buf + offset);
offset += sizeof(struct xsctp_tcb);
if (no_stcb) {
if (opt_l && (sock->vflag & vflag) &&
(!opt_L || !local_all_loopback) &&
((xinpcb->flags & SCTP_PCB_FLAGS_UDPTYPE) ||
(xstcb->last == 1))) {
RB_INSERT(socks_t, &socks, sock);
} else {
free_socket(sock);
}
}
if (xstcb->last == 1)
break;
no_stcb = 0;
if (opt_c) {
if ((sock = calloc(1, sizeof *sock)) == NULL)
err(1, "malloc()");
sock->socket = xinpcb->socket;
sock->proto = IPPROTO_SCTP;
sock->protoname = "sctp";
sock->state = (int)xstcb->state;
if (xinpcb->flags & SCTP_PCB_FLAGS_BOUND_V6) {
sock->family = AF_INET6;
/*
* Currently there is no way to distinguish
* between IPv6 only sockets or dual family
* sockets. So mark it as dual socket.
*/
sock->vflag = INP_IPV6 | INP_IPV4;
} else {
sock->family = AF_INET;
sock->vflag = INP_IPV4;
}
}
prev_laddr = NULL;
local_all_loopback = 1;
while (offset < len) {
xladdr = (struct xsctp_laddr *)(void *)(buf +
offset);
offset += sizeof(struct xsctp_laddr);
if (xladdr->last == 1)
break;
if (!opt_c)
continue;
laddr = calloc(1, sizeof(struct addr));
if (laddr == NULL)
err(1, "malloc()");
switch (xladdr->address.sa.sa_family) {
case AF_INET:
#define __IN_IS_ADDR_LOOPBACK(pina) \
((ntohl((pina)->s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)
if (!__IN_IS_ADDR_LOOPBACK(
&xladdr->address.sin.sin_addr))
local_all_loopback = 0;
#undef __IN_IS_ADDR_LOOPBACK
sockaddr(&laddr->address, AF_INET,
&xladdr->address.sin.sin_addr,
htons(xstcb->local_port));
break;
case AF_INET6:
if (!IN6_IS_ADDR_LOOPBACK(
&xladdr->address.sin6.sin6_addr))
local_all_loopback = 0;
sockaddr(&laddr->address, AF_INET6,
&xladdr->address.sin6.sin6_addr,
htons(xstcb->local_port));
break;
default:
errx(1,
"address family %d not supported",
xladdr->address.sa.sa_family);
}
laddr->next = NULL;
if (prev_laddr == NULL)
sock->laddr = laddr;
else
prev_laddr->next = laddr;
prev_laddr = laddr;
}
prev_faddr = NULL;
foreign_all_loopback = 1;
while (offset < len) {
xraddr = (struct xsctp_raddr *)(void *)(buf +
offset);
offset += sizeof(struct xsctp_raddr);
if (xraddr->last == 1)
break;
if (!opt_c)
continue;
faddr = calloc(1, sizeof(struct addr));
if (faddr == NULL)
err(1, "malloc()");
switch (xraddr->address.sa.sa_family) {
case AF_INET:
#define __IN_IS_ADDR_LOOPBACK(pina) \
((ntohl((pina)->s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)
if (!__IN_IS_ADDR_LOOPBACK(
&xraddr->address.sin.sin_addr))
foreign_all_loopback = 0;
#undef __IN_IS_ADDR_LOOPBACK
sockaddr(&faddr->address, AF_INET,
&xraddr->address.sin.sin_addr,
htons(xstcb->remote_port));
break;
case AF_INET6:
if (!IN6_IS_ADDR_LOOPBACK(
&xraddr->address.sin6.sin6_addr))
foreign_all_loopback = 0;
sockaddr(&faddr->address, AF_INET6,
&xraddr->address.sin6.sin6_addr,
htons(xstcb->remote_port));
break;
default:
errx(1,
"address family %d not supported",
xraddr->address.sa.sa_family);
}
faddr->encaps_port = xraddr->encaps_port;
faddr->state = xraddr->state;
faddr->next = NULL;
if (prev_faddr == NULL)
sock->faddr = faddr;
else
prev_faddr->next = faddr;
prev_faddr = faddr;
}
if (opt_c) {
if ((sock->vflag & vflag) &&
(!opt_L ||
!(local_all_loopback ||
foreign_all_loopback))) {
RB_INSERT(socks_t, &socks, sock);
} else {
free_socket(sock);
}
}
}
xinpcb = (struct xsctp_inpcb *)(void *)(buf + offset);
offset += sizeof(struct xsctp_inpcb);
}
free(buf);
}
static void
gather_inet(int proto)
{
struct xinpgen *xig, *exig;
struct xinpcb *xip;
struct xtcpcb *xtp = NULL;
struct xsocket *so;
struct sock *sock;
struct addr *laddr, *faddr;
const char *varname, *protoname;
size_t len, bufsize;
void *buf;
int retry, vflag;
vflag = 0;
if (opt_4)
vflag |= INP_IPV4;
if (opt_6)
vflag |= INP_IPV6;
switch (proto) {
case IPPROTO_TCP:
varname = "net.inet.tcp.pcblist";
protoname = "tcp";
break;
case IPPROTO_UDP:
varname = "net.inet.udp.pcblist";
protoname = "udp";
break;
case IPPROTO_DIVERT:
varname = "net.inet.divert.pcblist";
protoname = "div";
break;
default:
errx(1, "protocol %d not supported", proto);
}
buf = NULL;
bufsize = 8192;
retry = 5;
do {
for (;;) {
if ((buf = realloc(buf, bufsize)) == NULL)
err(1, "realloc()");
len = bufsize;
if (cap_sysctlbyname(capsysctl, varname, buf, &len,
NULL, 0) == 0)
break;
if (errno == ENOENT)
goto out;
if (errno != ENOMEM || len != bufsize)
err(1, "cap_sysctlbyname()");
bufsize *= 2;
}
xig = (struct xinpgen *)buf;
exig = (struct xinpgen *)(void *)
((char *)buf + len - sizeof *exig);
enforce_ksize(xig->xig_len, struct xinpgen);
enforce_ksize(exig->xig_len, struct xinpgen);
} while (xig->xig_gen != exig->xig_gen && retry--);
if (xig->xig_gen != exig->xig_gen && opt_v)
warnx("warning: data may be inconsistent");
for (;;) {
xig = (struct xinpgen *)(void *)((char *)xig + xig->xig_len);
if (xig >= exig)
break;
switch (proto) {
case IPPROTO_TCP:
xtp = (struct xtcpcb *)xig;
xip = &xtp->xt_inp;
if (!check_ksize(xtp->xt_len, struct xtcpcb))
goto out;
protoname = xtp->t_flags & TF_TOE ? "toe" : "tcp";
break;
case IPPROTO_UDP:
case IPPROTO_DIVERT:
xip = (struct xinpcb *)xig;
if (!check_ksize(xip->xi_len, struct xinpcb))
goto out;
break;
default:
errx(1, "protocol %d not supported", proto);
}
so = &xip->xi_socket;
if ((xip->inp_vflag & vflag) == 0)
continue;
if (xip->inp_vflag & INP_IPV4) {
if ((xip->inp_fport == 0 && !opt_l) ||
(xip->inp_fport != 0 && !opt_c))
continue;
#define __IN_IS_ADDR_LOOPBACK(pina) \
((ntohl((pina)->s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)
if (opt_L &&
(__IN_IS_ADDR_LOOPBACK(&xip->inp_faddr) ||
__IN_IS_ADDR_LOOPBACK(&xip->inp_laddr)))
continue;
#undef __IN_IS_ADDR_LOOPBACK
} else if (xip->inp_vflag & INP_IPV6) {
if ((xip->inp_fport == 0 && !opt_l) ||
(xip->inp_fport != 0 && !opt_c))
continue;
if (opt_L &&
(IN6_IS_ADDR_LOOPBACK(&xip->in6p_faddr) ||
IN6_IS_ADDR_LOOPBACK(&xip->in6p_laddr)))
continue;
} else {
if (opt_v)
warnx("invalid vflag 0x%x", xip->inp_vflag);
continue;
}
if ((sock = calloc(1, sizeof(*sock))) == NULL)
err(1, "malloc()");
if ((laddr = calloc(1, sizeof *laddr)) == NULL)
err(1, "malloc()");
if ((faddr = calloc(1, sizeof *faddr)) == NULL)
err(1, "malloc()");
sock->socket = so->xso_so;
sock->proto = proto;
sock->inp_gencnt = xip->inp_gencnt;
if (xip->inp_vflag & INP_IPV4) {
sock->family = AF_INET;
sockaddr(&laddr->address, sock->family,
&xip->inp_laddr, xip->inp_lport);
sockaddr(&faddr->address, sock->family,
&xip->inp_faddr, xip->inp_fport);
} else if (xip->inp_vflag & INP_IPV6) {
sock->family = AF_INET6;
sockaddr(&laddr->address, sock->family,
&xip->in6p_laddr, xip->inp_lport);
sockaddr(&faddr->address, sock->family,
&xip->in6p_faddr, xip->inp_fport);
}
if (proto == IPPROTO_TCP)
faddr->encaps_port = xtp->xt_encaps_port;
laddr->next = NULL;
faddr->next = NULL;
sock->laddr = laddr;
sock->faddr = faddr;
sock->vflag = xip->inp_vflag;
if (proto == IPPROTO_TCP) {
sock->state = xtp->t_state;
memcpy(sock->stack, xtp->xt_stack,
TCP_FUNCTION_NAME_LEN_MAX);
memcpy(sock->cc, xtp->xt_cc, TCP_CA_NAME_MAX);
}
sock->protoname = protoname;
if (sock->socket != 0)
RB_INSERT(socks_t, &socks, sock);
else
SLIST_INSERT_HEAD(&nosocks, sock, socket_list);
}
out:
free(buf);
}
static void
gather_unix(int proto)
{
struct xunpgen *xug, *exug;
struct xunpcb *xup;
struct sock *sock;
struct addr *laddr, *faddr;
const char *varname, *protoname;
size_t len, bufsize;
void *buf;
int retry;
switch (proto) {
case SOCK_STREAM:
varname = "net.local.stream.pcblist";
protoname = "stream";
break;
case SOCK_DGRAM:
varname = "net.local.dgram.pcblist";
protoname = "dgram";
break;
case SOCK_SEQPACKET:
varname = "net.local.seqpacket.pcblist";
protoname = "seqpac";
break;
default:
abort();
}
buf = NULL;
bufsize = 8192;
retry = 5;
do {
for (;;) {
if ((buf = realloc(buf, bufsize)) == NULL)
err(1, "realloc()");
len = bufsize;
if (cap_sysctlbyname(capsysctl, varname, buf, &len,
NULL, 0) == 0)
break;
if (errno != ENOMEM || len != bufsize)
err(1, "cap_sysctlbyname()");
bufsize *= 2;
}
xug = (struct xunpgen *)buf;
exug = (struct xunpgen *)(void *)
((char *)buf + len - sizeof(*exug));
if (!check_ksize(xug->xug_len, struct xunpgen) ||
!check_ksize(exug->xug_len, struct xunpgen))
goto out;
} while (xug->xug_gen != exug->xug_gen && retry--);
if (xug->xug_gen != exug->xug_gen && opt_v)
warnx("warning: data may be inconsistent");
for (;;) {
xug = (struct xunpgen *)(void *)((char *)xug + xug->xug_len);
if (xug >= exug)
break;
xup = (struct xunpcb *)xug;
if (!check_ksize(xup->xu_len, struct xunpcb))
goto out;
if ((xup->unp_conn == 0 && !opt_l) ||
(xup->unp_conn != 0 && !opt_c))
continue;
if ((sock = calloc(1, sizeof(*sock))) == NULL)
err(1, "malloc()");
if ((laddr = calloc(1, sizeof *laddr)) == NULL)
err(1, "malloc()");
if ((faddr = calloc(1, sizeof *faddr)) == NULL)
err(1, "malloc()");
sock->socket = xup->xu_socket.xso_so;
sock->pcb = xup->xu_unpp;
sock->proto = proto;
sock->family = AF_UNIX;
sock->protoname = protoname;
if (xup->xu_addr.sun_family == AF_UNIX)
laddr->address =
*(struct sockaddr_storage *)(void *)&xup->xu_addr;
faddr->conn = xup->unp_conn;
faddr->firstref = xup->xu_firstref;
faddr->nextref = xup->xu_nextref;
laddr->next = NULL;
faddr->next = NULL;
sock->laddr = laddr;
sock->faddr = faddr;
RB_INSERT(socks_t, &socks, sock);
RB_INSERT(pcbs_t, &pcbs, sock);
}
out:
free(buf);
}
static void
getfiles(void)
{
struct xfile *xfiles;
size_t len, olen;
olen = len = sizeof(*xfiles);
if ((xfiles = malloc(len)) == NULL)
err(1, "malloc()");
while (cap_sysctlbyname(capsysctl, "kern.file", xfiles, &len, 0, 0)
== -1) {
if (errno != ENOMEM || len != olen)
err(1, "cap_sysctlbyname()");
olen = len *= 2;
if ((xfiles = realloc(xfiles, len)) == NULL)
err(1, "realloc()");
}
if (len > 0)
enforce_ksize(xfiles->xf_size, struct xfile);
nfiles = len / sizeof(*xfiles);
if ((files = malloc(nfiles * sizeof(struct file))) == NULL)
err(1, "malloc()");
for (int i = 0; i < nfiles; i++) {
files[i].xf_data = xfiles[i].xf_data;
files[i].xf_pid = xfiles[i].xf_pid;
files[i].xf_uid = xfiles[i].xf_uid;
files[i].xf_fd = xfiles[i].xf_fd;
RB_INSERT(files_t, &ftree, &files[i]);
}
free(xfiles);
}
static int
printaddr(struct sockaddr_storage *ss)
{
struct sockaddr_un *sun;
char addrstr[NI_MAXHOST] = { '\0', '\0' };
int error, off, port = 0;
switch (ss->ss_family) {
case AF_INET:
if (sstosin(ss)->sin_addr.s_addr == INADDR_ANY)
addrstr[0] = '*';
port = ntohs(sstosin(ss)->sin_port);
break;
case AF_INET6:
if (IN6_IS_ADDR_UNSPECIFIED(&sstosin6(ss)->sin6_addr))
addrstr[0] = '*';
port = ntohs(sstosin6(ss)->sin6_port);
break;
case AF_UNIX:
sun = sstosun(ss);
off = (int)((char *)&sun->sun_path - (char *)sun);
return (xprintf("%.*s", sun->sun_len - off, sun->sun_path));
}
if (addrstr[0] == '\0') {
error = cap_getnameinfo(capnet, sstosa(ss), ss->ss_len,
addrstr, sizeof(addrstr), NULL, 0, NI_NUMERICHOST);
if (error)
errx(1, "cap_getnameinfo()");
}
if (port == 0)
return xprintf("%s:*", addrstr);
else
return xprintf("%s:%d", addrstr, port);
}
static const char *
getprocname(pid_t pid)
{
static struct kinfo_proc proc;
size_t len;
int mib[4];
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = (int)pid;
len = sizeof(proc);
if (cap_sysctl(capsysctl, mib, nitems(mib), &proc, &len, NULL, 0)
== -1) {
/* Do not warn if the process exits before we get its name. */
if (errno != ESRCH)
warn("cap_sysctl()");
return ("??");
}
return (proc.ki_comm);
}
static int
getprocjid(pid_t pid)
{
static struct kinfo_proc proc;
size_t len;
int mib[4];
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = (int)pid;
len = sizeof(proc);
if (cap_sysctl(capsysctl, mib, nitems(mib), &proc, &len, NULL, 0)
== -1) {
/* Do not warn if the process exits before we get its jid. */
if (errno != ESRCH)
warn("cap_sysctl()");
return (-1);
}
return (proc.ki_jid);
}
static int
check_ports(struct sock *s)
{
int port;
struct addr *addr;
if (ports == NULL)
return (1);
if ((s->family != AF_INET) && (s->family != AF_INET6))
return (1);
for (addr = s->laddr; addr != NULL; addr = addr->next) {
if (s->family == AF_INET)
port = ntohs(sstosin(&addr->address)->sin_port);
else
port = ntohs(sstosin6(&addr->address)->sin6_port);
if (CHK_PORT(port))
return (1);
}
for (addr = s->faddr; addr != NULL; addr = addr->next) {
if (s->family == AF_INET)
port = ntohs(sstosin(&addr->address)->sin_port);
else
port = ntohs(sstosin6(&addr->address)->sin6_port);
if (CHK_PORT(port))
return (1);
}
return (0);
}
static const char *
sctp_conn_state(int state)
{
switch (state) {
case SCTP_CLOSED:
return "CLOSED";
break;
case SCTP_BOUND:
return "BOUND";
break;
case SCTP_LISTEN:
return "LISTEN";
break;
case SCTP_COOKIE_WAIT:
return "COOKIE_WAIT";
break;
case SCTP_COOKIE_ECHOED:
return "COOKIE_ECHOED";
break;
case SCTP_ESTABLISHED:
return "ESTABLISHED";
break;
case SCTP_SHUTDOWN_SENT:
return "SHUTDOWN_SENT";
break;
case SCTP_SHUTDOWN_RECEIVED:
return "SHUTDOWN_RECEIVED";
break;
case SCTP_SHUTDOWN_ACK_SENT:
return "SHUTDOWN_ACK_SENT";
break;
case SCTP_SHUTDOWN_PENDING:
return "SHUTDOWN_PENDING";
break;
default:
return "UNKNOWN";
break;
}
}
static const char *
sctp_path_state(int state)
{
switch (state) {
case SCTP_UNCONFIRMED:
return "UNCONFIRMED";
break;
case SCTP_ACTIVE:
return "ACTIVE";
break;
case SCTP_INACTIVE:
return "INACTIVE";
break;
default:
return "UNKNOWN";
break;
}
}
static void
displaysock(struct sock *s, int pos)
{
int first, offset;
struct addr *laddr, *faddr;
while (pos < 30)
pos += xprintf(" ");
pos += xprintf("%s", s->protoname);
if (s->vflag & INP_IPV4)
pos += xprintf("4");
if (s->vflag & INP_IPV6)
pos += xprintf("6");
if (s->vflag & (INP_IPV4 | INP_IPV6))
pos += xprintf(" ");
laddr = s->laddr;
faddr = s->faddr;
first = 1;
while (laddr != NULL || faddr != NULL) {
offset = 37;
while (pos < offset)
pos += xprintf(" ");
switch (s->family) {
case AF_INET:
case AF_INET6:
if (laddr != NULL) {
pos += printaddr(&laddr->address);
if (s->family == AF_INET6 && pos >= 58)
pos += xprintf(" ");
}
offset += opt_w ? 46 : 22;
while (pos < offset)
pos += xprintf(" ");
if (faddr != NULL)
pos += printaddr(&faddr->address);
offset += opt_w ? 46 : 22;
break;
case AF_UNIX:
if ((laddr == NULL) || (faddr == NULL))
errx(1, "laddr = %p or faddr = %p is NULL",
(void *)laddr, (void *)faddr);
if (laddr->address.ss_len == 0 && faddr->conn == 0) {
pos += xprintf("(not connected)");
offset += opt_w ? 92 : 44;
break;
}
/* Local bind(2) address, if any. */
if (laddr->address.ss_len > 0)
pos += printaddr(&laddr->address);
/* Remote peer we connect(2) to, if any. */
if (faddr->conn != 0) {
struct sock *p;
pos += xprintf("%s-> ",
laddr->address.ss_len > 0 ? " " : "");
p = RB_FIND(pcbs_t, &pcbs,
&(struct sock){ .pcb = faddr->conn });
if (__predict_false(p == NULL)) {
/* XXGL: can this happen at all? */
pos += xprintf("??");
} else if (p->laddr->address.ss_len == 0) {
struct file *f;
f = RB_FIND(files_t, &ftree,
&(struct file){ .xf_data =
p->socket });
pos += xprintf("[%lu %d]",
(u_long)f->xf_pid, f->xf_fd);
} else
pos += printaddr(&p->laddr->address);
}
/* Remote peer(s) connect(2)ed to us, if any. */
if (faddr->firstref != 0) {
struct sock *p;
struct file *f;
kvaddr_t ref = faddr->firstref;
bool fref = true;
pos += xprintf(" <- ");
while ((p = RB_FIND(pcbs_t, &pcbs,
&(struct sock){ .pcb = ref })) != 0) {
f = RB_FIND(files_t, &ftree,
&(struct file){ .xf_data =
p->socket });
pos += xprintf("%s[%lu %d]",
fref ? "" : ",",
(u_long)f->xf_pid, f->xf_fd);
ref = p->faddr->nextref;
fref = false;
}
}
offset += opt_w ? 92 : 44;
break;
default:
abort();
}
if (opt_i) {
if (s->proto == IPPROTO_TCP ||
s->proto == IPPROTO_UDP) {
while (pos < offset)
pos += xprintf(" ");
pos += xprintf("%" PRIu64, s->inp_gencnt);
}
offset += 9;
}
if (opt_U) {
if (faddr != NULL &&
((s->proto == IPPROTO_SCTP &&
s->state != SCTP_CLOSED &&
s->state != SCTP_BOUND &&
s->state != SCTP_LISTEN) ||
(s->proto == IPPROTO_TCP &&
s->state != TCPS_CLOSED &&
s->state != TCPS_LISTEN))) {
while (pos < offset)
pos += xprintf(" ");
pos += xprintf("%u",
ntohs(faddr->encaps_port));
}
offset += 7;
}
if (opt_s) {
if (faddr != NULL &&
s->proto == IPPROTO_SCTP &&
s->state != SCTP_CLOSED &&
s->state != SCTP_BOUND &&
s->state != SCTP_LISTEN) {
while (pos < offset)
pos += xprintf(" ");
pos += xprintf("%s",
sctp_path_state(faddr->state));
}
offset += 13;
}
if (first) {
if (opt_s) {
if (s->proto == IPPROTO_SCTP ||
s->proto == IPPROTO_TCP) {
while (pos < offset)
pos += xprintf(" ");
switch (s->proto) {
case IPPROTO_SCTP:
pos += xprintf("%s",
sctp_conn_state(s->state));
break;
case IPPROTO_TCP:
if (s->state >= 0 &&
s->state < TCP_NSTATES)
pos += xprintf("%s",
tcpstates[s->state]);
else
pos += xprintf("?");
break;
}
}
offset += 13;
}
if (opt_S) {
if (s->proto == IPPROTO_TCP) {
while (pos < offset)
pos += xprintf(" ");
pos += xprintf("%.*s",
TCP_FUNCTION_NAME_LEN_MAX,
s->stack);
}
offset += TCP_FUNCTION_NAME_LEN_MAX + 1;
}
if (opt_C) {
if (s->proto == IPPROTO_TCP) {
while (pos < offset)
pos += xprintf(" ");
xprintf("%.*s", TCP_CA_NAME_MAX, s->cc);
}
offset += TCP_CA_NAME_MAX + 1;
}
}
if (laddr != NULL)
laddr = laddr->next;
if (faddr != NULL)
faddr = faddr->next;
if ((laddr != NULL) || (faddr != NULL)) {
xprintf("\n");
pos = 0;
}
first = 0;
}
xprintf("\n");
}
static void
display(void)
{
struct passwd *pwd;
struct file *xf;
struct sock *s;
int n, pos;
if (opt_q != 1) {
printf("%-8s %-10s %-5s %-3s %-6s %-*s %-*s",
"USER", "COMMAND", "PID", "FD", "PROTO",
opt_w ? 45 : 21, "LOCAL ADDRESS",
opt_w ? 45 : 21, "FOREIGN ADDRESS");
if (opt_i)
printf(" %-8s", "ID");
if (opt_U)
printf(" %-6s", "ENCAPS");
if (opt_s) {
printf(" %-12s", "PATH STATE");
printf(" %-12s", "CONN STATE");
}
if (opt_S)
printf(" %-*.*s", TCP_FUNCTION_NAME_LEN_MAX,
TCP_FUNCTION_NAME_LEN_MAX, "STACK");
if (opt_C)
printf(" %-.*s", TCP_CA_NAME_MAX, "CC");
printf("\n");
}
cap_setpassent(cappwd, 1);
for (xf = files, n = 0; n < nfiles; ++n, ++xf) {
if (xf->xf_data == 0)
continue;
if (opt_j >= 0 && opt_j != getprocjid(xf->xf_pid))
continue;
s = RB_FIND(socks_t, &socks,
&(struct sock){ .socket = xf->xf_data});
if (s != NULL && check_ports(s)) {
s->shown = 1;
pos = 0;
if (opt_n ||
(pwd = cap_getpwuid(cappwd, xf->xf_uid)) == NULL)
pos += xprintf("%lu ", (u_long)xf->xf_uid);
else
pos += xprintf("%s ", pwd->pw_name);
while (pos < 9)
pos += xprintf(" ");
pos += xprintf("%.10s", getprocname(xf->xf_pid));
while (pos < 20)
pos += xprintf(" ");
pos += xprintf("%5lu ", (u_long)xf->xf_pid);
while (pos < 26)
pos += xprintf(" ");
pos += xprintf("%-3d ", xf->xf_fd);
displaysock(s, pos);
}
}
if (opt_j >= 0)
return;
SLIST_FOREACH(s, &nosocks, socket_list) {
if (!check_ports(s))
continue;
pos = xprintf("%-8s %-10s %-5s %-2s ",
"?", "?", "?", "?");
displaysock(s, pos);
}
RB_FOREACH(s, socks_t, &socks) {
if (s->shown)
continue;
if (!check_ports(s))
continue;
pos = xprintf("%-8s %-10s %-5s %-2s ",
"?", "?", "?", "?");
displaysock(s, pos);
}
}
static int
set_default_protos(void)
{
struct protoent *prot;
const char *pname;
size_t pindex;
init_protos(default_numprotos);
for (pindex = 0; pindex < default_numprotos; pindex++) {
pname = default_protos[pindex];
prot = cap_getprotobyname(capnetdb, pname);
if (prot == NULL)
err(1, "cap_getprotobyname: %s", pname);
protos[pindex] = prot->p_proto;
}
numprotos = pindex;
return (pindex);
}
/*
* Return the vnet property of the jail, or -1 on error.
*/
static int
jail_getvnet(int jid)
{
struct iovec jiov[6];
int vnet;
size_t len = sizeof(vnet);
if (sysctlbyname("kern.features.vimage", &vnet, &len, NULL, 0) != 0)
return (0);
vnet = -1;
jiov[0].iov_base = __DECONST(char *, "jid");
jiov[0].iov_len = sizeof("jid");
jiov[1].iov_base = &jid;
jiov[1].iov_len = sizeof(jid);
jiov[2].iov_base = __DECONST(char *, "vnet");
jiov[2].iov_len = sizeof("vnet");
jiov[3].iov_base = &vnet;
jiov[3].iov_len = sizeof(vnet);
jiov[4].iov_base = __DECONST(char *, "errmsg");
jiov[4].iov_len = sizeof("errmsg");
jiov[5].iov_base = jail_errmsg;
jiov[5].iov_len = JAIL_ERRMSGLEN;
jail_errmsg[0] = '\0';
if (jail_get(jiov, nitems(jiov), 0) < 0) {
if (!jail_errmsg[0])
snprintf(jail_errmsg, JAIL_ERRMSGLEN,
"jail_get: %s", strerror(errno));
return (-1);
}
return (vnet);
}
static void
usage(void)
{
fprintf(stderr,
"usage: sockstat [-46CciLlnqSsUuvw] [-j jid] [-p ports] [-P protocols]\n");
exit(1);
}
int
main(int argc, char *argv[])
{
cap_channel_t *capcas;
cap_net_limit_t *limit;
const char *pwdcmds[] = { "setpassent", "getpwuid" };
const char *pwdfields[] = { "pw_name" };
int protos_defined = -1;
int o, i;
opt_j = -1;
while ((o = getopt(argc, argv, "46Ccij:Llnp:P:qSsUuvw")) != -1)
switch (o) {
case '4':
opt_4 = 1;
break;
case '6':
opt_6 = 1;
break;
case 'C':
opt_C = 1;
break;
case 'c':
opt_c = 1;
break;
case 'i':
opt_i = 1;
break;
case 'j':
opt_j = jail_getid(optarg);
if (opt_j < 0)
errx(1, "jail_getid: %s", jail_errmsg);
break;
case 'L':
opt_L = 1;
break;
case 'l':
opt_l = 1;
break;
case 'n':
opt_n = 1;
break;
case 'p':
parse_ports(optarg);
break;
case 'P':
protos_defined = parse_protos(optarg);
break;
case 'q':
opt_q = 1;
break;
case 'S':
opt_S = 1;
break;
case 's':
opt_s = 1;
break;
case 'U':
opt_U = 1;
break;
case 'u':
opt_u = 1;
break;
case 'v':
++opt_v;
break;
case 'w':
opt_w = 1;
break;
default:
usage();
}
argc -= optind;
argv += optind;
if (argc > 0)
usage();
if (opt_j > 0) {
switch (jail_getvnet(opt_j)) {
case -1:
errx(2, "jail_getvnet: %s", jail_errmsg);
case JAIL_SYS_NEW:
if (jail_attach(opt_j) < 0)
err(3, "jail_attach()");
/* Set back to -1 for normal output in vnet jail. */
opt_j = -1;
break;
default:
break;
}
}
capcas = cap_init();
if (capcas == NULL)
err(1, "Unable to contact Casper");
if (caph_enter_casper() < 0)
err(1, "Unable to enter capability mode");
capnet = cap_service_open(capcas, "system.net");
if (capnet == NULL)
err(1, "Unable to open system.net service");
capnetdb = cap_service_open(capcas, "system.netdb");
if (capnetdb == NULL)
err(1, "Unable to open system.netdb service");
capsysctl = cap_service_open(capcas, "system.sysctl");
if (capsysctl == NULL)
err(1, "Unable to open system.sysctl service");
cappwd = cap_service_open(capcas, "system.pwd");
if (cappwd == NULL)
err(1, "Unable to open system.pwd service");
cap_close(capcas);
limit = cap_net_limit_init(capnet, CAPNET_ADDR2NAME);
if (limit == NULL)
err(1, "Unable to init cap_net limits");
if (cap_net_limit(limit) < 0)
err(1, "Unable to apply limits");
if (cap_pwd_limit_cmds(cappwd, pwdcmds, nitems(pwdcmds)) < 0)
err(1, "Unable to apply pwd commands limits");
if (cap_pwd_limit_fields(cappwd, pwdfields, nitems(pwdfields)) < 0)
err(1, "Unable to apply pwd commands limits");
if ((!opt_4 && !opt_6) && protos_defined != -1)
opt_4 = opt_6 = 1;
if (!opt_4 && !opt_6 && !opt_u)
opt_4 = opt_6 = opt_u = 1;
if ((opt_4 || opt_6) && protos_defined == -1)
protos_defined = set_default_protos();
if (!opt_c && !opt_l)
opt_c = opt_l = 1;
if (opt_4 || opt_6) {
for (i = 0; i < protos_defined; i++)
if (protos[i] == IPPROTO_SCTP)
gather_sctp();
else
gather_inet(protos[i]);
}
if (opt_u || (protos_defined == -1 && !opt_4 && !opt_6)) {
gather_unix(SOCK_STREAM);
gather_unix(SOCK_DGRAM);
gather_unix(SOCK_SEQPACKET);
}
getfiles();
display();
exit(0);
}