freebsd-dev/sys/compat/linux/linux.h
Dmitry Chagin 166e2e5a9e linux(4): Uniformly dev_t arguments translation
The two main uses of dev_t are in struct stat and as a parameter of the
mknod system calls.
As of version 2.6.0 of the Linux kernel, dev_t is a 32-bit quantity
with 12 bits set asaid for the major number and 20 for the minor number.
The in-kernel dev_t encoded as MMMmmmmm, where M is a hex digit of the
major number and m is a hex digit of the minor number.
The user-space dev_t encoded as mmmM MMmm, where M and m is the major
and minor numbers accordingly. This is downward compatible with legacy
systems where dev_t is 16 bits wide, encoded as MMmm.
In glibc dev_t is a 64-bit quantity, with 32-bit major and minor numbers,
encoded as MMMM Mmmm mmmM MMmm. This is downward compatible with the Linux
kernel and with legacy systems where dev_t is 16 bits wide.
In the FreeBSD dev_t is a 64-bit quantity. The major and minor numbers
are encoded as MMMmmmMm, therefore conversion of the device numbers between
Linux user-space and FreeBSD kernel required.
2023-04-28 11:55:05 +03:00

374 lines
10 KiB
C

/*-
* Copyright (c) 2015 Dmitry Chagin <dchagin@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _LINUX_MI_H_
#define _LINUX_MI_H_
/*
* Machine independent set of types for the Linux types.
*/
typedef uint32_t l_dev_t;
/*
* Linux dev_t conversion routines.
*
* As of version 2.6.0 of the Linux kernel, dev_t is a 32-bit quantity
* with 12 bits set asaid for the major number and 20 for the minor number.
* The in-kernel dev_t encoded as MMMmmmmm, where M is a hex digit of the
* major number and m is a hex digit of the minor number.
* The user-space dev_t encoded as mmmM MMmm, where M and m is the major
* and minor numbers accordingly. This is downward compatible with legacy
* systems where dev_t is 16 bits wide, encoded as MMmm.
* In glibc dev_t is a 64-bit quantity, with 32-bit major and minor numbers,
* encoded as MMMM Mmmm mmmM MMmm. This is downward compatible with the Linux
* kernel and with legacy systems where dev_t is 16 bits wide.
*
* In the FreeBSD dev_t is a 64-bit quantity. The major and minor numbers
* are encoded as MMMmmmMm, therefore conversion of the device numbers between
* Linux user-space and FreeBSD kernel required.
*/
static __inline l_dev_t
linux_encode_dev(int _major, int _minor)
{
return ((_minor & 0xff) | ((_major & 0xfff) << 8) |
(((_minor & ~0xff) << 12) & 0xfff00000));
}
static __inline l_dev_t
linux_new_encode_dev(dev_t _dev)
{
return (_dev == NODEV ? 0 : linux_encode_dev(major(_dev), minor(_dev)));
}
static __inline int
linux_encode_major(dev_t _dev)
{
return (_dev == NODEV ? 0 : major(_dev) & 0xfff);
}
static __inline int
linux_encode_minor(dev_t _dev)
{
return (_dev == NODEV ? 0 : minor(_dev) & 0xfffff);
}
static __inline int
linux_decode_major(l_dev_t _dev)
{
return ((_dev & 0xfff00) >> 8);
}
static __inline int
linux_decode_minor(l_dev_t _dev)
{
return ((_dev & 0xff) | ((_dev & 0xfff00000) >> 12));
}
static __inline dev_t
linux_decode_dev(l_dev_t _dev)
{
return (makedev(linux_decode_major(_dev), linux_decode_minor(_dev)));
}
/*
* Private Brandinfo flags
*/
#define LINUX_BI_FUTEX_REQUEUE 0x01000000
/*
* poll()
*/
#define LINUX_POLLIN 0x0001
#define LINUX_POLLPRI 0x0002
#define LINUX_POLLOUT 0x0004
#define LINUX_POLLERR 0x0008
#define LINUX_POLLHUP 0x0010
#define LINUX_POLLNVAL 0x0020
#define LINUX_POLLRDNORM 0x0040
#define LINUX_POLLRDBAND 0x0080
#define LINUX_POLLWRNORM 0x0100
#define LINUX_POLLWRBAND 0x0200
#define LINUX_POLLMSG 0x0400
#define LINUX_POLLREMOVE 0x1000
#define LINUX_POLLRDHUP 0x2000
#define LINUX_IFHWADDRLEN 6
#define LINUX_IFNAMSIZ 16
struct l_sockaddr {
unsigned short sa_family;
char sa_data[14];
};
#define LINUX_ARPHRD_ETHER 1
#define LINUX_ARPHRD_LOOPBACK 772
/*
* Supported address families
*/
#define LINUX_AF_UNSPEC 0
#define LINUX_AF_UNIX 1
#define LINUX_AF_INET 2
#define LINUX_AF_AX25 3
#define LINUX_AF_IPX 4
#define LINUX_AF_APPLETALK 5
#define LINUX_AF_INET6 10
#define LINUX_AF_NETLINK 16
#define LINUX_NETLINK_ROUTE 0
#define LINUX_NETLINK_SOCK_DIAG 4
#define LINUX_NETLINK_NFLOG 5
#define LINUX_NETLINK_SELINUX 7
#define LINUX_NETLINK_AUDIT 9
#define LINUX_NETLINK_FIB_LOOKUP 10
#define LINUX_NETLINK_NETFILTER 12
#define LINUX_NETLINK_KOBJECT_UEVENT 15
/*
* net device flags
*/
#define LINUX_IFF_UP 0x0001
#define LINUX_IFF_BROADCAST 0x0002
#define LINUX_IFF_DEBUG 0x0004
#define LINUX_IFF_LOOPBACK 0x0008
#define LINUX_IFF_POINTOPOINT 0x0010
#define LINUX_IFF_NOTRAILERS 0x0020
#define LINUX_IFF_RUNNING 0x0040
#define LINUX_IFF_NOARP 0x0080
#define LINUX_IFF_PROMISC 0x0100
#define LINUX_IFF_ALLMULTI 0x0200
#define LINUX_IFF_MASTER 0x0400
#define LINUX_IFF_SLAVE 0x0800
#define LINUX_IFF_MULTICAST 0x1000
#define LINUX_IFF_PORTSEL 0x2000
#define LINUX_IFF_AUTOMEDIA 0x4000
#define LINUX_IFF_DYNAMIC 0x8000
/* sigaltstack */
#define LINUX_SS_ONSTACK 1
#define LINUX_SS_DISABLE 2
int linux_to_bsd_sigaltstack(int lsa);
int bsd_to_linux_sigaltstack(int bsa);
/* sigset */
typedef struct {
uint64_t __mask;
} l_sigset_t;
/* primitives to manipulate sigset_t */
#define LINUX_SIGEMPTYSET(set) (set).__mask = 0
#define LINUX_SIGISMEMBER(set, sig) (1ULL & ((set).__mask >> _SIG_IDX(sig)))
#define LINUX_SIGADDSET(set, sig) (set).__mask |= 1ULL << _SIG_IDX(sig)
void linux_to_bsd_sigset(l_sigset_t *, sigset_t *);
void bsd_to_linux_sigset(sigset_t *, l_sigset_t *);
/* signaling */
#define LINUX_SIGHUP 1
#define LINUX_SIGINT 2
#define LINUX_SIGQUIT 3
#define LINUX_SIGILL 4
#define LINUX_SIGTRAP 5
#define LINUX_SIGABRT 6
#define LINUX_SIGIOT LINUX_SIGABRT
#define LINUX_SIGBUS 7
#define LINUX_SIGFPE 8
#define LINUX_SIGKILL 9
#define LINUX_SIGUSR1 10
#define LINUX_SIGSEGV 11
#define LINUX_SIGUSR2 12
#define LINUX_SIGPIPE 13
#define LINUX_SIGALRM 14
#define LINUX_SIGTERM 15
#define LINUX_SIGSTKFLT 16
#define LINUX_SIGCHLD 17
#define LINUX_SIGCONT 18
#define LINUX_SIGSTOP 19
#define LINUX_SIGTSTP 20
#define LINUX_SIGTTIN 21
#define LINUX_SIGTTOU 22
#define LINUX_SIGURG 23
#define LINUX_SIGXCPU 24
#define LINUX_SIGXFSZ 25
#define LINUX_SIGVTALRM 26
#define LINUX_SIGPROF 27
#define LINUX_SIGWINCH 28
#define LINUX_SIGIO 29
#define LINUX_SIGPOLL LINUX_SIGIO
#define LINUX_SIGPWR 30
#define LINUX_SIGSYS 31
#define LINUX_SIGTBLSZ 31
#define LINUX_SIGRTMIN 32
#define LINUX_SIGRTMAX 64
#define LINUX_SIG_VALID(sig) ((sig) <= LINUX_SIGRTMAX && (sig) > 0)
int linux_to_bsd_signal(int sig);
int bsd_to_linux_signal(int sig);
/* sigprocmask actions */
#define LINUX_SIG_BLOCK 0
#define LINUX_SIG_UNBLOCK 1
#define LINUX_SIG_SETMASK 2
void linux_dev_shm_create(void);
void linux_dev_shm_destroy(void);
/*
* mask=0 is not sensible for this application, so it will be taken to mean
* a mask equivalent to the value. Otherwise, (word & mask) == value maps to
* (word & ~mask) | value in a bitfield for the platform we're converting to.
*/
struct bsd_to_linux_bitmap {
int bsd_mask;
int bsd_value;
int linux_mask;
int linux_value;
};
int bsd_to_linux_bits_(int value, struct bsd_to_linux_bitmap *bitmap,
size_t mapcnt, int no_value);
int linux_to_bsd_bits_(int value, struct bsd_to_linux_bitmap *bitmap,
size_t mapcnt, int no_value);
/*
* These functions are used for simplification of BSD <-> Linux bit conversions.
* Given `value`, a bit field, these functions will walk the given bitmap table
* and set the appropriate bits for the target platform. If any bits were
* successfully converted, then the return value is the equivalent of value
* represented with the bit values appropriate for the target platform.
* Otherwise, the value supplied as `no_value` is returned.
*/
#define bsd_to_linux_bits(_val, _bmap, _noval) \
bsd_to_linux_bits_((_val), (_bmap), nitems((_bmap)), (_noval))
#define linux_to_bsd_bits(_val, _bmap, _noval) \
linux_to_bsd_bits_((_val), (_bmap), nitems((_bmap)), (_noval))
/*
* Easy mapping helpers. BITMAP_EASY_LINUX represents a single bit to be
* translated, and the FreeBSD and Linux values are supplied. BITMAP_1t1_LINUX
* is the extreme version of this, where not only is it a single bit, but the
* name of the macro used to represent the Linux version of a bit literally has
* LINUX_ prepended to the normal name.
*/
#define BITMAP_EASY_LINUX(_name, _linux_name) \
{ \
.bsd_value = (_name), \
.linux_value = (_linux_name), \
}
#define BITMAP_1t1_LINUX(_name) BITMAP_EASY_LINUX(_name, LINUX_##_name)
int bsd_to_linux_errno(int error);
void linux_check_errtbl(void);
#define STATX_BASIC_STATS 0x07ff
#define STATX_BTIME 0x0800
#define STATX_ALL 0x0fff
#define STATX_ATTR_COMPRESSED 0x0004
#define STATX_ATTR_IMMUTABLE 0x0010
#define STATX_ATTR_APPEND 0x0020
#define STATX_ATTR_NODUMP 0x0040
#define STATX_ATTR_ENCRYPTED 0x0800
#define STATX_ATTR_AUTOMOUNT 0x1000
struct l_statx_timestamp {
int64_t tv_sec;
int32_t tv_nsec;
int32_t __spare0;
};
struct l_statx {
uint32_t stx_mask;
uint32_t stx_blksize;
uint64_t stx_attributes;
uint32_t stx_nlink;
uint32_t stx_uid;
uint32_t stx_gid;
uint16_t stx_mode;
uint16_t __spare0[1];
uint64_t stx_ino;
uint64_t stx_size;
uint64_t stx_blocks;
uint64_t stx_attributes_mask;
struct l_statx_timestamp stx_atime;
struct l_statx_timestamp stx_btime;
struct l_statx_timestamp stx_ctime;
struct l_statx_timestamp stx_mtime;
uint32_t stx_rdev_major;
uint32_t stx_rdev_minor;
uint32_t stx_dev_major;
uint32_t stx_dev_minor;
uint64_t stx_mnt_id;
uint64_t __spare2[13];
};
/*
* statfs f_flags
*/
#define LINUX_ST_RDONLY 0x0001
#define LINUX_ST_NOSUID 0x0002
#define LINUX_ST_NODEV 0x0004 /* No native analogue */
#define LINUX_ST_NOEXEC 0x0008
#define LINUX_ST_SYNCHRONOUS 0x0010
#define LINUX_ST_VALID 0x0020
#define LINUX_ST_MANDLOCK 0x0040 /* No native analogue */
#define LINUX_ST_NOATIME 0x0400
#define LINUX_ST_NODIRATIME 0x0800 /* No native analogue */
#define LINUX_ST_RELATIME 0x1000 /* No native analogue */
#define LINUX_ST_NOSYMFOLLOW 0x2000
#define lower_32_bits(n) ((uint32_t)((n) & 0xffffffff))
#ifdef KTRACE
#define linux_ktrsigset(s, l) \
ktrstruct("l_sigset_t", (s), l)
#endif
/*
* Criteria for interface name translation
*/
#define IFP_IS_ETH(ifp) (if_gettype(ifp) == IFT_ETHER)
#define IFP_IS_LOOP(ifp) (if_gettype(ifp) == IFT_LOOP)
struct ifnet;
bool linux_use_real_ifname(const struct ifnet *);
void linux_netlink_register(void);
void linux_netlink_deregister(void);
#endif /* _LINUX_MI_H_ */