freebsd-dev/sbin/nvmecontrol/logpage.c
Chuck Tuffli c2318cf80a nvme: fix spelling of Namespace
Fix spelling of a macro definition.

Reviewed by:	mav, imp
Differential Revision:	https://reviews.freebsd.org/D34330
2022-02-21 10:34:46 -08:00

861 lines
25 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013 EMC Corp.
* All rights reserved.
*
* Copyright (C) 2012-2013 Intel Corporation
* All rights reserved.
* Copyright (C) 2018-2019 Alexander Motin <mav@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/ioccom.h>
#include <ctype.h>
#include <err.h>
#include <fcntl.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sysexits.h>
#include <unistd.h>
#include <sys/endian.h>
#include "nvmecontrol.h"
/* Tables for command line parsing */
static cmd_fn_t logpage;
#define NONE 0xffffffffu
static struct options {
bool binary;
bool hex;
uint32_t page;
uint8_t lsp;
uint16_t lsi;
bool rae;
const char *vendor;
const char *dev;
} opt = {
.binary = false,
.hex = false,
.page = NONE,
.lsp = 0,
.lsi = 0,
.rae = false,
.vendor = NULL,
.dev = NULL,
};
static const struct opts logpage_opts[] = {
#define OPT(l, s, t, opt, addr, desc) { l, s, t, &opt.addr, desc }
OPT("binary", 'b', arg_none, opt, binary,
"Dump the log page as binary"),
OPT("hex", 'x', arg_none, opt, hex,
"Dump the log page as hex"),
OPT("page", 'p', arg_uint32, opt, page,
"Page to dump"),
OPT("lsp", 'f', arg_uint8, opt, lsp,
"Log Specific Field"),
OPT("lsi", 'i', arg_uint16, opt, lsi,
"Log Specific Identifier"),
OPT("rae", 'r', arg_none, opt, rae,
"Retain Asynchronous Event"),
OPT("vendor", 'v', arg_string, opt, vendor,
"Vendor specific formatting"),
{ NULL, 0, arg_none, NULL, NULL }
};
#undef OPT
static const struct args logpage_args[] = {
{ arg_string, &opt.dev, "<controller id|namespace id>" },
{ arg_none, NULL, NULL },
};
static struct cmd logpage_cmd = {
.name = "logpage",
.fn = logpage,
.descr = "Print logpages in human-readable form",
.ctx_size = sizeof(opt),
.opts = logpage_opts,
.args = logpage_args,
};
CMD_COMMAND(logpage_cmd);
/* End of tables for command line parsing */
#define MAX_FW_SLOTS (7)
static SLIST_HEAD(,logpage_function) logpages;
static int
logpage_compare(struct logpage_function *a, struct logpage_function *b)
{
int c;
if ((a->vendor == NULL) != (b->vendor == NULL))
return (a->vendor == NULL ? -1 : 1);
if (a->vendor != NULL) {
c = strcmp(a->vendor, b->vendor);
if (c != 0)
return (c);
}
return ((int)a->log_page - (int)b->log_page);
}
void
logpage_register(struct logpage_function *p)
{
struct logpage_function *l, *a;
a = NULL;
l = SLIST_FIRST(&logpages);
while (l != NULL) {
if (logpage_compare(l, p) > 0)
break;
a = l;
l = SLIST_NEXT(l, link);
}
if (a == NULL)
SLIST_INSERT_HEAD(&logpages, p, link);
else
SLIST_INSERT_AFTER(a, p, link);
}
const char *
kv_lookup(const struct kv_name *kv, size_t kv_count, uint32_t key)
{
static char bad[32];
size_t i;
for (i = 0; i < kv_count; i++, kv++)
if (kv->key == key)
return kv->name;
snprintf(bad, sizeof(bad), "Attribute %#x", key);
return bad;
}
static void
print_log_hex(const struct nvme_controller_data *cdata __unused, void *data, uint32_t length)
{
print_hex(data, length);
}
static void
print_bin(const struct nvme_controller_data *cdata __unused, void *data, uint32_t length)
{
write(STDOUT_FILENO, data, length);
}
static void *
get_log_buffer(uint32_t size)
{
void *buf;
if ((buf = malloc(size)) == NULL)
errx(EX_OSERR, "unable to malloc %u bytes", size);
memset(buf, 0, size);
return (buf);
}
void
read_logpage(int fd, uint8_t log_page, uint32_t nsid, uint8_t lsp,
uint16_t lsi, uint8_t rae, void *payload, uint32_t payload_size)
{
struct nvme_pt_command pt;
struct nvme_error_information_entry *err_entry;
u_int i, err_pages, numd;
numd = payload_size / sizeof(uint32_t) - 1;
memset(&pt, 0, sizeof(pt));
pt.cmd.opc = NVME_OPC_GET_LOG_PAGE;
pt.cmd.nsid = htole32(nsid);
pt.cmd.cdw10 = htole32(
(numd << 16) | /* NUMDL */
(rae << 15) | /* RAE */
(lsp << 8) | /* LSP */
log_page); /* LID */
pt.cmd.cdw11 = htole32(
((uint32_t)lsi << 16) | /* LSI */
(numd >> 16)); /* NUMDU */
pt.cmd.cdw12 = 0; /* LPOL */
pt.cmd.cdw13 = 0; /* LPOU */
pt.cmd.cdw14 = 0; /* UUID Index */
pt.buf = payload;
pt.len = payload_size;
pt.is_read = 1;
if (ioctl(fd, NVME_PASSTHROUGH_CMD, &pt) < 0)
err(EX_IOERR, "get log page request failed");
/* Convert data to host endian */
switch (log_page) {
case NVME_LOG_ERROR:
err_entry = (struct nvme_error_information_entry *)payload;
err_pages = payload_size / sizeof(struct nvme_error_information_entry);
for (i = 0; i < err_pages; i++)
nvme_error_information_entry_swapbytes(err_entry++);
break;
case NVME_LOG_HEALTH_INFORMATION:
nvme_health_information_page_swapbytes(
(struct nvme_health_information_page *)payload);
break;
case NVME_LOG_FIRMWARE_SLOT:
nvme_firmware_page_swapbytes(
(struct nvme_firmware_page *)payload);
break;
case NVME_LOG_CHANGED_NAMESPACE:
nvme_ns_list_swapbytes((struct nvme_ns_list *)payload);
break;
case NVME_LOG_DEVICE_SELF_TEST:
nvme_device_self_test_swapbytes(
(struct nvme_device_self_test_page *)payload);
break;
case NVME_LOG_COMMAND_EFFECT:
nvme_command_effects_page_swapbytes(
(struct nvme_command_effects_page *)payload);
break;
case NVME_LOG_RES_NOTIFICATION:
nvme_res_notification_page_swapbytes(
(struct nvme_res_notification_page *)payload);
break;
case NVME_LOG_SANITIZE_STATUS:
nvme_sanitize_status_page_swapbytes(
(struct nvme_sanitize_status_page *)payload);
break;
case INTEL_LOG_TEMP_STATS:
intel_log_temp_stats_swapbytes(
(struct intel_log_temp_stats *)payload);
break;
default:
break;
}
if (nvme_completion_is_error(&pt.cpl))
errx(EX_IOERR, "get log page request returned error");
}
static void
print_log_error(const struct nvme_controller_data *cdata __unused, void *buf, uint32_t size)
{
int i, nentries;
uint16_t status;
uint8_t p, sc, sct, m, dnr;
struct nvme_error_information_entry *entry = buf;
printf("Error Information Log\n");
printf("=====================\n");
if (entry->error_count == 0) {
printf("No error entries found\n");
return;
}
nentries = size/sizeof(struct nvme_error_information_entry);
for (i = 0; i < nentries; i++, entry++) {
if (entry->error_count == 0)
break;
status = entry->status;
p = NVME_STATUS_GET_P(status);
sc = NVME_STATUS_GET_SC(status);
sct = NVME_STATUS_GET_SCT(status);
m = NVME_STATUS_GET_M(status);
dnr = NVME_STATUS_GET_DNR(status);
printf("Entry %02d\n", i + 1);
printf("=========\n");
printf(" Error count: %ju\n", entry->error_count);
printf(" Submission queue ID: %u\n", entry->sqid);
printf(" Command ID: %u\n", entry->cid);
/* TODO: Export nvme_status_string structures from kernel? */
printf(" Status:\n");
printf(" Phase tag: %d\n", p);
printf(" Status code: %d\n", sc);
printf(" Status code type: %d\n", sct);
printf(" More: %d\n", m);
printf(" DNR: %d\n", dnr);
printf(" Error location: %u\n", entry->error_location);
printf(" LBA: %ju\n", entry->lba);
printf(" Namespace ID: %u\n", entry->nsid);
printf(" Vendor specific info: %u\n", entry->vendor_specific);
printf(" Transport type: %u\n", entry->trtype);
printf(" Command specific info:%ju\n", entry->csi);
printf(" Transport specific: %u\n", entry->ttsi);
}
}
void
print_temp(uint16_t t)
{
printf("%u K, %2.2f C, %3.2f F\n", t, (float)t - 273.15, (float)t * 9 / 5 - 459.67);
}
static void
print_log_health(const struct nvme_controller_data *cdata __unused, void *buf, uint32_t size __unused)
{
struct nvme_health_information_page *health = buf;
char cbuf[UINT128_DIG + 1];
uint8_t warning;
int i;
warning = health->critical_warning;
printf("SMART/Health Information Log\n");
printf("============================\n");
printf("Critical Warning State: 0x%02x\n", warning);
printf(" Available spare: %d\n",
!!(warning & NVME_CRIT_WARN_ST_AVAILABLE_SPARE));
printf(" Temperature: %d\n",
!!(warning & NVME_CRIT_WARN_ST_TEMPERATURE));
printf(" Device reliability: %d\n",
!!(warning & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY));
printf(" Read only: %d\n",
!!(warning & NVME_CRIT_WARN_ST_READ_ONLY));
printf(" Volatile memory backup: %d\n",
!!(warning & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP));
printf("Temperature: ");
print_temp(health->temperature);
printf("Available spare: %u\n",
health->available_spare);
printf("Available spare threshold: %u\n",
health->available_spare_threshold);
printf("Percentage used: %u\n",
health->percentage_used);
printf("Data units (512,000 byte) read: %s\n",
uint128_to_str(to128(health->data_units_read), cbuf, sizeof(cbuf)));
printf("Data units written: %s\n",
uint128_to_str(to128(health->data_units_written), cbuf, sizeof(cbuf)));
printf("Host read commands: %s\n",
uint128_to_str(to128(health->host_read_commands), cbuf, sizeof(cbuf)));
printf("Host write commands: %s\n",
uint128_to_str(to128(health->host_write_commands), cbuf, sizeof(cbuf)));
printf("Controller busy time (minutes): %s\n",
uint128_to_str(to128(health->controller_busy_time), cbuf, sizeof(cbuf)));
printf("Power cycles: %s\n",
uint128_to_str(to128(health->power_cycles), cbuf, sizeof(cbuf)));
printf("Power on hours: %s\n",
uint128_to_str(to128(health->power_on_hours), cbuf, sizeof(cbuf)));
printf("Unsafe shutdowns: %s\n",
uint128_to_str(to128(health->unsafe_shutdowns), cbuf, sizeof(cbuf)));
printf("Media errors: %s\n",
uint128_to_str(to128(health->media_errors), cbuf, sizeof(cbuf)));
printf("No. error info log entries: %s\n",
uint128_to_str(to128(health->num_error_info_log_entries), cbuf, sizeof(cbuf)));
printf("Warning Temp Composite Time: %d\n", health->warning_temp_time);
printf("Error Temp Composite Time: %d\n", health->error_temp_time);
for (i = 0; i < 8; i++) {
if (health->temp_sensor[i] == 0)
continue;
printf("Temperature Sensor %d: ", i + 1);
print_temp(health->temp_sensor[i]);
}
printf("Temperature 1 Transition Count: %d\n", health->tmt1tc);
printf("Temperature 2 Transition Count: %d\n", health->tmt2tc);
printf("Total Time For Temperature 1: %d\n", health->ttftmt1);
printf("Total Time For Temperature 2: %d\n", health->ttftmt2);
}
static void
print_log_firmware(const struct nvme_controller_data *cdata, void *buf, uint32_t size __unused)
{
int i, slots;
const char *status;
struct nvme_firmware_page *fw = buf;
uint8_t afi_slot;
uint16_t oacs_fw;
uint8_t fw_num_slots;
afi_slot = fw->afi >> NVME_FIRMWARE_PAGE_AFI_SLOT_SHIFT;
afi_slot &= NVME_FIRMWARE_PAGE_AFI_SLOT_MASK;
oacs_fw = (cdata->oacs >> NVME_CTRLR_DATA_OACS_FIRMWARE_SHIFT) &
NVME_CTRLR_DATA_OACS_FIRMWARE_MASK;
fw_num_slots = (cdata->frmw >> NVME_CTRLR_DATA_FRMW_NUM_SLOTS_SHIFT) &
NVME_CTRLR_DATA_FRMW_NUM_SLOTS_MASK;
printf("Firmware Slot Log\n");
printf("=================\n");
if (oacs_fw == 0)
slots = 1;
else
slots = MIN(fw_num_slots, MAX_FW_SLOTS);
for (i = 0; i < slots; i++) {
printf("Slot %d: ", i + 1);
if (afi_slot == i + 1)
status = " Active";
else
status = "Inactive";
if (fw->revision[i] == 0LLU)
printf("Empty\n");
else
if (isprint(*(char *)&fw->revision[i]))
printf("[%s] %.8s\n", status,
(char *)&fw->revision[i]);
else
printf("[%s] %016jx\n", status,
fw->revision[i]);
}
}
static void
print_log_ns(const struct nvme_controller_data *cdata __unused, void *buf,
uint32_t size __unused)
{
struct nvme_ns_list *nsl;
u_int i;
nsl = (struct nvme_ns_list *)buf;
printf("Changed Namespace List\n");
printf("======================\n");
for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
printf("%08x\n", nsl->ns[i]);
}
}
static void
print_log_command_effects(const struct nvme_controller_data *cdata __unused,
void *buf, uint32_t size __unused)
{
struct nvme_command_effects_page *ce;
u_int i;
uint32_t s;
ce = (struct nvme_command_effects_page *)buf;
printf("Commands Supported and Effects\n");
printf("==============================\n");
printf(" Command\tLBCC\tNCC\tNIC\tCCC\tCSE\tUUID\n");
for (i = 0; i < 255; i++) {
s = ce->acs[i];
if (((s >> NVME_CE_PAGE_CSUP_SHIFT) &
NVME_CE_PAGE_CSUP_MASK) == 0)
continue;
printf("Admin\t%02x\t%s\t%s\t%s\t%s\t%u\t%s\n", i,
((s >> NVME_CE_PAGE_LBCC_SHIFT) &
NVME_CE_PAGE_LBCC_MASK) ? "Yes" : "No",
((s >> NVME_CE_PAGE_NCC_SHIFT) &
NVME_CE_PAGE_NCC_MASK) ? "Yes" : "No",
((s >> NVME_CE_PAGE_NIC_SHIFT) &
NVME_CE_PAGE_NIC_MASK) ? "Yes" : "No",
((s >> NVME_CE_PAGE_CCC_SHIFT) &
NVME_CE_PAGE_CCC_MASK) ? "Yes" : "No",
((s >> NVME_CE_PAGE_CSE_SHIFT) &
NVME_CE_PAGE_CSE_MASK),
((s >> NVME_CE_PAGE_UUID_SHIFT) &
NVME_CE_PAGE_UUID_MASK) ? "Yes" : "No");
}
for (i = 0; i < 255; i++) {
s = ce->iocs[i];
if (((s >> NVME_CE_PAGE_CSUP_SHIFT) &
NVME_CE_PAGE_CSUP_MASK) == 0)
continue;
printf("I/O\t%02x\t%s\t%s\t%s\t%s\t%u\t%s\n", i,
((s >> NVME_CE_PAGE_LBCC_SHIFT) &
NVME_CE_PAGE_LBCC_MASK) ? "Yes" : "No",
((s >> NVME_CE_PAGE_NCC_SHIFT) &
NVME_CE_PAGE_NCC_MASK) ? "Yes" : "No",
((s >> NVME_CE_PAGE_NIC_SHIFT) &
NVME_CE_PAGE_NIC_MASK) ? "Yes" : "No",
((s >> NVME_CE_PAGE_CCC_SHIFT) &
NVME_CE_PAGE_CCC_MASK) ? "Yes" : "No",
((s >> NVME_CE_PAGE_CSE_SHIFT) &
NVME_CE_PAGE_CSE_MASK),
((s >> NVME_CE_PAGE_UUID_SHIFT) &
NVME_CE_PAGE_UUID_MASK) ? "Yes" : "No");
}
}
static void
print_log_res_notification(const struct nvme_controller_data *cdata __unused,
void *buf, uint32_t size __unused)
{
struct nvme_res_notification_page *rn;
rn = (struct nvme_res_notification_page *)buf;
printf("Reservation Notification\n");
printf("========================\n");
printf("Log Page Count: %ju\n", rn->log_page_count);
printf("Log Page Type: ");
switch (rn->log_page_type) {
case 0:
printf("Empty Log Page\n");
break;
case 1:
printf("Registration Preempted\n");
break;
case 2:
printf("Reservation Released\n");
break;
case 3:
printf("Reservation Preempted\n");
break;
default:
printf("Unknown %x\n", rn->log_page_type);
break;
};
printf("Number of Available Log Pages: %d\n", rn->available_log_pages);
printf("Namespace ID: 0x%x\n", rn->nsid);
}
static void
print_log_sanitize_status(const struct nvme_controller_data *cdata __unused,
void *buf, uint32_t size __unused)
{
struct nvme_sanitize_status_page *ss;
u_int p;
ss = (struct nvme_sanitize_status_page *)buf;
printf("Sanitize Status\n");
printf("===============\n");
printf("Sanitize Progress: %u%% (%u/65535)\n",
(ss->sprog * 100 + 32768) / 65536, ss->sprog);
printf("Sanitize Status: ");
switch ((ss->sstat >> NVME_SS_PAGE_SSTAT_STATUS_SHIFT) &
NVME_SS_PAGE_SSTAT_STATUS_MASK) {
case NVME_SS_PAGE_SSTAT_STATUS_NEVER:
printf("Never sanitized");
break;
case NVME_SS_PAGE_SSTAT_STATUS_COMPLETED:
printf("Completed");
break;
case NVME_SS_PAGE_SSTAT_STATUS_INPROG:
printf("In Progress");
break;
case NVME_SS_PAGE_SSTAT_STATUS_FAILED:
printf("Failed");
break;
case NVME_SS_PAGE_SSTAT_STATUS_COMPLETEDWD:
printf("Completed with deallocation");
break;
default:
printf("Unknown");
break;
}
p = (ss->sstat >> NVME_SS_PAGE_SSTAT_PASSES_SHIFT) &
NVME_SS_PAGE_SSTAT_PASSES_MASK;
if (p > 0)
printf(", %d passes", p);
if ((ss->sstat >> NVME_SS_PAGE_SSTAT_GDE_SHIFT) &
NVME_SS_PAGE_SSTAT_GDE_MASK)
printf(", Global Data Erased");
printf("\n");
printf("Sanitize Command Dword 10: 0x%x\n", ss->scdw10);
printf("Time For Overwrite: %u sec\n", ss->etfo);
printf("Time For Block Erase: %u sec\n", ss->etfbe);
printf("Time For Crypto Erase: %u sec\n", ss->etfce);
printf("Time For Overwrite No-Deallocate: %u sec\n", ss->etfownd);
printf("Time For Block Erase No-Deallocate: %u sec\n", ss->etfbewnd);
printf("Time For Crypto Erase No-Deallocate: %u sec\n", ss->etfcewnd);
}
static const char *
self_test_res[] = {
[0] = "completed without error",
[1] = "aborted by a Device Self-test command",
[2] = "aborted by a Controller Level Reset",
[3] = "aborted due to namespace removal",
[4] = "aborted due to Format NVM command",
[5] = "failed due to fatal or unknown test error",
[6] = "completed with an unknown segment that failed",
[7] = "completed with one or more failed segments",
[8] = "aborted for unknown reason",
[9] = "aborted due to a sanitize operation",
};
static uint32_t self_test_res_max = nitems(self_test_res);
static void
print_log_self_test_status(const struct nvme_controller_data *cdata __unused,
void *buf, uint32_t size __unused)
{
struct nvme_device_self_test_page *dst;
uint32_t r;
dst = buf;
printf("Device Self-test Status\n");
printf("=======================\n");
printf("Current Operation: ");
switch (dst->curr_operation) {
case 0x0:
printf("No device self-test operation in progress\n");
break;
case 0x1:
printf("Short device self-test operation in progress\n");
break;
case 0x2:
printf("Extended device self-test operation in progress\n");
break;
case 0xe:
printf("Vendor specific\n");
break;
default:
printf("Reserved (0x%x)\n", dst->curr_operation);
}
if (dst->curr_operation != 0)
printf("Current Completion: %u%%\n", dst->curr_compl & 0x7f);
printf("Results\n");
for (r = 0; r < 20; r++) {
uint64_t failing_lba;
uint8_t code, res;
code = (dst->result[r].status >> 4) & 0xf;
res = dst->result[r].status & 0xf;
if (res == 0xf)
continue;
printf("[%2u] ", r);
switch (code) {
case 0x1:
printf("Short device self-test");
break;
case 0x2:
printf("Extended device self-test");
break;
case 0xe:
printf("Vendor specific");
break;
default:
printf("Reserved (0x%x)", code);
}
if (res < self_test_res_max)
printf(" %s", self_test_res[res]);
else
printf(" Reserved status 0x%x", res);
if (res == 7)
printf(" starting in segment %u", dst->result[r].segment_num);
#define BIT(b) (1 << (b))
if (dst->result[r].valid_diag_info & BIT(0))
printf(" NSID=0x%x", dst->result[r].nsid);
if (dst->result[r].valid_diag_info & BIT(1)) {
memcpy(&failing_lba, dst->result[r].failing_lba,
sizeof(failing_lba));
printf(" FLBA=0x%jx", failing_lba);
}
if (dst->result[r].valid_diag_info & BIT(2))
printf(" SCT=0x%x", dst->result[r].status_code_type);
if (dst->result[r].valid_diag_info & BIT(3))
printf(" SC=0x%x", dst->result[r].status_code);
#undef BIT
printf("\n");
}
}
/*
* Table of log page printer / sizing.
*
* Make sure you keep all the pages of one vendor together so -v help
* lists all the vendors pages.
*/
NVME_LOGPAGE(error,
NVME_LOG_ERROR, NULL, "Drive Error Log",
print_log_error, 0);
NVME_LOGPAGE(health,
NVME_LOG_HEALTH_INFORMATION, NULL, "Health/SMART Data",
print_log_health, sizeof(struct nvme_health_information_page));
NVME_LOGPAGE(fw,
NVME_LOG_FIRMWARE_SLOT, NULL, "Firmware Information",
print_log_firmware, sizeof(struct nvme_firmware_page));
NVME_LOGPAGE(ns,
NVME_LOG_CHANGED_NAMESPACE, NULL, "Changed Namespace List",
print_log_ns, sizeof(struct nvme_ns_list));
NVME_LOGPAGE(ce,
NVME_LOG_COMMAND_EFFECT, NULL, "Commands Supported and Effects",
print_log_command_effects, sizeof(struct nvme_command_effects_page));
NVME_LOGPAGE(dst,
NVME_LOG_DEVICE_SELF_TEST, NULL, "Device Self-test",
print_log_self_test_status, sizeof(struct nvme_device_self_test_page));
NVME_LOGPAGE(thi,
NVME_LOG_TELEMETRY_HOST_INITIATED, NULL, "Telemetry Host-Initiated",
NULL, DEFAULT_SIZE);
NVME_LOGPAGE(tci,
NVME_LOG_TELEMETRY_CONTROLLER_INITIATED, NULL, "Telemetry Controller-Initiated",
NULL, DEFAULT_SIZE);
NVME_LOGPAGE(egi,
NVME_LOG_ENDURANCE_GROUP_INFORMATION, NULL, "Endurance Group Information",
NULL, DEFAULT_SIZE);
NVME_LOGPAGE(plpns,
NVME_LOG_PREDICTABLE_LATENCY_PER_NVM_SET, NULL, "Predictable Latency Per NVM Set",
NULL, DEFAULT_SIZE);
NVME_LOGPAGE(ple,
NVME_LOG_PREDICTABLE_LATENCY_EVENT_AGGREGATE, NULL, "Predictable Latency Event Aggregate",
NULL, DEFAULT_SIZE);
NVME_LOGPAGE(ana,
NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS, NULL, "Asymmetric Namespace Access",
NULL, DEFAULT_SIZE);
NVME_LOGPAGE(pel,
NVME_LOG_PERSISTENT_EVENT_LOG, NULL, "Persistent Event Log",
NULL, DEFAULT_SIZE);
NVME_LOGPAGE(lbasi,
NVME_LOG_LBA_STATUS_INFORMATION, NULL, "LBA Status Information",
NULL, DEFAULT_SIZE);
NVME_LOGPAGE(egea,
NVME_LOG_ENDURANCE_GROUP_EVENT_AGGREGATE, NULL, "Endurance Group Event Aggregate",
NULL, DEFAULT_SIZE);
NVME_LOGPAGE(res_notification,
NVME_LOG_RES_NOTIFICATION, NULL, "Reservation Notification",
print_log_res_notification, sizeof(struct nvme_res_notification_page));
NVME_LOGPAGE(sanitize_status,
NVME_LOG_SANITIZE_STATUS, NULL, "Sanitize Status",
print_log_sanitize_status, sizeof(struct nvme_sanitize_status_page));
static void
logpage_help(void)
{
const struct logpage_function *f;
const char *v;
fprintf(stderr, "\n");
fprintf(stderr, "%-8s %-10s %s\n", "Page", "Vendor","Page Name");
fprintf(stderr, "-------- ---------- ----------\n");
SLIST_FOREACH(f, &logpages, link) {
v = f->vendor == NULL ? "-" : f->vendor;
fprintf(stderr, "0x%02x %-10s %s\n", f->log_page, v, f->name);
}
exit(EX_USAGE);
}
static void
logpage(const struct cmd *f, int argc, char *argv[])
{
int fd;
char *path;
uint32_t nsid, size;
void *buf;
const struct logpage_function *lpf;
struct nvme_controller_data cdata;
print_fn_t print_fn;
uint8_t ns_smart;
if (arg_parse(argc, argv, f))
return;
if (opt.hex && opt.binary) {
fprintf(stderr,
"Can't specify both binary and hex\n");
arg_help(argc, argv, f);
}
if (opt.vendor != NULL && strcmp(opt.vendor, "help") == 0)
logpage_help();
if (opt.page == NONE) {
fprintf(stderr, "Missing page_id (-p).\n");
arg_help(argc, argv, f);
}
open_dev(opt.dev, &fd, 0, 1);
get_nsid(fd, &path, &nsid);
if (nsid == 0) {
nsid = NVME_GLOBAL_NAMESPACE_TAG;
} else {
close(fd);
open_dev(path, &fd, 0, 1);
}
free(path);
if (read_controller_data(fd, &cdata))
errx(EX_IOERR, "Identify request failed");
ns_smart = (cdata.lpa >> NVME_CTRLR_DATA_LPA_NS_SMART_SHIFT) &
NVME_CTRLR_DATA_LPA_NS_SMART_MASK;
/*
* The log page attribtues indicate whether or not the controller
* supports the SMART/Health information log page on a per
* namespace basis.
*/
if (nsid != NVME_GLOBAL_NAMESPACE_TAG) {
if (opt.page != NVME_LOG_HEALTH_INFORMATION)
errx(EX_USAGE, "log page %d valid only at controller level",
opt.page);
if (ns_smart == 0)
errx(EX_UNAVAILABLE,
"controller does not support per namespace "
"smart/health information");
}
print_fn = print_log_hex;
size = DEFAULT_SIZE;
if (opt.binary)
print_fn = print_bin;
if (!opt.binary && !opt.hex) {
/*
* See if there is a pretty print function for the specified log
* page. If one isn't found, we just revert to the default
* (print_hex). If there was a vendor specified by the user, and
* the page is vendor specific, don't match the print function
* unless the vendors match.
*/
SLIST_FOREACH(lpf, &logpages, link) {
if (lpf->vendor != NULL && opt.vendor != NULL &&
strcmp(lpf->vendor, opt.vendor) != 0)
continue;
if (opt.page != lpf->log_page)
continue;
if (lpf->print_fn != NULL)
print_fn = lpf->print_fn;
size = lpf->size;
break;
}
}
if (opt.page == NVME_LOG_ERROR) {
size = sizeof(struct nvme_error_information_entry);
size *= (cdata.elpe + 1);
}
/* Read the log page */
buf = get_log_buffer(size);
read_logpage(fd, opt.page, nsid, opt.lsp, opt.lsi, opt.rae, buf, size);
print_fn(&cdata, buf, size);
close(fd);
exit(0);
}