freebsd-dev/sys/boot/i386/libi386/multiboot.c
Roger Pau Monné 63f13cedca multiboot: fix error codes
Return EINVAL instead of EFTYPE if we have a multiboot kernel loaded but
failed to load the modules. This makes it clear that the kernel/module
should be handled by the multiboot handler but something went wrong.

Sponsored by: Citrix Systems R&D
2015-04-01 10:10:20 +00:00

426 lines
12 KiB
C

/*-
* Copyright (c) 2014 Roger Pau Monné <royger@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This multiboot implementation only implements a subset of the full
* multiboot specification in order to be able to boot Xen and a
* FreeBSD Dom0. Trying to use it to boot other multiboot compliant
* kernels will most surely fail.
*
* The full multiboot specification can be found here:
* http://www.gnu.org/software/grub/manual/multiboot/multiboot.html
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/exec.h>
#include <sys/linker.h>
#include <sys/module.h>
#include <sys/stdint.h>
#define _MACHINE_ELF_WANT_32BIT
#include <machine/elf.h>
#include <string.h>
#include <stand.h>
#include "bootstrap.h"
#include "multiboot.h"
#include "../i386/libi386/libi386.h"
#include "../i386/btx/lib/btxv86.h"
#define MULTIBOOT_SUPPORTED_FLAGS \
(MULTIBOOT_PAGE_ALIGN|MULTIBOOT_MEMORY_INFO)
#define NUM_MODULES 2
#define METADATA_FIXED_SIZE (PAGE_SIZE*4)
#define METADATA_MODULE_SIZE PAGE_SIZE
#define METADATA_RESV_SIZE(mod_num) \
roundup(METADATA_FIXED_SIZE + METADATA_MODULE_SIZE * mod_num, PAGE_SIZE)
extern int elf32_loadfile_raw(char *filename, u_int64_t dest,
struct preloaded_file **result, int multiboot);
extern int elf64_load_modmetadata(struct preloaded_file *fp, u_int64_t dest);
extern int elf64_obj_loadfile(char *filename, u_int64_t dest,
struct preloaded_file **result);
static int multiboot_loadfile(char *, u_int64_t, struct preloaded_file **);
static int multiboot_exec(struct preloaded_file *);
static int multiboot_obj_loadfile(char *, u_int64_t, struct preloaded_file **);
static int multiboot_obj_exec(struct preloaded_file *fp);
struct file_format multiboot = { multiboot_loadfile, multiboot_exec };
struct file_format multiboot_obj =
{ multiboot_obj_loadfile, multiboot_obj_exec };
extern void multiboot_tramp();
static const char mbl_name[] = "FreeBSD Loader";
static int
num_modules(struct preloaded_file *kfp)
{
struct kernel_module *kmp;
int mod_num = 0;
for (kmp = kfp->f_modules; kmp != NULL; kmp = kmp->m_next)
mod_num++;
return (mod_num);
}
static vm_offset_t
max_addr(void)
{
struct preloaded_file *fp;
vm_offset_t addr = 0;
for (fp = file_findfile(NULL, NULL); fp != NULL; fp = fp->f_next) {
if (addr < (fp->f_addr + fp->f_size))
addr = fp->f_addr + fp->f_size;
}
return (addr);
}
static int
multiboot_loadfile(char *filename, u_int64_t dest,
struct preloaded_file **result)
{
uint32_t *magic;
int i, error;
caddr_t header_search;
ssize_t search_size;
int fd;
struct multiboot_header *header;
char *cmdline;
/*
* Read MULTIBOOT_SEARCH size in order to search for the
* multiboot magic header.
*/
if (filename == NULL)
return (EFTYPE);
if ((fd = open(filename, O_RDONLY)) == -1)
return (errno);
header_search = malloc(MULTIBOOT_SEARCH);
if (header_search == NULL) {
close(fd);
return (ENOMEM);
}
search_size = read(fd, header_search, MULTIBOOT_SEARCH);
magic = (uint32_t *)header_search;
header = NULL;
for (i = 0; i < (search_size / sizeof(uint32_t)); i++) {
if (magic[i] == MULTIBOOT_HEADER_MAGIC) {
header = (struct multiboot_header *)&magic[i];
break;
}
}
if (header == NULL) {
error = EFTYPE;
goto out;
}
/* Valid multiboot header has been found, validate checksum */
if (header->magic + header->flags + header->checksum != 0) {
printf(
"Multiboot checksum failed, magic: 0x%x flags: 0x%x checksum: 0x%x\n",
header->magic, header->flags, header->checksum);
error = EFTYPE;
goto out;
}
if ((header->flags & ~MULTIBOOT_SUPPORTED_FLAGS) != 0) {
printf("Unsupported multiboot flags found: 0x%x\n",
header->flags);
error = EFTYPE;
goto out;
}
error = elf32_loadfile_raw(filename, dest, result, 1);
if (error != 0) {
printf(
"elf32_loadfile_raw failed: %d unable to load multiboot kernel\n",
error);
goto out;
}
/*
* f_addr is already aligned to PAGE_SIZE, make sure
* f_size it's also aligned so when the modules are loaded
* they are aligned to PAGE_SIZE.
*/
(*result)->f_size = roundup((*result)->f_size, PAGE_SIZE);
out:
free(header_search);
close(fd);
return (error);
}
static int
multiboot_exec(struct preloaded_file *fp)
{
vm_offset_t module_start, last_addr, metadata_size;
vm_offset_t modulep, kernend, entry;
struct file_metadata *md;
Elf_Ehdr *ehdr;
struct multiboot_info *mb_info = NULL;
struct multiboot_mod_list *mb_mod = NULL;
char *cmdline = NULL;
size_t len;
int error, mod_num;
/*
* Don't pass the memory size found by the bootloader, the memory
* available to Dom0 will be lower than that.
*/
unsetenv("smbios.memory.enabled");
/* Allocate the multiboot struct and fill the basic details. */
mb_info = malloc(sizeof(struct multiboot_info));
if (mb_info == NULL) {
error = ENOMEM;
goto error;
}
bzero(mb_info, sizeof(struct multiboot_info));
mb_info->flags = MULTIBOOT_INFO_MEMORY|MULTIBOOT_INFO_BOOT_LOADER_NAME;
mb_info->mem_lower = bios_basemem / 1024;
mb_info->mem_upper = bios_extmem / 1024;
mb_info->boot_loader_name = VTOP(mbl_name);
/* Set the Xen command line. */
if (fp->f_args == NULL) {
/* Add the Xen command line if it is set. */
cmdline = getenv("xen_cmdline");
if (cmdline != NULL) {
fp->f_args = strdup(cmdline);
if (fp->f_args == NULL) {
error = ENOMEM;
goto error;
}
}
}
if (fp->f_args != NULL) {
len = strlen(fp->f_name) + 1 + strlen(fp->f_args) + 1;
cmdline = malloc(len);
if (cmdline == NULL) {
error = ENOMEM;
goto error;
}
snprintf(cmdline, len, "%s %s", fp->f_name, fp->f_args);
mb_info->cmdline = VTOP(cmdline);
mb_info->flags |= MULTIBOOT_INFO_CMDLINE;
}
/* Find the entry point of the Xen kernel and save it for later */
if ((md = file_findmetadata(fp, MODINFOMD_ELFHDR)) == NULL) {
printf("Unable to find %s entry point\n", fp->f_name);
error = EINVAL;
goto error;
}
ehdr = (Elf_Ehdr *)&(md->md_data);
entry = ehdr->e_entry & 0xffffff;
/*
* Prepare the multiboot module list, Xen assumes the first
* module is the Dom0 kernel, and the second one is the initramfs.
* This is not optimal for FreeBSD, that doesn't have a initramfs
* but instead loads modules dynamically and creates the metadata
* info on-the-fly.
*
* As expected, the first multiboot module is going to be the
* FreeBSD kernel loaded as a raw file. The second module is going
* to contain the metadata info and the loaded modules.
*
* On native FreeBSD loads all the modules and then places the
* metadata info at the end, but this is painful when running on Xen,
* because it relocates the second multiboot module wherever it
* likes. In order to workaround this limitation the metadata
* information is placed at the start of the second module and
* the original modulep value is saved together with the other
* metadata, so we can relocate everything.
*/
fp = file_findfile(NULL, "elf kernel");
if (fp == NULL) {
printf("No FreeBSD kernel provided, aborting\n");
error = EINVAL;
goto error;
}
mb_mod = malloc(sizeof(struct multiboot_mod_list) * NUM_MODULES);
if (mb_mod == NULL) {
error = ENOMEM;
goto error;
}
bzero(mb_mod, sizeof(struct multiboot_mod_list) * NUM_MODULES);
/*
* Calculate how much memory is needed for the metatdata. We did
* an approximation of the maximum size when loading the kernel,
* but now we know the exact size, so we can release some of this
* preallocated memory if not needed.
*/
last_addr = roundup(max_addr(), PAGE_SIZE);
mod_num = num_modules(fp);
/*
* Place the metadata after the last used address in order to
* calculate it's size, this will not be used.
*/
error = bi_load64(fp->f_args, last_addr, &modulep, &kernend, 0);
if (error != 0) {
printf("bi_load64 failed: %d\n", error);
goto error;
}
metadata_size = roundup(kernend - last_addr, PAGE_SIZE);
/* Check that the size is not greater than what we have reserved */
if (metadata_size > METADATA_RESV_SIZE(mod_num)) {
printf("Required memory for metadata is greater than reserved "
"space, please increase METADATA_FIXED_SIZE and "
"METADATA_MODULE_SIZE and rebuild the loader\n");
error = ENOMEM;
goto error;
}
/*
* This is the position where the second multiboot module
* will be placed.
*/
module_start = fp->f_addr + fp->f_size - metadata_size;
error = bi_load64(fp->f_args, module_start, &modulep, &kernend, 0);
if (error != 0) {
printf("bi_load64 failed: %d\n", error);
goto error;
}
mb_mod[0].mod_start = fp->f_addr;
mb_mod[0].mod_end = fp->f_addr + fp->f_size;
mb_mod[0].mod_end -= METADATA_RESV_SIZE(mod_num);
mb_mod[1].mod_start = module_start;
mb_mod[1].mod_end = last_addr;
mb_info->mods_count = NUM_MODULES;
mb_info->mods_addr = VTOP(mb_mod);
mb_info->flags |= MULTIBOOT_INFO_MODS;
dev_cleanup();
__exec((void *)VTOP(multiboot_tramp), (void *)entry,
(void *)VTOP(mb_info));
panic("exec returned");
error:
if (mb_mod)
free(mb_mod);
if (mb_info)
free(mb_info);
if (cmdline)
free(cmdline);
return (error);
}
static int
multiboot_obj_loadfile(char *filename, u_int64_t dest,
struct preloaded_file **result)
{
struct preloaded_file *mfp, *kfp, *rfp;
struct kernel_module *kmp;
int error, mod_num;
/* See if there's a multiboot kernel loaded */
mfp = file_findfile(NULL, "elf multiboot kernel");
if (mfp == NULL)
return (EFTYPE);
/*
* We have a multiboot kernel loaded, see if there's a FreeBSD
* kernel loaded also.
*/
kfp = file_findfile(NULL, "elf kernel");
if (kfp == NULL) {
/*
* No kernel loaded, this must be it. The kernel has to
* be loaded as a raw file, it will be processed by
* Xen and correctly loaded as an ELF file.
*/
rfp = file_loadraw(filename, "elf kernel", 0);
if (rfp == NULL) {
printf(
"Unable to load %s as a multiboot payload kernel\n",
filename);
return (EINVAL);
}
/* Load kernel metadata... */
setenv("kernelname", filename, 1);
error = elf64_load_modmetadata(rfp, rfp->f_addr + rfp->f_size);
if (error) {
printf("Unable to load kernel %s metadata error: %d\n",
rfp->f_name, error);
return (EINVAL);
}
/*
* Save space at the end of the kernel in order to place
* the metadata information. We do an approximation of the
* max metadata size, this is not optimal but it's probably
* the best we can do at this point. Once all modules are
* loaded and the size of the metadata is known this
* space will be recovered if not used.
*/
mod_num = num_modules(rfp);
rfp->f_size = roundup(rfp->f_size, PAGE_SIZE);
rfp->f_size += METADATA_RESV_SIZE(mod_num);
*result = rfp;
} else {
/* The rest should be loaded as regular modules */
error = elf64_obj_loadfile(filename, dest, result);
if (error != 0) {
printf("Unable to load %s as an object file, error: %d",
filename, error);
return (error);
}
}
return (0);
}
static int
multiboot_obj_exec(struct preloaded_file *fp)
{
return (EFTYPE);
}