1ca32af8f2
Discussed with: yongari MFC after: 1 week Sponsored by: Microsoft OSTC
6797 lines
200 KiB
C
6797 lines
200 KiB
C
/*-
|
|
* Copyright (c) 2001 Wind River Systems
|
|
* Copyright (c) 1997, 1998, 1999, 2001
|
|
* Bill Paul <wpaul@windriver.com>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
|
|
*
|
|
* The Broadcom BCM5700 is based on technology originally developed by
|
|
* Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
|
|
* MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
|
|
* two on-board MIPS R4000 CPUs and can have as much as 16MB of external
|
|
* SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
|
|
* frames, highly configurable RX filtering, and 16 RX and TX queues
|
|
* (which, along with RX filter rules, can be used for QOS applications).
|
|
* Other features, such as TCP segmentation, may be available as part
|
|
* of value-added firmware updates. Unlike the Tigon I and Tigon II,
|
|
* firmware images can be stored in hardware and need not be compiled
|
|
* into the driver.
|
|
*
|
|
* The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
|
|
* function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
|
|
*
|
|
* The BCM5701 is a single-chip solution incorporating both the BCM5700
|
|
* MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
|
|
* does not support external SSRAM.
|
|
*
|
|
* Broadcom also produces a variation of the BCM5700 under the "Altima"
|
|
* brand name, which is functionally similar but lacks PCI-X support.
|
|
*
|
|
* Without external SSRAM, you can only have at most 4 TX rings,
|
|
* and the use of the mini RX ring is disabled. This seems to imply
|
|
* that these features are simply not available on the BCM5701. As a
|
|
* result, this driver does not implement any support for the mini RX
|
|
* ring.
|
|
*/
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/tcp.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
#include "miidevs.h"
|
|
#include <dev/mii/brgphyreg.h>
|
|
|
|
#ifdef __sparc64__
|
|
#include <dev/ofw/ofw_bus.h>
|
|
#include <dev/ofw/openfirm.h>
|
|
#include <machine/ofw_machdep.h>
|
|
#include <machine/ver.h>
|
|
#endif
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <dev/bge/if_bgereg.h>
|
|
|
|
#define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP)
|
|
#define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
|
|
|
|
MODULE_DEPEND(bge, pci, 1, 1, 1);
|
|
MODULE_DEPEND(bge, ether, 1, 1, 1);
|
|
MODULE_DEPEND(bge, miibus, 1, 1, 1);
|
|
|
|
/* "device miibus" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names. Note: the
|
|
* spec seems to indicate that the hardware still has Alteon's vendor
|
|
* ID burned into it, though it will always be overriden by the vendor
|
|
* ID in the EEPROM. Just to be safe, we cover all possibilities.
|
|
*/
|
|
static const struct bge_type {
|
|
uint16_t bge_vid;
|
|
uint16_t bge_did;
|
|
} bge_devs[] = {
|
|
{ ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 },
|
|
{ ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 },
|
|
|
|
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 },
|
|
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 },
|
|
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 },
|
|
|
|
{ APPLE_VENDORID, APPLE_DEVICE_BCM5701 },
|
|
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5700 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5701 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702X },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703X },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704C },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704S },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705F },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705K },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705M },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5714C },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5714S },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5715 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5715S },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5717 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5717C },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5718 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5719 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5720 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5721 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5722 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5723 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5725 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5727 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5750 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5750M },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5751 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5751F },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5751M },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5752 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5752M },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5753 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5753F },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5753M },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5754 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5754M },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5755 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5755M },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5756 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5761 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5761E },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5761S },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5762 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5764 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5780 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5780S },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5781 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5782 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5784 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5785F },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5785G },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5786 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5787 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5787F },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5787M },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5788 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5789 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5901 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5903M },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5906 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5906M },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57760 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57761 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57762 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57764 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57765 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57766 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57767 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57780 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57781 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57782 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57785 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57786 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57787 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57788 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57790 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57791 },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57795 },
|
|
|
|
{ SK_VENDORID, SK_DEVICEID_ALTIMA },
|
|
|
|
{ TC_VENDORID, TC_DEVICEID_3C996 },
|
|
|
|
{ FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 },
|
|
{ FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 },
|
|
{ FJTSU_VENDORID, FJTSU_DEVICEID_PP250450 },
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static const struct bge_vendor {
|
|
uint16_t v_id;
|
|
const char *v_name;
|
|
} bge_vendors[] = {
|
|
{ ALTEON_VENDORID, "Alteon" },
|
|
{ ALTIMA_VENDORID, "Altima" },
|
|
{ APPLE_VENDORID, "Apple" },
|
|
{ BCOM_VENDORID, "Broadcom" },
|
|
{ SK_VENDORID, "SysKonnect" },
|
|
{ TC_VENDORID, "3Com" },
|
|
{ FJTSU_VENDORID, "Fujitsu" },
|
|
|
|
{ 0, NULL }
|
|
};
|
|
|
|
static const struct bge_revision {
|
|
uint32_t br_chipid;
|
|
const char *br_name;
|
|
} bge_revisions[] = {
|
|
{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
|
|
{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
|
|
{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
|
|
{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
|
|
{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
|
|
{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
|
|
{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
|
|
{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
|
|
{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
|
|
{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
|
|
{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
|
|
{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
|
|
{ BGE_CHIPID_BCM5703_A0, "BCM5703 A0" },
|
|
{ BGE_CHIPID_BCM5703_A1, "BCM5703 A1" },
|
|
{ BGE_CHIPID_BCM5703_A2, "BCM5703 A2" },
|
|
{ BGE_CHIPID_BCM5703_A3, "BCM5703 A3" },
|
|
{ BGE_CHIPID_BCM5703_B0, "BCM5703 B0" },
|
|
{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
|
|
{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
|
|
{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
|
|
{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
|
|
{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
|
|
{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
|
|
{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
|
|
{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
|
|
{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
|
|
{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
|
|
{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
|
|
{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
|
|
{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
|
|
{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
|
|
{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
|
|
{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
|
|
{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
|
|
{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
|
|
{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
|
|
{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
|
|
{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
|
|
{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
|
|
{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
|
|
{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
|
|
{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
|
|
{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
|
|
{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
|
|
{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
|
|
{ BGE_CHIPID_BCM5717_C0, "BCM5717 C0" },
|
|
{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
|
|
{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
|
|
{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
|
|
{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
|
|
{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
|
|
{ BGE_CHIPID_BCM5722_A0, "BCM5722 A0" },
|
|
{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
|
|
{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
|
|
{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
|
|
{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
|
|
{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
|
|
/* 5754 and 5787 share the same ASIC ID */
|
|
{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
|
|
{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
|
|
{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
|
|
{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
|
|
{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
|
|
{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
|
|
{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
|
|
{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
|
|
{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
|
|
|
|
{ 0, NULL }
|
|
};
|
|
|
|
/*
|
|
* Some defaults for major revisions, so that newer steppings
|
|
* that we don't know about have a shot at working.
|
|
*/
|
|
static const struct bge_revision bge_majorrevs[] = {
|
|
{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
|
|
{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
|
|
{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
|
|
{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
|
|
{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
|
|
{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
|
|
{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
|
|
{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
|
|
{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
|
|
{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
|
|
{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
|
|
{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
|
|
{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
|
|
{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
|
|
/* 5754 and 5787 share the same ASIC ID */
|
|
{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
|
|
{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
|
|
{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
|
|
{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
|
|
{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
|
|
{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
|
|
{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
|
|
{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
|
|
{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
|
|
|
|
{ 0, NULL }
|
|
};
|
|
|
|
#define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO)
|
|
#define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
|
|
#define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
|
|
#define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
|
|
#define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
|
|
#define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
|
|
#define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5717_PLUS)
|
|
#define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_57765_PLUS)
|
|
|
|
static uint32_t bge_chipid(device_t);
|
|
static const struct bge_vendor * bge_lookup_vendor(uint16_t);
|
|
static const struct bge_revision * bge_lookup_rev(uint32_t);
|
|
|
|
typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
|
|
|
|
static int bge_probe(device_t);
|
|
static int bge_attach(device_t);
|
|
static int bge_detach(device_t);
|
|
static int bge_suspend(device_t);
|
|
static int bge_resume(device_t);
|
|
static void bge_release_resources(struct bge_softc *);
|
|
static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
|
|
static int bge_dma_alloc(struct bge_softc *);
|
|
static void bge_dma_free(struct bge_softc *);
|
|
static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
|
|
bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
|
|
|
|
static void bge_devinfo(struct bge_softc *);
|
|
static int bge_mbox_reorder(struct bge_softc *);
|
|
|
|
static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
|
|
static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
|
|
static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
|
|
static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
|
|
static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
|
|
|
|
static void bge_txeof(struct bge_softc *, uint16_t);
|
|
static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
|
|
static int bge_rxeof(struct bge_softc *, uint16_t, int);
|
|
|
|
static void bge_asf_driver_up (struct bge_softc *);
|
|
static void bge_tick(void *);
|
|
static void bge_stats_clear_regs(struct bge_softc *);
|
|
static void bge_stats_update(struct bge_softc *);
|
|
static void bge_stats_update_regs(struct bge_softc *);
|
|
static struct mbuf *bge_check_short_dma(struct mbuf *);
|
|
static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
|
|
uint16_t *, uint16_t *);
|
|
static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
|
|
|
|
static void bge_intr(void *);
|
|
static int bge_msi_intr(void *);
|
|
static void bge_intr_task(void *, int);
|
|
static void bge_start_locked(if_t);
|
|
static void bge_start(if_t);
|
|
static int bge_ioctl(if_t, u_long, caddr_t);
|
|
static void bge_init_locked(struct bge_softc *);
|
|
static void bge_init(void *);
|
|
static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
|
|
static void bge_stop(struct bge_softc *);
|
|
static void bge_watchdog(struct bge_softc *);
|
|
static int bge_shutdown(device_t);
|
|
static int bge_ifmedia_upd_locked(if_t);
|
|
static int bge_ifmedia_upd(if_t);
|
|
static void bge_ifmedia_sts(if_t, struct ifmediareq *);
|
|
static uint64_t bge_get_counter(if_t, ift_counter);
|
|
|
|
static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
|
|
static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
|
|
|
|
static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
|
|
static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
|
|
|
|
static void bge_setpromisc(struct bge_softc *);
|
|
static void bge_setmulti(struct bge_softc *);
|
|
static void bge_setvlan(struct bge_softc *);
|
|
|
|
static __inline void bge_rxreuse_std(struct bge_softc *, int);
|
|
static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
|
|
static int bge_newbuf_std(struct bge_softc *, int);
|
|
static int bge_newbuf_jumbo(struct bge_softc *, int);
|
|
static int bge_init_rx_ring_std(struct bge_softc *);
|
|
static void bge_free_rx_ring_std(struct bge_softc *);
|
|
static int bge_init_rx_ring_jumbo(struct bge_softc *);
|
|
static void bge_free_rx_ring_jumbo(struct bge_softc *);
|
|
static void bge_free_tx_ring(struct bge_softc *);
|
|
static int bge_init_tx_ring(struct bge_softc *);
|
|
|
|
static int bge_chipinit(struct bge_softc *);
|
|
static int bge_blockinit(struct bge_softc *);
|
|
static uint32_t bge_dma_swap_options(struct bge_softc *);
|
|
|
|
static int bge_has_eaddr(struct bge_softc *);
|
|
static uint32_t bge_readmem_ind(struct bge_softc *, int);
|
|
static void bge_writemem_ind(struct bge_softc *, int, int);
|
|
static void bge_writembx(struct bge_softc *, int, int);
|
|
#ifdef notdef
|
|
static uint32_t bge_readreg_ind(struct bge_softc *, int);
|
|
#endif
|
|
static void bge_writemem_direct(struct bge_softc *, int, int);
|
|
static void bge_writereg_ind(struct bge_softc *, int, int);
|
|
|
|
static int bge_miibus_readreg(device_t, int, int);
|
|
static int bge_miibus_writereg(device_t, int, int, int);
|
|
static void bge_miibus_statchg(device_t);
|
|
#ifdef DEVICE_POLLING
|
|
static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
|
|
#endif
|
|
|
|
#define BGE_RESET_SHUTDOWN 0
|
|
#define BGE_RESET_START 1
|
|
#define BGE_RESET_SUSPEND 2
|
|
static void bge_sig_post_reset(struct bge_softc *, int);
|
|
static void bge_sig_legacy(struct bge_softc *, int);
|
|
static void bge_sig_pre_reset(struct bge_softc *, int);
|
|
static void bge_stop_fw(struct bge_softc *);
|
|
static int bge_reset(struct bge_softc *);
|
|
static void bge_link_upd(struct bge_softc *);
|
|
|
|
static void bge_ape_lock_init(struct bge_softc *);
|
|
static void bge_ape_read_fw_ver(struct bge_softc *);
|
|
static int bge_ape_lock(struct bge_softc *, int);
|
|
static void bge_ape_unlock(struct bge_softc *, int);
|
|
static void bge_ape_send_event(struct bge_softc *, uint32_t);
|
|
static void bge_ape_driver_state_change(struct bge_softc *, int);
|
|
|
|
/*
|
|
* The BGE_REGISTER_DEBUG option is only for low-level debugging. It may
|
|
* leak information to untrusted users. It is also known to cause alignment
|
|
* traps on certain architectures.
|
|
*/
|
|
#ifdef BGE_REGISTER_DEBUG
|
|
static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
|
|
static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
|
|
static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
|
|
static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
|
|
#endif
|
|
static void bge_add_sysctls(struct bge_softc *);
|
|
static void bge_add_sysctl_stats_regs(struct bge_softc *,
|
|
struct sysctl_ctx_list *, struct sysctl_oid_list *);
|
|
static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
|
|
struct sysctl_oid_list *);
|
|
static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
|
|
|
|
static device_method_t bge_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, bge_probe),
|
|
DEVMETHOD(device_attach, bge_attach),
|
|
DEVMETHOD(device_detach, bge_detach),
|
|
DEVMETHOD(device_shutdown, bge_shutdown),
|
|
DEVMETHOD(device_suspend, bge_suspend),
|
|
DEVMETHOD(device_resume, bge_resume),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, bge_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, bge_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, bge_miibus_statchg),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t bge_driver = {
|
|
"bge",
|
|
bge_methods,
|
|
sizeof(struct bge_softc)
|
|
};
|
|
|
|
static devclass_t bge_devclass;
|
|
|
|
DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
static int bge_allow_asf = 1;
|
|
|
|
static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
|
|
SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
|
|
"Allow ASF mode if available");
|
|
|
|
#define SPARC64_BLADE_1500_MODEL "SUNW,Sun-Blade-1500"
|
|
#define SPARC64_BLADE_1500_PATH_BGE "/pci@1f,700000/network@2"
|
|
#define SPARC64_BLADE_2500_MODEL "SUNW,Sun-Blade-2500"
|
|
#define SPARC64_BLADE_2500_PATH_BGE "/pci@1c,600000/network@3"
|
|
#define SPARC64_OFW_SUBVENDOR "subsystem-vendor-id"
|
|
|
|
static int
|
|
bge_has_eaddr(struct bge_softc *sc)
|
|
{
|
|
#ifdef __sparc64__
|
|
char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
|
|
device_t dev;
|
|
uint32_t subvendor;
|
|
|
|
dev = sc->bge_dev;
|
|
|
|
/*
|
|
* The on-board BGEs found in sun4u machines aren't fitted with
|
|
* an EEPROM which means that we have to obtain the MAC address
|
|
* via OFW and that some tests will always fail. We distinguish
|
|
* such BGEs by the subvendor ID, which also has to be obtained
|
|
* from OFW instead of the PCI configuration space as the latter
|
|
* indicates Broadcom as the subvendor of the netboot interface.
|
|
* For early Blade 1500 and 2500 we even have to check the OFW
|
|
* device path as the subvendor ID always defaults to Broadcom
|
|
* there.
|
|
*/
|
|
if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
|
|
&subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
|
|
(subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
|
|
return (0);
|
|
memset(buf, 0, sizeof(buf));
|
|
if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
|
|
if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
|
|
strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
|
|
return (0);
|
|
if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
|
|
strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
|
|
return (0);
|
|
}
|
|
#endif
|
|
return (1);
|
|
}
|
|
|
|
static uint32_t
|
|
bge_readmem_ind(struct bge_softc *sc, int off)
|
|
{
|
|
device_t dev;
|
|
uint32_t val;
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
|
|
off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
|
|
return (0);
|
|
|
|
dev = sc->bge_dev;
|
|
|
|
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
|
|
val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
|
|
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
|
|
return (val);
|
|
}
|
|
|
|
static void
|
|
bge_writemem_ind(struct bge_softc *sc, int off, int val)
|
|
{
|
|
device_t dev;
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
|
|
off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
|
|
return;
|
|
|
|
dev = sc->bge_dev;
|
|
|
|
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
|
|
pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
|
|
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
|
|
}
|
|
|
|
#ifdef notdef
|
|
static uint32_t
|
|
bge_readreg_ind(struct bge_softc *sc, int off)
|
|
{
|
|
device_t dev;
|
|
|
|
dev = sc->bge_dev;
|
|
|
|
pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
|
|
return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
bge_writereg_ind(struct bge_softc *sc, int off, int val)
|
|
{
|
|
device_t dev;
|
|
|
|
dev = sc->bge_dev;
|
|
|
|
pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
|
|
pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
|
|
}
|
|
|
|
static void
|
|
bge_writemem_direct(struct bge_softc *sc, int off, int val)
|
|
{
|
|
CSR_WRITE_4(sc, off, val);
|
|
}
|
|
|
|
static void
|
|
bge_writembx(struct bge_softc *sc, int off, int val)
|
|
{
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
|
|
off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
|
|
|
|
CSR_WRITE_4(sc, off, val);
|
|
if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
|
|
CSR_READ_4(sc, off);
|
|
}
|
|
|
|
/*
|
|
* Clear all stale locks and select the lock for this driver instance.
|
|
*/
|
|
static void
|
|
bge_ape_lock_init(struct bge_softc *sc)
|
|
{
|
|
uint32_t bit, regbase;
|
|
int i;
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
|
|
regbase = BGE_APE_LOCK_GRANT;
|
|
else
|
|
regbase = BGE_APE_PER_LOCK_GRANT;
|
|
|
|
/* Clear any stale locks. */
|
|
for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
|
|
switch (i) {
|
|
case BGE_APE_LOCK_PHY0:
|
|
case BGE_APE_LOCK_PHY1:
|
|
case BGE_APE_LOCK_PHY2:
|
|
case BGE_APE_LOCK_PHY3:
|
|
bit = BGE_APE_LOCK_GRANT_DRIVER0;
|
|
break;
|
|
default:
|
|
if (sc->bge_func_addr == 0)
|
|
bit = BGE_APE_LOCK_GRANT_DRIVER0;
|
|
else
|
|
bit = (1 << sc->bge_func_addr);
|
|
}
|
|
APE_WRITE_4(sc, regbase + 4 * i, bit);
|
|
}
|
|
|
|
/* Select the PHY lock based on the device's function number. */
|
|
switch (sc->bge_func_addr) {
|
|
case 0:
|
|
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
|
|
break;
|
|
case 1:
|
|
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
|
|
break;
|
|
case 2:
|
|
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
|
|
break;
|
|
case 3:
|
|
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
|
|
break;
|
|
default:
|
|
device_printf(sc->bge_dev,
|
|
"PHY lock not supported on this function\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for APE firmware, set flags, and print version info.
|
|
*/
|
|
static void
|
|
bge_ape_read_fw_ver(struct bge_softc *sc)
|
|
{
|
|
const char *fwtype;
|
|
uint32_t apedata, features;
|
|
|
|
/* Check for a valid APE signature in shared memory. */
|
|
apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
|
|
if (apedata != BGE_APE_SEG_SIG_MAGIC) {
|
|
sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
|
|
return;
|
|
}
|
|
|
|
/* Check if APE firmware is running. */
|
|
apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
|
|
if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
|
|
device_printf(sc->bge_dev, "APE signature found "
|
|
"but FW status not ready! 0x%08x\n", apedata);
|
|
return;
|
|
}
|
|
|
|
sc->bge_mfw_flags |= BGE_MFW_ON_APE;
|
|
|
|
/* Fetch the APE firwmare type and version. */
|
|
apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
|
|
features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
|
|
if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
|
|
sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
|
|
fwtype = "NCSI";
|
|
} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
|
|
sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
|
|
fwtype = "DASH";
|
|
} else
|
|
fwtype = "UNKN";
|
|
|
|
/* Print the APE firmware version. */
|
|
device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
|
|
fwtype,
|
|
(apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
|
|
(apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
|
|
(apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
|
|
(apedata & BGE_APE_FW_VERSION_BLDMSK));
|
|
}
|
|
|
|
static int
|
|
bge_ape_lock(struct bge_softc *sc, int locknum)
|
|
{
|
|
uint32_t bit, gnt, req, status;
|
|
int i, off;
|
|
|
|
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
|
|
return (0);
|
|
|
|
/* Lock request/grant registers have different bases. */
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
|
|
req = BGE_APE_LOCK_REQ;
|
|
gnt = BGE_APE_LOCK_GRANT;
|
|
} else {
|
|
req = BGE_APE_PER_LOCK_REQ;
|
|
gnt = BGE_APE_PER_LOCK_GRANT;
|
|
}
|
|
|
|
off = 4 * locknum;
|
|
|
|
switch (locknum) {
|
|
case BGE_APE_LOCK_GPIO:
|
|
/* Lock required when using GPIO. */
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
|
|
return (0);
|
|
if (sc->bge_func_addr == 0)
|
|
bit = BGE_APE_LOCK_REQ_DRIVER0;
|
|
else
|
|
bit = (1 << sc->bge_func_addr);
|
|
break;
|
|
case BGE_APE_LOCK_GRC:
|
|
/* Lock required to reset the device. */
|
|
if (sc->bge_func_addr == 0)
|
|
bit = BGE_APE_LOCK_REQ_DRIVER0;
|
|
else
|
|
bit = (1 << sc->bge_func_addr);
|
|
break;
|
|
case BGE_APE_LOCK_MEM:
|
|
/* Lock required when accessing certain APE memory. */
|
|
if (sc->bge_func_addr == 0)
|
|
bit = BGE_APE_LOCK_REQ_DRIVER0;
|
|
else
|
|
bit = (1 << sc->bge_func_addr);
|
|
break;
|
|
case BGE_APE_LOCK_PHY0:
|
|
case BGE_APE_LOCK_PHY1:
|
|
case BGE_APE_LOCK_PHY2:
|
|
case BGE_APE_LOCK_PHY3:
|
|
/* Lock required when accessing PHYs. */
|
|
bit = BGE_APE_LOCK_REQ_DRIVER0;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* Request a lock. */
|
|
APE_WRITE_4(sc, req + off, bit);
|
|
|
|
/* Wait up to 1 second to acquire lock. */
|
|
for (i = 0; i < 20000; i++) {
|
|
status = APE_READ_4(sc, gnt + off);
|
|
if (status == bit)
|
|
break;
|
|
DELAY(50);
|
|
}
|
|
|
|
/* Handle any errors. */
|
|
if (status != bit) {
|
|
device_printf(sc->bge_dev, "APE lock %d request failed! "
|
|
"request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
|
|
locknum, req + off, bit & 0xFFFF, gnt + off,
|
|
status & 0xFFFF);
|
|
/* Revoke the lock request. */
|
|
APE_WRITE_4(sc, gnt + off, bit);
|
|
return (EBUSY);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bge_ape_unlock(struct bge_softc *sc, int locknum)
|
|
{
|
|
uint32_t bit, gnt;
|
|
int off;
|
|
|
|
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
|
|
return;
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
|
|
gnt = BGE_APE_LOCK_GRANT;
|
|
else
|
|
gnt = BGE_APE_PER_LOCK_GRANT;
|
|
|
|
off = 4 * locknum;
|
|
|
|
switch (locknum) {
|
|
case BGE_APE_LOCK_GPIO:
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
|
|
return;
|
|
if (sc->bge_func_addr == 0)
|
|
bit = BGE_APE_LOCK_GRANT_DRIVER0;
|
|
else
|
|
bit = (1 << sc->bge_func_addr);
|
|
break;
|
|
case BGE_APE_LOCK_GRC:
|
|
if (sc->bge_func_addr == 0)
|
|
bit = BGE_APE_LOCK_GRANT_DRIVER0;
|
|
else
|
|
bit = (1 << sc->bge_func_addr);
|
|
break;
|
|
case BGE_APE_LOCK_MEM:
|
|
if (sc->bge_func_addr == 0)
|
|
bit = BGE_APE_LOCK_GRANT_DRIVER0;
|
|
else
|
|
bit = (1 << sc->bge_func_addr);
|
|
break;
|
|
case BGE_APE_LOCK_PHY0:
|
|
case BGE_APE_LOCK_PHY1:
|
|
case BGE_APE_LOCK_PHY2:
|
|
case BGE_APE_LOCK_PHY3:
|
|
bit = BGE_APE_LOCK_GRANT_DRIVER0;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
APE_WRITE_4(sc, gnt + off, bit);
|
|
}
|
|
|
|
/*
|
|
* Send an event to the APE firmware.
|
|
*/
|
|
static void
|
|
bge_ape_send_event(struct bge_softc *sc, uint32_t event)
|
|
{
|
|
uint32_t apedata;
|
|
int i;
|
|
|
|
/* NCSI does not support APE events. */
|
|
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
|
|
return;
|
|
|
|
/* Wait up to 1ms for APE to service previous event. */
|
|
for (i = 10; i > 0; i--) {
|
|
if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
|
|
break;
|
|
apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
|
|
if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
|
|
APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
|
|
BGE_APE_EVENT_STATUS_EVENT_PENDING);
|
|
bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
|
|
APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
|
|
break;
|
|
}
|
|
bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
|
|
DELAY(100);
|
|
}
|
|
if (i == 0)
|
|
device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
|
|
event);
|
|
}
|
|
|
|
static void
|
|
bge_ape_driver_state_change(struct bge_softc *sc, int kind)
|
|
{
|
|
uint32_t apedata, event;
|
|
|
|
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
|
|
return;
|
|
|
|
switch (kind) {
|
|
case BGE_RESET_START:
|
|
/* If this is the first load, clear the load counter. */
|
|
apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
|
|
if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
|
|
APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
|
|
else {
|
|
apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
|
|
APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
|
|
}
|
|
APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
|
|
BGE_APE_HOST_SEG_SIG_MAGIC);
|
|
APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
|
|
BGE_APE_HOST_SEG_LEN_MAGIC);
|
|
|
|
/* Add some version info if bge(4) supports it. */
|
|
APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
|
|
BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
|
|
APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
|
|
BGE_APE_HOST_BEHAV_NO_PHYLOCK);
|
|
APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
|
|
BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
|
|
APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
|
|
BGE_APE_HOST_DRVR_STATE_START);
|
|
event = BGE_APE_EVENT_STATUS_STATE_START;
|
|
break;
|
|
case BGE_RESET_SHUTDOWN:
|
|
APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
|
|
BGE_APE_HOST_DRVR_STATE_UNLOAD);
|
|
event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
|
|
break;
|
|
case BGE_RESET_SUSPEND:
|
|
event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
|
|
BGE_APE_EVENT_STATUS_STATE_CHNGE);
|
|
}
|
|
|
|
/*
|
|
* Map a single buffer address.
|
|
*/
|
|
|
|
static void
|
|
bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct bge_dmamap_arg *ctx;
|
|
|
|
if (error)
|
|
return;
|
|
|
|
KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
|
|
|
|
ctx = arg;
|
|
ctx->bge_busaddr = segs->ds_addr;
|
|
}
|
|
|
|
static uint8_t
|
|
bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
|
|
{
|
|
uint32_t access, byte = 0;
|
|
int i;
|
|
|
|
/* Lock. */
|
|
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
|
|
for (i = 0; i < 8000; i++) {
|
|
if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
|
|
break;
|
|
DELAY(20);
|
|
}
|
|
if (i == 8000)
|
|
return (1);
|
|
|
|
/* Enable access. */
|
|
access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
|
|
CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
|
|
|
|
CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
|
|
CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
|
|
for (i = 0; i < BGE_TIMEOUT * 10; i++) {
|
|
DELAY(10);
|
|
if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
|
|
DELAY(10);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT * 10) {
|
|
if_printf(sc->bge_ifp, "nvram read timed out\n");
|
|
return (1);
|
|
}
|
|
|
|
/* Get result. */
|
|
byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
|
|
|
|
*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
|
|
|
|
/* Disable access. */
|
|
CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
|
|
|
|
/* Unlock. */
|
|
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
|
|
CSR_READ_4(sc, BGE_NVRAM_SWARB);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of bytes from NVRAM.
|
|
*/
|
|
static int
|
|
bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
|
|
{
|
|
int err = 0, i;
|
|
uint8_t byte = 0;
|
|
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
|
|
return (1);
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
err = bge_nvram_getbyte(sc, off + i, &byte);
|
|
if (err)
|
|
break;
|
|
*(dest + i) = byte;
|
|
}
|
|
|
|
return (err ? 1 : 0);
|
|
}
|
|
|
|
/*
|
|
* Read a byte of data stored in the EEPROM at address 'addr.' The
|
|
* BCM570x supports both the traditional bitbang interface and an
|
|
* auto access interface for reading the EEPROM. We use the auto
|
|
* access method.
|
|
*/
|
|
static uint8_t
|
|
bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
|
|
{
|
|
int i;
|
|
uint32_t byte = 0;
|
|
|
|
/*
|
|
* Enable use of auto EEPROM access so we can avoid
|
|
* having to use the bitbang method.
|
|
*/
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
|
|
|
|
/* Reset the EEPROM, load the clock period. */
|
|
CSR_WRITE_4(sc, BGE_EE_ADDR,
|
|
BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
|
|
DELAY(20);
|
|
|
|
/* Issue the read EEPROM command. */
|
|
CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
|
|
|
|
/* Wait for completion */
|
|
for(i = 0; i < BGE_TIMEOUT * 10; i++) {
|
|
DELAY(10);
|
|
if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
|
|
break;
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT * 10) {
|
|
device_printf(sc->bge_dev, "EEPROM read timed out\n");
|
|
return (1);
|
|
}
|
|
|
|
/* Get result. */
|
|
byte = CSR_READ_4(sc, BGE_EE_DATA);
|
|
|
|
*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of bytes from the EEPROM.
|
|
*/
|
|
static int
|
|
bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
|
|
{
|
|
int i, error = 0;
|
|
uint8_t byte = 0;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
error = bge_eeprom_getbyte(sc, off + i, &byte);
|
|
if (error)
|
|
break;
|
|
*(dest + i) = byte;
|
|
}
|
|
|
|
return (error ? 1 : 0);
|
|
}
|
|
|
|
static int
|
|
bge_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct bge_softc *sc;
|
|
uint32_t val;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
|
|
return (0);
|
|
|
|
/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
|
|
if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
|
|
CSR_WRITE_4(sc, BGE_MI_MODE,
|
|
sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
|
|
DELAY(80);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
|
|
BGE_MIPHY(phy) | BGE_MIREG(reg));
|
|
|
|
/* Poll for the PHY register access to complete. */
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
val = CSR_READ_4(sc, BGE_MI_COMM);
|
|
if ((val & BGE_MICOMM_BUSY) == 0) {
|
|
DELAY(5);
|
|
val = CSR_READ_4(sc, BGE_MI_COMM);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
device_printf(sc->bge_dev,
|
|
"PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
|
|
phy, reg, val);
|
|
val = 0;
|
|
}
|
|
|
|
/* Restore the autopoll bit if necessary. */
|
|
if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
|
|
CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
|
|
DELAY(80);
|
|
}
|
|
|
|
bge_ape_unlock(sc, sc->bge_phy_ape_lock);
|
|
|
|
if (val & BGE_MICOMM_READFAIL)
|
|
return (0);
|
|
|
|
return (val & 0xFFFF);
|
|
}
|
|
|
|
static int
|
|
bge_miibus_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct bge_softc *sc;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
|
|
(reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
|
|
return (0);
|
|
|
|
if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
|
|
return (0);
|
|
|
|
/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
|
|
if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
|
|
CSR_WRITE_4(sc, BGE_MI_MODE,
|
|
sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
|
|
DELAY(80);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
|
|
BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
|
|
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
|
|
DELAY(5);
|
|
CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Restore the autopoll bit if necessary. */
|
|
if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
|
|
CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
|
|
DELAY(80);
|
|
}
|
|
|
|
bge_ape_unlock(sc, sc->bge_phy_ape_lock);
|
|
|
|
if (i == BGE_TIMEOUT)
|
|
device_printf(sc->bge_dev,
|
|
"PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
|
|
phy, reg, val);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bge_miibus_statchg(device_t dev)
|
|
{
|
|
struct bge_softc *sc;
|
|
struct mii_data *mii;
|
|
uint32_t mac_mode, rx_mode, tx_mode;
|
|
|
|
sc = device_get_softc(dev);
|
|
if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
|
|
return;
|
|
mii = device_get_softc(sc->bge_miibus);
|
|
|
|
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
|
|
(IFM_ACTIVE | IFM_AVALID)) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
sc->bge_link = 1;
|
|
break;
|
|
case IFM_1000_T:
|
|
case IFM_1000_SX:
|
|
case IFM_2500_SX:
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
|
|
sc->bge_link = 1;
|
|
else
|
|
sc->bge_link = 0;
|
|
break;
|
|
default:
|
|
sc->bge_link = 0;
|
|
break;
|
|
}
|
|
} else
|
|
sc->bge_link = 0;
|
|
if (sc->bge_link == 0)
|
|
return;
|
|
|
|
/*
|
|
* APE firmware touches these registers to keep the MAC
|
|
* connected to the outside world. Try to keep the
|
|
* accesses atomic.
|
|
*/
|
|
|
|
/* Set the port mode (MII/GMII) to match the link speed. */
|
|
mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
|
|
~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
|
|
tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
|
|
rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
|
|
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
|
|
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
|
|
mac_mode |= BGE_PORTMODE_GMII;
|
|
else
|
|
mac_mode |= BGE_PORTMODE_MII;
|
|
|
|
/* Set MAC flow control behavior to match link flow control settings. */
|
|
tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
|
|
rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
|
|
tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
|
|
rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
|
|
} else
|
|
mac_mode |= BGE_MACMODE_HALF_DUPLEX;
|
|
|
|
CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
|
|
DELAY(40);
|
|
CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
|
|
CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
|
|
}
|
|
|
|
/*
|
|
* Intialize a standard receive ring descriptor.
|
|
*/
|
|
static int
|
|
bge_newbuf_std(struct bge_softc *sc, int i)
|
|
{
|
|
struct mbuf *m;
|
|
struct bge_rx_bd *r;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int error, nsegs;
|
|
|
|
if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
|
|
(if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
|
|
ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
|
|
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = MJUM9BYTES;
|
|
} else {
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
}
|
|
if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
|
|
sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
|
|
if (error != 0) {
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
|
|
sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
|
|
sc->bge_cdata.bge_rx_std_dmamap[i]);
|
|
}
|
|
map = sc->bge_cdata.bge_rx_std_dmamap[i];
|
|
sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
|
|
sc->bge_cdata.bge_rx_std_sparemap = map;
|
|
sc->bge_cdata.bge_rx_std_chain[i] = m;
|
|
sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
|
|
r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
|
|
r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
|
|
r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
|
|
r->bge_flags = BGE_RXBDFLAG_END;
|
|
r->bge_len = segs[0].ds_len;
|
|
r->bge_idx = i;
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
|
|
sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize a jumbo receive ring descriptor. This allocates
|
|
* a jumbo buffer from the pool managed internally by the driver.
|
|
*/
|
|
static int
|
|
bge_newbuf_jumbo(struct bge_softc *sc, int i)
|
|
{
|
|
bus_dma_segment_t segs[BGE_NSEG_JUMBO];
|
|
bus_dmamap_t map;
|
|
struct bge_extrx_bd *r;
|
|
struct mbuf *m;
|
|
int error, nsegs;
|
|
|
|
MGETHDR(m, M_NOWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
m->m_len = m->m_pkthdr.len = MJUM9BYTES;
|
|
if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
|
|
sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
|
|
if (error != 0) {
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
|
|
if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
|
|
bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
|
|
sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
|
|
sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
|
|
}
|
|
map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
|
|
sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
|
|
sc->bge_cdata.bge_rx_jumbo_sparemap;
|
|
sc->bge_cdata.bge_rx_jumbo_sparemap = map;
|
|
sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
|
|
sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
|
|
sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
|
|
sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
|
|
sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
|
|
|
|
/*
|
|
* Fill in the extended RX buffer descriptor.
|
|
*/
|
|
r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
|
|
r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
|
|
r->bge_idx = i;
|
|
r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
|
|
switch (nsegs) {
|
|
case 4:
|
|
r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
|
|
r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
|
|
r->bge_len3 = segs[3].ds_len;
|
|
sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
|
|
case 3:
|
|
r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
|
|
r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
|
|
r->bge_len2 = segs[2].ds_len;
|
|
sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
|
|
case 2:
|
|
r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
|
|
r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
|
|
r->bge_len1 = segs[1].ds_len;
|
|
sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
|
|
case 1:
|
|
r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
|
|
r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
|
|
r->bge_len0 = segs[0].ds_len;
|
|
sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
|
|
break;
|
|
default:
|
|
panic("%s: %d segments\n", __func__, nsegs);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
|
|
sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
bge_init_rx_ring_std(struct bge_softc *sc)
|
|
{
|
|
int error, i;
|
|
|
|
bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
|
|
sc->bge_std = 0;
|
|
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
|
|
if ((error = bge_newbuf_std(sc, i)) != 0)
|
|
return (error);
|
|
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
|
|
|
|
sc->bge_std = 0;
|
|
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bge_free_rx_ring_std(struct bge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
|
|
sc->bge_cdata.bge_rx_std_dmamap[i],
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
|
|
sc->bge_cdata.bge_rx_std_dmamap[i]);
|
|
m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
|
|
sc->bge_cdata.bge_rx_std_chain[i] = NULL;
|
|
}
|
|
bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
|
|
sizeof(struct bge_rx_bd));
|
|
}
|
|
}
|
|
|
|
static int
|
|
bge_init_rx_ring_jumbo(struct bge_softc *sc)
|
|
{
|
|
struct bge_rcb *rcb;
|
|
int error, i;
|
|
|
|
bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
|
|
sc->bge_jumbo = 0;
|
|
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
|
|
if ((error = bge_newbuf_jumbo(sc, i)) != 0)
|
|
return (error);
|
|
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
|
|
|
|
sc->bge_jumbo = 0;
|
|
|
|
/* Enable the jumbo receive producer ring. */
|
|
rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
|
|
rcb->bge_maxlen_flags =
|
|
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
|
|
|
|
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bge_free_rx_ring_jumbo(struct bge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
|
|
bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
|
|
sc->bge_cdata.bge_rx_jumbo_dmamap[i],
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
|
|
sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
|
|
m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
|
|
sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
|
|
}
|
|
bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
|
|
sizeof(struct bge_extrx_bd));
|
|
}
|
|
}
|
|
|
|
static void
|
|
bge_free_tx_ring(struct bge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
if (sc->bge_ldata.bge_tx_ring == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < BGE_TX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
|
|
bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
|
|
sc->bge_cdata.bge_tx_dmamap[i],
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
|
|
sc->bge_cdata.bge_tx_dmamap[i]);
|
|
m_freem(sc->bge_cdata.bge_tx_chain[i]);
|
|
sc->bge_cdata.bge_tx_chain[i] = NULL;
|
|
}
|
|
bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
|
|
sizeof(struct bge_tx_bd));
|
|
}
|
|
}
|
|
|
|
static int
|
|
bge_init_tx_ring(struct bge_softc *sc)
|
|
{
|
|
sc->bge_txcnt = 0;
|
|
sc->bge_tx_saved_considx = 0;
|
|
|
|
bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
|
|
bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
|
|
sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Initialize transmit producer index for host-memory send ring. */
|
|
sc->bge_tx_prodidx = 0;
|
|
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
|
|
|
|
/* 5700 b2 errata */
|
|
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
|
|
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
|
|
|
|
/* NIC-memory send ring not used; initialize to zero. */
|
|
bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
|
|
/* 5700 b2 errata */
|
|
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
|
|
bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bge_setpromisc(struct bge_softc *sc)
|
|
{
|
|
if_t ifp;
|
|
|
|
BGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->bge_ifp;
|
|
|
|
/* Enable or disable promiscuous mode as needed. */
|
|
if (if_getflags(ifp) & IFF_PROMISC)
|
|
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
|
|
else
|
|
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
|
|
}
|
|
|
|
static void
|
|
bge_setmulti(struct bge_softc *sc)
|
|
{
|
|
if_t ifp;
|
|
int mc_count = 0;
|
|
uint32_t hashes[4] = { 0, 0, 0, 0 };
|
|
int h, i, mcnt;
|
|
unsigned char *mta;
|
|
|
|
BGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->bge_ifp;
|
|
|
|
mc_count = if_multiaddr_count(ifp, -1);
|
|
mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
|
|
mc_count, M_DEVBUF, M_NOWAIT);
|
|
|
|
if(mta == NULL) {
|
|
device_printf(sc->bge_dev,
|
|
"Failed to allocated temp mcast list\n");
|
|
return;
|
|
}
|
|
|
|
if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
|
|
for (i = 0; i < 4; i++)
|
|
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
|
|
free(mta, M_DEVBUF);
|
|
return;
|
|
}
|
|
|
|
/* First, zot all the existing filters. */
|
|
for (i = 0; i < 4; i++)
|
|
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
|
|
|
|
if_multiaddr_array(ifp, mta, &mcnt, mc_count);
|
|
for(i = 0; i < mcnt; i++) {
|
|
h = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
|
|
ETHER_ADDR_LEN) & 0x7F;
|
|
hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
|
|
}
|
|
|
|
for (i = 0; i < 4; i++)
|
|
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
|
|
|
|
free(mta, M_DEVBUF);
|
|
}
|
|
|
|
static void
|
|
bge_setvlan(struct bge_softc *sc)
|
|
{
|
|
if_t ifp;
|
|
|
|
BGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->bge_ifp;
|
|
|
|
/* Enable or disable VLAN tag stripping as needed. */
|
|
if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
|
|
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
|
|
else
|
|
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
|
|
}
|
|
|
|
static void
|
|
bge_sig_pre_reset(struct bge_softc *sc, int type)
|
|
{
|
|
|
|
/*
|
|
* Some chips don't like this so only do this if ASF is enabled
|
|
*/
|
|
if (sc->bge_asf_mode)
|
|
bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
|
|
|
|
if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
|
|
switch (type) {
|
|
case BGE_RESET_START:
|
|
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
|
|
BGE_FW_DRV_STATE_START);
|
|
break;
|
|
case BGE_RESET_SHUTDOWN:
|
|
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
|
|
BGE_FW_DRV_STATE_UNLOAD);
|
|
break;
|
|
case BGE_RESET_SUSPEND:
|
|
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
|
|
BGE_FW_DRV_STATE_SUSPEND);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
|
|
bge_ape_driver_state_change(sc, type);
|
|
}
|
|
|
|
static void
|
|
bge_sig_post_reset(struct bge_softc *sc, int type)
|
|
{
|
|
|
|
if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
|
|
switch (type) {
|
|
case BGE_RESET_START:
|
|
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
|
|
BGE_FW_DRV_STATE_START_DONE);
|
|
/* START DONE */
|
|
break;
|
|
case BGE_RESET_SHUTDOWN:
|
|
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
|
|
BGE_FW_DRV_STATE_UNLOAD_DONE);
|
|
break;
|
|
}
|
|
}
|
|
if (type == BGE_RESET_SHUTDOWN)
|
|
bge_ape_driver_state_change(sc, type);
|
|
}
|
|
|
|
static void
|
|
bge_sig_legacy(struct bge_softc *sc, int type)
|
|
{
|
|
|
|
if (sc->bge_asf_mode) {
|
|
switch (type) {
|
|
case BGE_RESET_START:
|
|
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
|
|
BGE_FW_DRV_STATE_START);
|
|
break;
|
|
case BGE_RESET_SHUTDOWN:
|
|
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
|
|
BGE_FW_DRV_STATE_UNLOAD);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bge_stop_fw(struct bge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
if (sc->bge_asf_mode) {
|
|
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
|
|
CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
|
|
CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
|
|
|
|
for (i = 0; i < 100; i++ ) {
|
|
if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
|
|
BGE_RX_CPU_DRV_EVENT))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
bge_dma_swap_options(struct bge_softc *sc)
|
|
{
|
|
uint32_t dma_options;
|
|
|
|
dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
|
|
BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
|
|
#endif
|
|
return (dma_options);
|
|
}
|
|
|
|
/*
|
|
* Do endian, PCI and DMA initialization.
|
|
*/
|
|
static int
|
|
bge_chipinit(struct bge_softc *sc)
|
|
{
|
|
uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
|
|
uint16_t val;
|
|
int i;
|
|
|
|
/* Set endianness before we access any non-PCI registers. */
|
|
misc_ctl = BGE_INIT;
|
|
if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
|
|
misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
|
|
pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
|
|
|
|
/*
|
|
* Clear the MAC statistics block in the NIC's
|
|
* internal memory.
|
|
*/
|
|
for (i = BGE_STATS_BLOCK;
|
|
i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
|
|
BGE_MEMWIN_WRITE(sc, i, 0);
|
|
|
|
for (i = BGE_STATUS_BLOCK;
|
|
i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
|
|
BGE_MEMWIN_WRITE(sc, i, 0);
|
|
|
|
if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
|
|
/*
|
|
* Fix data corruption caused by non-qword write with WB.
|
|
* Fix master abort in PCI mode.
|
|
* Fix PCI latency timer.
|
|
*/
|
|
val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
|
|
val |= (1 << 10) | (1 << 12) | (1 << 13);
|
|
pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
|
|
}
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM57766) {
|
|
/*
|
|
* For the 57766 and non Ax versions of 57765, bootcode
|
|
* needs to setup the PCIE Fast Training Sequence (FTS)
|
|
* value to prevent transmit hangs.
|
|
*/
|
|
if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
|
|
CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
|
|
CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
|
|
BGE_CPMU_PADRNG_CTL_RDIV2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set up the PCI DMA control register.
|
|
*/
|
|
dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
|
|
BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
|
|
if (sc->bge_flags & BGE_FLAG_PCIE) {
|
|
if (sc->bge_mps >= 256)
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
|
|
else
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
|
|
} else if (sc->bge_flags & BGE_FLAG_PCIX) {
|
|
if (BGE_IS_5714_FAMILY(sc)) {
|
|
/* 256 bytes for read and write. */
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
|
|
BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
|
|
dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
|
|
BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
|
|
BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
|
|
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
|
|
/*
|
|
* In the BCM5703, the DMA read watermark should
|
|
* be set to less than or equal to the maximum
|
|
* memory read byte count of the PCI-X command
|
|
* register.
|
|
*/
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
|
|
BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
|
|
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
|
|
/* 1536 bytes for read, 384 bytes for write. */
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
|
|
BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
|
|
} else {
|
|
/* 384 bytes for read and write. */
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
|
|
BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
|
|
0x0F;
|
|
}
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5704) {
|
|
uint32_t tmp;
|
|
|
|
/* Set ONE_DMA_AT_ONCE for hardware workaround. */
|
|
tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
|
|
if (tmp == 6 || tmp == 7)
|
|
dma_rw_ctl |=
|
|
BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
|
|
|
|
/* Set PCI-X DMA write workaround. */
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
|
|
}
|
|
} else {
|
|
/* Conventional PCI bus: 256 bytes for read and write. */
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
|
|
BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
|
|
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
|
|
sc->bge_asicrev != BGE_ASICREV_BCM5750)
|
|
dma_rw_ctl |= 0x0F;
|
|
}
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5701)
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
|
|
BGE_PCIDMARWCTL_ASRT_ALL_BE;
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5704)
|
|
dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
|
|
if (BGE_IS_5717_PLUS(sc)) {
|
|
dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
|
|
dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
|
|
/*
|
|
* Enable HW workaround for controllers that misinterpret
|
|
* a status tag update and leave interrupts permanently
|
|
* disabled.
|
|
*/
|
|
if (!BGE_IS_57765_PLUS(sc) &&
|
|
sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
|
|
sc->bge_asicrev != BGE_ASICREV_BCM5762)
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
|
|
}
|
|
pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
|
|
|
|
/*
|
|
* Set up general mode register.
|
|
*/
|
|
mode_ctl = bge_dma_swap_options(sc);
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5762) {
|
|
/* Retain Host-2-BMC settings written by APE firmware. */
|
|
mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
|
|
(BGE_MODECTL_BYTESWAP_B2HRX_DATA |
|
|
BGE_MODECTL_WORDSWAP_B2HRX_DATA |
|
|
BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
|
|
}
|
|
mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
|
|
BGE_MODECTL_TX_NO_PHDR_CSUM;
|
|
|
|
/*
|
|
* BCM5701 B5 have a bug causing data corruption when using
|
|
* 64-bit DMA reads, which can be terminated early and then
|
|
* completed later as 32-bit accesses, in combination with
|
|
* certain bridges.
|
|
*/
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
|
|
sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
|
|
mode_ctl |= BGE_MODECTL_FORCE_PCI32;
|
|
|
|
/*
|
|
* Tell the firmware the driver is running
|
|
*/
|
|
if (sc->bge_asf_mode & ASF_STACKUP)
|
|
mode_ctl |= BGE_MODECTL_STACKUP;
|
|
|
|
CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
|
|
|
|
/*
|
|
* Disable memory write invalidate. Apparently it is not supported
|
|
* properly by these devices.
|
|
*/
|
|
PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
|
|
|
|
/* Set the timer prescaler (always 66 MHz). */
|
|
CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
|
|
|
|
/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
|
|
DELAY(40); /* XXX */
|
|
|
|
/* Put PHY into ready state */
|
|
BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
|
|
CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
|
|
DELAY(40);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
bge_blockinit(struct bge_softc *sc)
|
|
{
|
|
struct bge_rcb *rcb;
|
|
bus_size_t vrcb;
|
|
bge_hostaddr taddr;
|
|
uint32_t dmactl, rdmareg, val;
|
|
int i, limit;
|
|
|
|
/*
|
|
* Initialize the memory window pointer register so that
|
|
* we can access the first 32K of internal NIC RAM. This will
|
|
* allow us to set up the TX send ring RCBs and the RX return
|
|
* ring RCBs, plus other things which live in NIC memory.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
|
|
|
|
/* Note: the BCM5704 has a smaller mbuf space than other chips. */
|
|
|
|
if (!(BGE_IS_5705_PLUS(sc))) {
|
|
/* Configure mbuf memory pool */
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
|
|
else
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
|
|
|
|
/* Configure DMA resource pool */
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
|
|
BGE_DMA_DESCRIPTORS);
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
|
|
}
|
|
|
|
/* Configure mbuf pool watermarks */
|
|
if (BGE_IS_5717_PLUS(sc)) {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
|
|
if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
|
|
} else {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
|
|
}
|
|
} else if (!BGE_IS_5705_PLUS(sc)) {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
|
|
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
|
|
} else {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
|
|
}
|
|
|
|
/* Configure DMA resource watermarks */
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
|
|
|
|
/* Enable buffer manager */
|
|
val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
|
|
/*
|
|
* Change the arbitration algorithm of TXMBUF read request to
|
|
* round-robin instead of priority based for BCM5719. When
|
|
* TXFIFO is almost empty, RDMA will hold its request until
|
|
* TXFIFO is not almost empty.
|
|
*/
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
|
|
val |= BGE_BMANMODE_NO_TX_UNDERRUN;
|
|
CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
|
|
|
|
/* Poll for buffer manager start indication */
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
|
|
break;
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
device_printf(sc->bge_dev, "buffer manager failed to start\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* Enable flow-through queues */
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
|
|
|
|
/* Wait until queue initialization is complete */
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
device_printf(sc->bge_dev, "flow-through queue init failed\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Summary of rings supported by the controller:
|
|
*
|
|
* Standard Receive Producer Ring
|
|
* - This ring is used to feed receive buffers for "standard"
|
|
* sized frames (typically 1536 bytes) to the controller.
|
|
*
|
|
* Jumbo Receive Producer Ring
|
|
* - This ring is used to feed receive buffers for jumbo sized
|
|
* frames (i.e. anything bigger than the "standard" frames)
|
|
* to the controller.
|
|
*
|
|
* Mini Receive Producer Ring
|
|
* - This ring is used to feed receive buffers for "mini"
|
|
* sized frames to the controller.
|
|
* - This feature required external memory for the controller
|
|
* but was never used in a production system. Should always
|
|
* be disabled.
|
|
*
|
|
* Receive Return Ring
|
|
* - After the controller has placed an incoming frame into a
|
|
* receive buffer that buffer is moved into a receive return
|
|
* ring. The driver is then responsible to passing the
|
|
* buffer up to the stack. Many versions of the controller
|
|
* support multiple RR rings.
|
|
*
|
|
* Send Ring
|
|
* - This ring is used for outgoing frames. Many versions of
|
|
* the controller support multiple send rings.
|
|
*/
|
|
|
|
/* Initialize the standard receive producer ring control block. */
|
|
rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
|
|
rcb->bge_hostaddr.bge_addr_lo =
|
|
BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
|
|
rcb->bge_hostaddr.bge_addr_hi =
|
|
BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
|
|
if (BGE_IS_5717_PLUS(sc)) {
|
|
/*
|
|
* Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
|
|
* Bits 15-2 : Maximum RX frame size
|
|
* Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
|
|
* Bit 0 : Reserved
|
|
*/
|
|
rcb->bge_maxlen_flags =
|
|
BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
|
|
} else if (BGE_IS_5705_PLUS(sc)) {
|
|
/*
|
|
* Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
|
|
* Bits 15-2 : Reserved (should be 0)
|
|
* Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
|
|
* Bit 0 : Reserved
|
|
*/
|
|
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
|
|
} else {
|
|
/*
|
|
* Ring size is always XXX entries
|
|
* Bits 31-16: Maximum RX frame size
|
|
* Bits 15-2 : Reserved (should be 0)
|
|
* Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
|
|
* Bit 0 : Reserved
|
|
*/
|
|
rcb->bge_maxlen_flags =
|
|
BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
|
|
}
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5720)
|
|
rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
|
|
else
|
|
rcb->bge_nicaddr = BGE_STD_RX_RINGS;
|
|
/* Write the standard receive producer ring control block. */
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
|
|
|
|
/* Reset the standard receive producer ring producer index. */
|
|
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
|
|
|
|
/*
|
|
* Initialize the jumbo RX producer ring control
|
|
* block. We set the 'ring disabled' bit in the
|
|
* flags field until we're actually ready to start
|
|
* using this ring (i.e. once we set the MTU
|
|
* high enough to require it).
|
|
*/
|
|
if (BGE_IS_JUMBO_CAPABLE(sc)) {
|
|
rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
|
|
/* Get the jumbo receive producer ring RCB parameters. */
|
|
rcb->bge_hostaddr.bge_addr_lo =
|
|
BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
|
|
rcb->bge_hostaddr.bge_addr_hi =
|
|
BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
sc->bge_cdata.bge_rx_jumbo_ring_map,
|
|
BUS_DMASYNC_PREREAD);
|
|
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
|
|
BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5720)
|
|
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
|
|
else
|
|
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
|
|
rcb->bge_hostaddr.bge_addr_hi);
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
|
|
rcb->bge_hostaddr.bge_addr_lo);
|
|
/* Program the jumbo receive producer ring RCB parameters. */
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
|
|
rcb->bge_maxlen_flags);
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
|
|
/* Reset the jumbo receive producer ring producer index. */
|
|
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
|
|
}
|
|
|
|
/* Disable the mini receive producer ring RCB. */
|
|
if (BGE_IS_5700_FAMILY(sc)) {
|
|
rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
|
|
rcb->bge_maxlen_flags =
|
|
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
|
|
CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
|
|
rcb->bge_maxlen_flags);
|
|
/* Reset the mini receive producer ring producer index. */
|
|
bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
|
|
}
|
|
|
|
/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
|
|
sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
|
|
sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
|
|
CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
|
|
(CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
|
|
}
|
|
/*
|
|
* The BD ring replenish thresholds control how often the
|
|
* hardware fetches new BD's from the producer rings in host
|
|
* memory. Setting the value too low on a busy system can
|
|
* starve the hardware and recue the throughpout.
|
|
*
|
|
* Set the BD ring replentish thresholds. The recommended
|
|
* values are 1/8th the number of descriptors allocated to
|
|
* each ring.
|
|
* XXX The 5754 requires a lower threshold, so it might be a
|
|
* requirement of all 575x family chips. The Linux driver sets
|
|
* the lower threshold for all 5705 family chips as well, but there
|
|
* are reports that it might not need to be so strict.
|
|
*
|
|
* XXX Linux does some extra fiddling here for the 5906 parts as
|
|
* well.
|
|
*/
|
|
if (BGE_IS_5705_PLUS(sc))
|
|
val = 8;
|
|
else
|
|
val = BGE_STD_RX_RING_CNT / 8;
|
|
CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
|
|
if (BGE_IS_JUMBO_CAPABLE(sc))
|
|
CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
|
|
BGE_JUMBO_RX_RING_CNT/8);
|
|
if (BGE_IS_5717_PLUS(sc)) {
|
|
CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
|
|
CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
|
|
}
|
|
|
|
/*
|
|
* Disable all send rings by setting the 'ring disabled' bit
|
|
* in the flags field of all the TX send ring control blocks,
|
|
* located in NIC memory.
|
|
*/
|
|
if (!BGE_IS_5705_PLUS(sc))
|
|
/* 5700 to 5704 had 16 send rings. */
|
|
limit = BGE_TX_RINGS_EXTSSRAM_MAX;
|
|
else if (BGE_IS_57765_PLUS(sc) ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5762)
|
|
limit = 2;
|
|
else if (BGE_IS_5717_PLUS(sc))
|
|
limit = 4;
|
|
else
|
|
limit = 1;
|
|
vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
|
|
for (i = 0; i < limit; i++) {
|
|
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
|
|
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
|
|
RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
|
|
vrcb += sizeof(struct bge_rcb);
|
|
}
|
|
|
|
/* Configure send ring RCB 0 (we use only the first ring) */
|
|
vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
|
|
BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
|
|
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
|
|
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5720)
|
|
RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
|
|
else
|
|
RCB_WRITE_4(sc, vrcb, bge_nicaddr,
|
|
BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
|
|
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
|
|
BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
|
|
|
|
/*
|
|
* Disable all receive return rings by setting the
|
|
* 'ring diabled' bit in the flags field of all the receive
|
|
* return ring control blocks, located in NIC memory.
|
|
*/
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5720) {
|
|
/* Should be 17, use 16 until we get an SRAM map. */
|
|
limit = 16;
|
|
} else if (!BGE_IS_5705_PLUS(sc))
|
|
limit = BGE_RX_RINGS_MAX;
|
|
else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
|
|
BGE_IS_57765_PLUS(sc))
|
|
limit = 4;
|
|
else
|
|
limit = 1;
|
|
/* Disable all receive return rings. */
|
|
vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
|
|
for (i = 0; i < limit; i++) {
|
|
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
|
|
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
|
|
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
|
|
BGE_RCB_FLAG_RING_DISABLED);
|
|
RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
|
|
bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
|
|
(i * (sizeof(uint64_t))), 0);
|
|
vrcb += sizeof(struct bge_rcb);
|
|
}
|
|
|
|
/*
|
|
* Set up receive return ring 0. Note that the NIC address
|
|
* for RX return rings is 0x0. The return rings live entirely
|
|
* within the host, so the nicaddr field in the RCB isn't used.
|
|
*/
|
|
vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
|
|
BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
|
|
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
|
|
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
|
|
RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
|
|
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
|
|
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
|
|
|
|
/* Set random backoff seed for TX */
|
|
CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
|
|
(IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
|
|
IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
|
|
IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
|
|
BGE_TX_BACKOFF_SEED_MASK);
|
|
|
|
/* Set inter-packet gap */
|
|
val = 0x2620;
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5762)
|
|
val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
|
|
(BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
|
|
CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
|
|
|
|
/*
|
|
* Specify which ring to use for packets that don't match
|
|
* any RX rules.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
|
|
|
|
/*
|
|
* Configure number of RX lists. One interrupt distribution
|
|
* list, sixteen active lists, one bad frames class.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
|
|
|
|
/* Inialize RX list placement stats mask. */
|
|
CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
|
|
CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
|
|
|
|
/* Disable host coalescing until we get it set up */
|
|
CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
|
|
|
|
/* Poll to make sure it's shut down. */
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
|
|
break;
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
device_printf(sc->bge_dev,
|
|
"host coalescing engine failed to idle\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* Set up host coalescing defaults */
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
|
|
if (!(BGE_IS_5705_PLUS(sc))) {
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
|
|
}
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
|
|
|
|
/* Set up address of statistics block */
|
|
if (!(BGE_IS_5705_PLUS(sc))) {
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
|
|
BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
|
|
BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
|
|
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
|
|
}
|
|
|
|
/* Set up address of status block */
|
|
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
|
|
BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
|
|
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
|
|
BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
|
|
|
|
/* Set up status block size. */
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
|
|
sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
|
|
val = BGE_STATBLKSZ_FULL;
|
|
bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
|
|
} else {
|
|
val = BGE_STATBLKSZ_32BYTE;
|
|
bzero(sc->bge_ldata.bge_status_block, 32);
|
|
}
|
|
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Turn on host coalescing state machine */
|
|
CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
|
|
|
|
/* Turn on RX BD completion state machine and enable attentions */
|
|
CSR_WRITE_4(sc, BGE_RBDC_MODE,
|
|
BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
|
|
|
|
/* Turn on RX list placement state machine */
|
|
CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
|
|
|
|
/* Turn on RX list selector state machine. */
|
|
if (!(BGE_IS_5705_PLUS(sc)))
|
|
CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
|
|
|
|
/* Turn on DMA, clear stats. */
|
|
val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
|
|
BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
|
|
BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
|
|
BGE_MACMODE_FRMHDR_DMA_ENB;
|
|
|
|
if (sc->bge_flags & BGE_FLAG_TBI)
|
|
val |= BGE_PORTMODE_TBI;
|
|
else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
|
|
val |= BGE_PORTMODE_GMII;
|
|
else
|
|
val |= BGE_PORTMODE_MII;
|
|
|
|
/* Allow APE to send/receive frames. */
|
|
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
|
|
val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
|
|
|
|
CSR_WRITE_4(sc, BGE_MAC_MODE, val);
|
|
DELAY(40);
|
|
|
|
/* Set misc. local control, enable interrupts on attentions */
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
|
|
|
|
#ifdef notdef
|
|
/* Assert GPIO pins for PHY reset */
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
|
|
BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
|
|
BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
|
|
#endif
|
|
|
|
/* Turn on DMA completion state machine */
|
|
if (!(BGE_IS_5705_PLUS(sc)))
|
|
CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
|
|
|
|
val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
|
|
|
|
/* Enable host coalescing bug fix. */
|
|
if (BGE_IS_5755_PLUS(sc))
|
|
val |= BGE_WDMAMODE_STATUS_TAG_FIX;
|
|
|
|
/* Request larger DMA burst size to get better performance. */
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
|
|
val |= BGE_WDMAMODE_BURST_ALL_DATA;
|
|
|
|
/* Turn on write DMA state machine */
|
|
CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
|
|
DELAY(40);
|
|
|
|
/* Turn on read DMA state machine */
|
|
val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
|
|
val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM57780)
|
|
val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
|
|
BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
|
|
BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
|
|
if (sc->bge_flags & BGE_FLAG_PCIE)
|
|
val |= BGE_RDMAMODE_FIFO_LONG_BURST;
|
|
if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
|
|
val |= BGE_RDMAMODE_TSO4_ENABLE;
|
|
if (sc->bge_flags & BGE_FLAG_TSO3 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM57780)
|
|
val |= BGE_RDMAMODE_TSO6_ENABLE;
|
|
}
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5762) {
|
|
val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
|
|
BGE_RDMAMODE_H2BNC_VLAN_DET;
|
|
/*
|
|
* Allow multiple outstanding read requests from
|
|
* non-LSO read DMA engine.
|
|
*/
|
|
val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
|
|
}
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
|
|
BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
|
|
rdmareg = BGE_RDMA_RSRVCTRL_REG2;
|
|
else
|
|
rdmareg = BGE_RDMA_RSRVCTRL;
|
|
dmactl = CSR_READ_4(sc, rdmareg);
|
|
/*
|
|
* Adjust tx margin to prevent TX data corruption and
|
|
* fix internal FIFO overflow.
|
|
*/
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5762) {
|
|
dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
|
|
BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
|
|
BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
|
|
dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
|
|
BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
|
|
BGE_RDMA_RSRVCTRL_TXMRGN_320B;
|
|
}
|
|
/*
|
|
* Enable fix for read DMA FIFO overruns.
|
|
* The fix is to limit the number of RX BDs
|
|
* the hardware would fetch at a fime.
|
|
*/
|
|
CSR_WRITE_4(sc, rdmareg, dmactl |
|
|
BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
|
|
}
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
|
|
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
|
|
CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
|
|
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
|
|
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
|
|
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
|
|
/*
|
|
* Allow 4KB burst length reads for non-LSO frames.
|
|
* Enable 512B burst length reads for buffer descriptors.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
|
|
CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
|
|
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
|
|
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
|
|
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
|
|
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
|
|
CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
|
|
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
|
|
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
|
|
DELAY(40);
|
|
|
|
if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
|
|
for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
|
|
val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
|
|
if ((val & 0xFFFF) > BGE_FRAMELEN)
|
|
break;
|
|
if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
|
|
break;
|
|
}
|
|
if (i != BGE_NUM_RDMA_CHANNELS / 2) {
|
|
val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
|
|
val |= BGE_RDMA_TX_LENGTH_WA_5719;
|
|
else
|
|
val |= BGE_RDMA_TX_LENGTH_WA_5720;
|
|
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
|
|
}
|
|
}
|
|
|
|
/* Turn on RX data completion state machine */
|
|
CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
|
|
|
|
/* Turn on RX BD initiator state machine */
|
|
CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
|
|
|
|
/* Turn on RX data and RX BD initiator state machine */
|
|
CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
|
|
|
|
/* Turn on Mbuf cluster free state machine */
|
|
if (!(BGE_IS_5705_PLUS(sc)))
|
|
CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
|
|
|
|
/* Turn on send BD completion state machine */
|
|
CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
|
|
|
|
/* Turn on send data completion state machine */
|
|
val = BGE_SDCMODE_ENABLE;
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
|
|
val |= BGE_SDCMODE_CDELAY;
|
|
CSR_WRITE_4(sc, BGE_SDC_MODE, val);
|
|
|
|
/* Turn on send data initiator state machine */
|
|
if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
|
|
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
|
|
BGE_SDIMODE_HW_LSO_PRE_DMA);
|
|
else
|
|
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
|
|
|
|
/* Turn on send BD initiator state machine */
|
|
CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
|
|
|
|
/* Turn on send BD selector state machine */
|
|
CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
|
|
|
|
CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
|
|
CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
|
|
BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
|
|
|
|
/* ack/clear link change events */
|
|
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
|
|
BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
|
|
BGE_MACSTAT_LINK_CHANGED);
|
|
CSR_WRITE_4(sc, BGE_MI_STS, 0);
|
|
|
|
/*
|
|
* Enable attention when the link has changed state for
|
|
* devices that use auto polling.
|
|
*/
|
|
if (sc->bge_flags & BGE_FLAG_TBI) {
|
|
CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
|
|
} else {
|
|
if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
|
|
CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
|
|
DELAY(80);
|
|
}
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
|
|
sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
|
|
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
|
|
BGE_EVTENB_MI_INTERRUPT);
|
|
}
|
|
|
|
/*
|
|
* Clear any pending link state attention.
|
|
* Otherwise some link state change events may be lost until attention
|
|
* is cleared by bge_intr() -> bge_link_upd() sequence.
|
|
* It's not necessary on newer BCM chips - perhaps enabling link
|
|
* state change attentions implies clearing pending attention.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
|
|
BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
|
|
BGE_MACSTAT_LINK_CHANGED);
|
|
|
|
/* Enable link state change attentions. */
|
|
BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static const struct bge_revision *
|
|
bge_lookup_rev(uint32_t chipid)
|
|
{
|
|
const struct bge_revision *br;
|
|
|
|
for (br = bge_revisions; br->br_name != NULL; br++) {
|
|
if (br->br_chipid == chipid)
|
|
return (br);
|
|
}
|
|
|
|
for (br = bge_majorrevs; br->br_name != NULL; br++) {
|
|
if (br->br_chipid == BGE_ASICREV(chipid))
|
|
return (br);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static const struct bge_vendor *
|
|
bge_lookup_vendor(uint16_t vid)
|
|
{
|
|
const struct bge_vendor *v;
|
|
|
|
for (v = bge_vendors; v->v_name != NULL; v++)
|
|
if (v->v_id == vid)
|
|
return (v);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static uint32_t
|
|
bge_chipid(device_t dev)
|
|
{
|
|
uint32_t id;
|
|
|
|
id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
|
|
BGE_PCIMISCCTL_ASICREV_SHIFT;
|
|
if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
|
|
/*
|
|
* Find the ASCI revision. Different chips use different
|
|
* registers.
|
|
*/
|
|
switch (pci_get_device(dev)) {
|
|
case BCOM_DEVICEID_BCM5717C:
|
|
/* 5717 C0 seems to belong to 5720 line. */
|
|
id = BGE_CHIPID_BCM5720_A0;
|
|
break;
|
|
case BCOM_DEVICEID_BCM5717:
|
|
case BCOM_DEVICEID_BCM5718:
|
|
case BCOM_DEVICEID_BCM5719:
|
|
case BCOM_DEVICEID_BCM5720:
|
|
case BCOM_DEVICEID_BCM5725:
|
|
case BCOM_DEVICEID_BCM5727:
|
|
case BCOM_DEVICEID_BCM5762:
|
|
case BCOM_DEVICEID_BCM57764:
|
|
case BCOM_DEVICEID_BCM57767:
|
|
case BCOM_DEVICEID_BCM57787:
|
|
id = pci_read_config(dev,
|
|
BGE_PCI_GEN2_PRODID_ASICREV, 4);
|
|
break;
|
|
case BCOM_DEVICEID_BCM57761:
|
|
case BCOM_DEVICEID_BCM57762:
|
|
case BCOM_DEVICEID_BCM57765:
|
|
case BCOM_DEVICEID_BCM57766:
|
|
case BCOM_DEVICEID_BCM57781:
|
|
case BCOM_DEVICEID_BCM57782:
|
|
case BCOM_DEVICEID_BCM57785:
|
|
case BCOM_DEVICEID_BCM57786:
|
|
case BCOM_DEVICEID_BCM57791:
|
|
case BCOM_DEVICEID_BCM57795:
|
|
id = pci_read_config(dev,
|
|
BGE_PCI_GEN15_PRODID_ASICREV, 4);
|
|
break;
|
|
default:
|
|
id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
|
|
}
|
|
}
|
|
return (id);
|
|
}
|
|
|
|
/*
|
|
* Probe for a Broadcom chip. Check the PCI vendor and device IDs
|
|
* against our list and return its name if we find a match.
|
|
*
|
|
* Note that since the Broadcom controller contains VPD support, we
|
|
* try to get the device name string from the controller itself instead
|
|
* of the compiled-in string. It guarantees we'll always announce the
|
|
* right product name. We fall back to the compiled-in string when
|
|
* VPD is unavailable or corrupt.
|
|
*/
|
|
static int
|
|
bge_probe(device_t dev)
|
|
{
|
|
char buf[96];
|
|
char model[64];
|
|
const struct bge_revision *br;
|
|
const char *pname;
|
|
struct bge_softc *sc;
|
|
const struct bge_type *t = bge_devs;
|
|
const struct bge_vendor *v;
|
|
uint32_t id;
|
|
uint16_t did, vid;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->bge_dev = dev;
|
|
vid = pci_get_vendor(dev);
|
|
did = pci_get_device(dev);
|
|
while(t->bge_vid != 0) {
|
|
if ((vid == t->bge_vid) && (did == t->bge_did)) {
|
|
id = bge_chipid(dev);
|
|
br = bge_lookup_rev(id);
|
|
if (bge_has_eaddr(sc) &&
|
|
pci_get_vpd_ident(dev, &pname) == 0)
|
|
snprintf(model, sizeof(model), "%s", pname);
|
|
else {
|
|
v = bge_lookup_vendor(vid);
|
|
snprintf(model, sizeof(model), "%s %s",
|
|
v != NULL ? v->v_name : "Unknown",
|
|
br != NULL ? br->br_name :
|
|
"NetXtreme/NetLink Ethernet Controller");
|
|
}
|
|
snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
|
|
model, br != NULL ? "" : "unknown ", id);
|
|
device_set_desc_copy(dev, buf);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
static void
|
|
bge_dma_free(struct bge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
/* Destroy DMA maps for RX buffers. */
|
|
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_rx_std_dmamap[i])
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
|
|
sc->bge_cdata.bge_rx_std_dmamap[i]);
|
|
}
|
|
if (sc->bge_cdata.bge_rx_std_sparemap)
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
|
|
sc->bge_cdata.bge_rx_std_sparemap);
|
|
|
|
/* Destroy DMA maps for jumbo RX buffers. */
|
|
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
|
|
sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
|
|
}
|
|
if (sc->bge_cdata.bge_rx_jumbo_sparemap)
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
|
|
sc->bge_cdata.bge_rx_jumbo_sparemap);
|
|
|
|
/* Destroy DMA maps for TX buffers. */
|
|
for (i = 0; i < BGE_TX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_tx_dmamap[i])
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
|
|
sc->bge_cdata.bge_tx_dmamap[i]);
|
|
}
|
|
|
|
if (sc->bge_cdata.bge_rx_mtag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
|
|
if (sc->bge_cdata.bge_mtag_jumbo)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
|
|
if (sc->bge_cdata.bge_tx_mtag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
|
|
|
|
/* Destroy standard RX ring. */
|
|
if (sc->bge_ldata.bge_rx_std_ring_paddr)
|
|
bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
sc->bge_cdata.bge_rx_std_ring_map);
|
|
if (sc->bge_ldata.bge_rx_std_ring)
|
|
bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
sc->bge_ldata.bge_rx_std_ring,
|
|
sc->bge_cdata.bge_rx_std_ring_map);
|
|
|
|
if (sc->bge_cdata.bge_rx_std_ring_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
|
|
|
|
/* Destroy jumbo RX ring. */
|
|
if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
|
|
bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
sc->bge_cdata.bge_rx_jumbo_ring_map);
|
|
|
|
if (sc->bge_ldata.bge_rx_jumbo_ring)
|
|
bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
sc->bge_ldata.bge_rx_jumbo_ring,
|
|
sc->bge_cdata.bge_rx_jumbo_ring_map);
|
|
|
|
if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
|
|
|
|
/* Destroy RX return ring. */
|
|
if (sc->bge_ldata.bge_rx_return_ring_paddr)
|
|
bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
|
|
sc->bge_cdata.bge_rx_return_ring_map);
|
|
|
|
if (sc->bge_ldata.bge_rx_return_ring)
|
|
bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
|
|
sc->bge_ldata.bge_rx_return_ring,
|
|
sc->bge_cdata.bge_rx_return_ring_map);
|
|
|
|
if (sc->bge_cdata.bge_rx_return_ring_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
|
|
|
|
/* Destroy TX ring. */
|
|
if (sc->bge_ldata.bge_tx_ring_paddr)
|
|
bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
|
|
sc->bge_cdata.bge_tx_ring_map);
|
|
|
|
if (sc->bge_ldata.bge_tx_ring)
|
|
bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
|
|
sc->bge_ldata.bge_tx_ring,
|
|
sc->bge_cdata.bge_tx_ring_map);
|
|
|
|
if (sc->bge_cdata.bge_tx_ring_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
|
|
|
|
/* Destroy status block. */
|
|
if (sc->bge_ldata.bge_status_block_paddr)
|
|
bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map);
|
|
|
|
if (sc->bge_ldata.bge_status_block)
|
|
bus_dmamem_free(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_ldata.bge_status_block,
|
|
sc->bge_cdata.bge_status_map);
|
|
|
|
if (sc->bge_cdata.bge_status_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
|
|
|
|
/* Destroy statistics block. */
|
|
if (sc->bge_ldata.bge_stats_paddr)
|
|
bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
|
|
sc->bge_cdata.bge_stats_map);
|
|
|
|
if (sc->bge_ldata.bge_stats)
|
|
bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
|
|
sc->bge_ldata.bge_stats,
|
|
sc->bge_cdata.bge_stats_map);
|
|
|
|
if (sc->bge_cdata.bge_stats_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
|
|
|
|
if (sc->bge_cdata.bge_buffer_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
|
|
|
|
/* Destroy the parent tag. */
|
|
if (sc->bge_cdata.bge_parent_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
|
|
}
|
|
|
|
static int
|
|
bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
|
|
bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
|
|
bus_addr_t *paddr, const char *msg)
|
|
{
|
|
struct bge_dmamap_arg ctx;
|
|
int error;
|
|
|
|
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
|
|
alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
|
|
if (error != 0) {
|
|
device_printf(sc->bge_dev,
|
|
"could not create %s dma tag\n", msg);
|
|
return (ENOMEM);
|
|
}
|
|
/* Allocate DMA'able memory for ring. */
|
|
error = bus_dmamem_alloc(*tag, (void **)ring,
|
|
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
|
|
if (error != 0) {
|
|
device_printf(sc->bge_dev,
|
|
"could not allocate DMA'able memory for %s\n", msg);
|
|
return (ENOMEM);
|
|
}
|
|
/* Load the address of the ring. */
|
|
ctx.bge_busaddr = 0;
|
|
error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
|
|
&ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc->bge_dev,
|
|
"could not load DMA'able memory for %s\n", msg);
|
|
return (ENOMEM);
|
|
}
|
|
*paddr = ctx.bge_busaddr;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
bge_dma_alloc(struct bge_softc *sc)
|
|
{
|
|
bus_addr_t lowaddr;
|
|
bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
|
|
int i, error;
|
|
|
|
lowaddr = BUS_SPACE_MAXADDR;
|
|
if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
|
|
lowaddr = BGE_DMA_MAXADDR;
|
|
/*
|
|
* Allocate the parent bus DMA tag appropriate for PCI.
|
|
*/
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
|
|
1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
|
|
0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->bge_dev,
|
|
"could not allocate parent dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Create tag for standard RX ring. */
|
|
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
|
|
&sc->bge_cdata.bge_rx_std_ring_tag,
|
|
(uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
|
|
&sc->bge_cdata.bge_rx_std_ring_map,
|
|
&sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Create tag for RX return ring. */
|
|
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
|
|
&sc->bge_cdata.bge_rx_return_ring_tag,
|
|
(uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
|
|
&sc->bge_cdata.bge_rx_return_ring_map,
|
|
&sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Create tag for TX ring. */
|
|
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
|
|
&sc->bge_cdata.bge_tx_ring_tag,
|
|
(uint8_t **)&sc->bge_ldata.bge_tx_ring,
|
|
&sc->bge_cdata.bge_tx_ring_map,
|
|
&sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* Create tag for status block.
|
|
* Because we only use single Tx/Rx/Rx return ring, use
|
|
* minimum status block size except BCM5700 AX/BX which
|
|
* seems to want to see full status block size regardless
|
|
* of configured number of ring.
|
|
*/
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
|
|
sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
|
|
sbsz = BGE_STATUS_BLK_SZ;
|
|
else
|
|
sbsz = 32;
|
|
error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
|
|
&sc->bge_cdata.bge_status_tag,
|
|
(uint8_t **)&sc->bge_ldata.bge_status_block,
|
|
&sc->bge_cdata.bge_status_map,
|
|
&sc->bge_ldata.bge_status_block_paddr, "status block");
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Create tag for statistics block. */
|
|
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
|
|
&sc->bge_cdata.bge_stats_tag,
|
|
(uint8_t **)&sc->bge_ldata.bge_stats,
|
|
&sc->bge_cdata.bge_stats_map,
|
|
&sc->bge_ldata.bge_stats_paddr, "statistics block");
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Create tag for jumbo RX ring. */
|
|
if (BGE_IS_JUMBO_CAPABLE(sc)) {
|
|
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
|
|
&sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
(uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
|
|
&sc->bge_cdata.bge_rx_jumbo_ring_map,
|
|
&sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
/* Create parent tag for buffers. */
|
|
if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
|
|
/*
|
|
* XXX
|
|
* watchdog timeout issue was observed on BCM5704 which
|
|
* lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
|
|
* Both limiting DMA address space to 32bits and flushing
|
|
* mailbox write seem to address the issue.
|
|
*/
|
|
if (sc->bge_pcixcap != 0)
|
|
lowaddr = BUS_SPACE_MAXADDR_32BIT;
|
|
}
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
|
|
BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
|
|
&sc->bge_cdata.bge_buffer_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->bge_dev,
|
|
"could not allocate buffer dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
/* Create tag for Tx mbufs. */
|
|
if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
|
|
txsegsz = BGE_TSOSEG_SZ;
|
|
txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
|
|
} else {
|
|
txsegsz = MCLBYTES;
|
|
txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
|
|
}
|
|
error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
|
|
0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
|
|
&sc->bge_cdata.bge_tx_mtag);
|
|
|
|
if (error) {
|
|
device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Create tag for Rx mbufs. */
|
|
if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
|
|
rxmaxsegsz = MJUM9BYTES;
|
|
else
|
|
rxmaxsegsz = MCLBYTES;
|
|
error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
|
|
rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
|
|
|
|
if (error) {
|
|
device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Create DMA maps for RX buffers. */
|
|
error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
|
|
&sc->bge_cdata.bge_rx_std_sparemap);
|
|
if (error) {
|
|
device_printf(sc->bge_dev,
|
|
"can't create spare DMA map for RX\n");
|
|
return (ENOMEM);
|
|
}
|
|
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
|
|
error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
|
|
&sc->bge_cdata.bge_rx_std_dmamap[i]);
|
|
if (error) {
|
|
device_printf(sc->bge_dev,
|
|
"can't create DMA map for RX\n");
|
|
return (ENOMEM);
|
|
}
|
|
}
|
|
|
|
/* Create DMA maps for TX buffers. */
|
|
for (i = 0; i < BGE_TX_RING_CNT; i++) {
|
|
error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
|
|
&sc->bge_cdata.bge_tx_dmamap[i]);
|
|
if (error) {
|
|
device_printf(sc->bge_dev,
|
|
"can't create DMA map for TX\n");
|
|
return (ENOMEM);
|
|
}
|
|
}
|
|
|
|
/* Create tags for jumbo RX buffers. */
|
|
if (BGE_IS_JUMBO_CAPABLE(sc)) {
|
|
error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
|
|
1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
|
|
0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
|
|
if (error) {
|
|
device_printf(sc->bge_dev,
|
|
"could not allocate jumbo dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
/* Create DMA maps for jumbo RX buffers. */
|
|
error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
|
|
0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
|
|
if (error) {
|
|
device_printf(sc->bge_dev,
|
|
"can't create spare DMA map for jumbo RX\n");
|
|
return (ENOMEM);
|
|
}
|
|
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
|
|
error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
|
|
0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
|
|
if (error) {
|
|
device_printf(sc->bge_dev,
|
|
"can't create DMA map for jumbo RX\n");
|
|
return (ENOMEM);
|
|
}
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return true if this device has more than one port.
|
|
*/
|
|
static int
|
|
bge_has_multiple_ports(struct bge_softc *sc)
|
|
{
|
|
device_t dev = sc->bge_dev;
|
|
u_int b, d, f, fscan, s;
|
|
|
|
d = pci_get_domain(dev);
|
|
b = pci_get_bus(dev);
|
|
s = pci_get_slot(dev);
|
|
f = pci_get_function(dev);
|
|
for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
|
|
if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return true if MSI can be used with this device.
|
|
*/
|
|
static int
|
|
bge_can_use_msi(struct bge_softc *sc)
|
|
{
|
|
int can_use_msi = 0;
|
|
|
|
if (sc->bge_msi == 0)
|
|
return (0);
|
|
|
|
/* Disable MSI for polling(4). */
|
|
#ifdef DEVICE_POLLING
|
|
return (0);
|
|
#endif
|
|
switch (sc->bge_asicrev) {
|
|
case BGE_ASICREV_BCM5714_A0:
|
|
case BGE_ASICREV_BCM5714:
|
|
/*
|
|
* Apparently, MSI doesn't work when these chips are
|
|
* configured in single-port mode.
|
|
*/
|
|
if (bge_has_multiple_ports(sc))
|
|
can_use_msi = 1;
|
|
break;
|
|
case BGE_ASICREV_BCM5750:
|
|
if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
|
|
sc->bge_chiprev != BGE_CHIPREV_5750_BX)
|
|
can_use_msi = 1;
|
|
break;
|
|
default:
|
|
if (BGE_IS_575X_PLUS(sc))
|
|
can_use_msi = 1;
|
|
}
|
|
return (can_use_msi);
|
|
}
|
|
|
|
static int
|
|
bge_mbox_reorder(struct bge_softc *sc)
|
|
{
|
|
/* Lists of PCI bridges that are known to reorder mailbox writes. */
|
|
static const struct mbox_reorder {
|
|
const uint16_t vendor;
|
|
const uint16_t device;
|
|
const char *desc;
|
|
} mbox_reorder_lists[] = {
|
|
{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
|
|
};
|
|
devclass_t pci, pcib;
|
|
device_t bus, dev;
|
|
int i;
|
|
|
|
pci = devclass_find("pci");
|
|
pcib = devclass_find("pcib");
|
|
dev = sc->bge_dev;
|
|
bus = device_get_parent(dev);
|
|
for (;;) {
|
|
dev = device_get_parent(bus);
|
|
bus = device_get_parent(dev);
|
|
if (device_get_devclass(dev) != pcib)
|
|
break;
|
|
for (i = 0; i < nitems(mbox_reorder_lists); i++) {
|
|
if (pci_get_vendor(dev) ==
|
|
mbox_reorder_lists[i].vendor &&
|
|
pci_get_device(dev) ==
|
|
mbox_reorder_lists[i].device) {
|
|
device_printf(sc->bge_dev,
|
|
"enabling MBOX workaround for %s\n",
|
|
mbox_reorder_lists[i].desc);
|
|
return (1);
|
|
}
|
|
}
|
|
if (device_get_devclass(bus) != pci)
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bge_devinfo(struct bge_softc *sc)
|
|
{
|
|
uint32_t cfg, clk;
|
|
|
|
device_printf(sc->bge_dev,
|
|
"CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
|
|
sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
|
|
if (sc->bge_flags & BGE_FLAG_PCIE)
|
|
printf("PCI-E\n");
|
|
else if (sc->bge_flags & BGE_FLAG_PCIX) {
|
|
printf("PCI-X ");
|
|
cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
|
|
if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
|
|
clk = 133;
|
|
else {
|
|
clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
|
|
switch (clk) {
|
|
case 0:
|
|
clk = 33;
|
|
break;
|
|
case 2:
|
|
clk = 50;
|
|
break;
|
|
case 4:
|
|
clk = 66;
|
|
break;
|
|
case 6:
|
|
clk = 100;
|
|
break;
|
|
case 7:
|
|
clk = 133;
|
|
break;
|
|
}
|
|
}
|
|
printf("%u MHz\n", clk);
|
|
} else {
|
|
if (sc->bge_pcixcap != 0)
|
|
printf("PCI on PCI-X ");
|
|
else
|
|
printf("PCI ");
|
|
cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
|
|
if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
|
|
clk = 66;
|
|
else
|
|
clk = 33;
|
|
if (cfg & BGE_PCISTATE_32BIT_BUS)
|
|
printf("%u MHz; 32bit\n", clk);
|
|
else
|
|
printf("%u MHz; 64bit\n", clk);
|
|
}
|
|
}
|
|
|
|
static int
|
|
bge_attach(device_t dev)
|
|
{
|
|
if_t ifp;
|
|
struct bge_softc *sc;
|
|
uint32_t hwcfg = 0, misccfg, pcistate;
|
|
u_char eaddr[ETHER_ADDR_LEN];
|
|
int capmask, error, reg, rid, trys;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->bge_dev = dev;
|
|
|
|
BGE_LOCK_INIT(sc, device_get_nameunit(dev));
|
|
TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
|
|
callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
|
|
|
|
pci_enable_busmaster(dev);
|
|
|
|
/*
|
|
* Allocate control/status registers.
|
|
*/
|
|
rid = PCIR_BAR(0);
|
|
sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
|
|
RF_ACTIVE);
|
|
|
|
if (sc->bge_res == NULL) {
|
|
device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Save various chip information. */
|
|
sc->bge_func_addr = pci_get_function(dev);
|
|
sc->bge_chipid = bge_chipid(dev);
|
|
sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
|
|
sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
|
|
|
|
/* Set default PHY address. */
|
|
sc->bge_phy_addr = 1;
|
|
/*
|
|
* PHY address mapping for various devices.
|
|
*
|
|
* | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
|
|
* ---------+-------+-------+-------+-------+
|
|
* BCM57XX | 1 | X | X | X |
|
|
* BCM5704 | 1 | X | 1 | X |
|
|
* BCM5717 | 1 | 8 | 2 | 9 |
|
|
* BCM5719 | 1 | 8 | 2 | 9 |
|
|
* BCM5720 | 1 | 8 | 2 | 9 |
|
|
*
|
|
* | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
|
|
* ---------+-------+-------+-------+-------+
|
|
* BCM57XX | X | X | X | X |
|
|
* BCM5704 | X | X | X | X |
|
|
* BCM5717 | X | X | X | X |
|
|
* BCM5719 | 3 | 10 | 4 | 11 |
|
|
* BCM5720 | X | X | X | X |
|
|
*
|
|
* Other addresses may respond but they are not
|
|
* IEEE compliant PHYs and should be ignored.
|
|
*/
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5720) {
|
|
if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
|
|
if (CSR_READ_4(sc, BGE_SGDIG_STS) &
|
|
BGE_SGDIGSTS_IS_SERDES)
|
|
sc->bge_phy_addr = sc->bge_func_addr + 8;
|
|
else
|
|
sc->bge_phy_addr = sc->bge_func_addr + 1;
|
|
} else {
|
|
if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
|
|
BGE_CPMU_PHY_STRAP_IS_SERDES)
|
|
sc->bge_phy_addr = sc->bge_func_addr + 8;
|
|
else
|
|
sc->bge_phy_addr = sc->bge_func_addr + 1;
|
|
}
|
|
}
|
|
|
|
if (bge_has_eaddr(sc))
|
|
sc->bge_flags |= BGE_FLAG_EADDR;
|
|
|
|
/* Save chipset family. */
|
|
switch (sc->bge_asicrev) {
|
|
case BGE_ASICREV_BCM5762:
|
|
case BGE_ASICREV_BCM57765:
|
|
case BGE_ASICREV_BCM57766:
|
|
sc->bge_flags |= BGE_FLAG_57765_PLUS;
|
|
/* FALLTHROUGH */
|
|
case BGE_ASICREV_BCM5717:
|
|
case BGE_ASICREV_BCM5719:
|
|
case BGE_ASICREV_BCM5720:
|
|
sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
|
|
BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
|
|
BGE_FLAG_JUMBO_FRAME;
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5720) {
|
|
/*
|
|
* Enable work around for DMA engine miscalculation
|
|
* of TXMBUF available space.
|
|
*/
|
|
sc->bge_flags |= BGE_FLAG_RDMA_BUG;
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
|
|
sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
|
|
/* Jumbo frame on BCM5719 A0 does not work. */
|
|
sc->bge_flags &= ~BGE_FLAG_JUMBO;
|
|
}
|
|
}
|
|
break;
|
|
case BGE_ASICREV_BCM5755:
|
|
case BGE_ASICREV_BCM5761:
|
|
case BGE_ASICREV_BCM5784:
|
|
case BGE_ASICREV_BCM5785:
|
|
case BGE_ASICREV_BCM5787:
|
|
case BGE_ASICREV_BCM57780:
|
|
sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
|
|
BGE_FLAG_5705_PLUS;
|
|
break;
|
|
case BGE_ASICREV_BCM5700:
|
|
case BGE_ASICREV_BCM5701:
|
|
case BGE_ASICREV_BCM5703:
|
|
case BGE_ASICREV_BCM5704:
|
|
sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
|
|
break;
|
|
case BGE_ASICREV_BCM5714_A0:
|
|
case BGE_ASICREV_BCM5780:
|
|
case BGE_ASICREV_BCM5714:
|
|
sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
|
|
/* FALLTHROUGH */
|
|
case BGE_ASICREV_BCM5750:
|
|
case BGE_ASICREV_BCM5752:
|
|
case BGE_ASICREV_BCM5906:
|
|
sc->bge_flags |= BGE_FLAG_575X_PLUS;
|
|
/* FALLTHROUGH */
|
|
case BGE_ASICREV_BCM5705:
|
|
sc->bge_flags |= BGE_FLAG_5705_PLUS;
|
|
break;
|
|
}
|
|
|
|
/* Identify chips with APE processor. */
|
|
switch (sc->bge_asicrev) {
|
|
case BGE_ASICREV_BCM5717:
|
|
case BGE_ASICREV_BCM5719:
|
|
case BGE_ASICREV_BCM5720:
|
|
case BGE_ASICREV_BCM5761:
|
|
case BGE_ASICREV_BCM5762:
|
|
sc->bge_flags |= BGE_FLAG_APE;
|
|
break;
|
|
}
|
|
|
|
/* Chips with APE need BAR2 access for APE registers/memory. */
|
|
if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
|
|
rid = PCIR_BAR(2);
|
|
sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
|
|
RF_ACTIVE);
|
|
if (sc->bge_res2 == NULL) {
|
|
device_printf (sc->bge_dev,
|
|
"couldn't map BAR2 memory\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Enable APE register/memory access by host driver. */
|
|
pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
|
|
pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
|
|
BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
|
|
BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
|
|
pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
|
|
|
|
bge_ape_lock_init(sc);
|
|
bge_ape_read_fw_ver(sc);
|
|
}
|
|
|
|
/* Add SYSCTLs, requires the chipset family to be set. */
|
|
bge_add_sysctls(sc);
|
|
|
|
/* Identify the chips that use an CPMU. */
|
|
if (BGE_IS_5717_PLUS(sc) ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM57780)
|
|
sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
|
|
if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
|
|
sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
|
|
else
|
|
sc->bge_mi_mode = BGE_MIMODE_BASE;
|
|
/* Enable auto polling for BCM570[0-5]. */
|
|
if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
|
|
sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
|
|
|
|
/*
|
|
* All Broadcom controllers have 4GB boundary DMA bug.
|
|
* Whenever an address crosses a multiple of the 4GB boundary
|
|
* (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
|
|
* from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
|
|
* state machine will lockup and cause the device to hang.
|
|
*/
|
|
sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
|
|
|
|
/* BCM5755 or higher and BCM5906 have short DMA bug. */
|
|
if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
|
|
sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
|
|
|
|
/*
|
|
* BCM5719 cannot handle DMA requests for DMA segments that
|
|
* have larger than 4KB in size. However the maximum DMA
|
|
* segment size created in DMA tag is 4KB for TSO, so we
|
|
* wouldn't encounter the issue here.
|
|
*/
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
|
|
sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
|
|
|
|
misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
|
|
if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
|
|
misccfg == BGE_MISCCFG_BOARD_ID_5788M)
|
|
sc->bge_flags |= BGE_FLAG_5788;
|
|
}
|
|
|
|
capmask = BMSR_DEFCAPMASK;
|
|
if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
|
|
(misccfg == 0x4000 || misccfg == 0x8000)) ||
|
|
(sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
|
|
pci_get_vendor(dev) == BCOM_VENDORID &&
|
|
(pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
|
|
pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
|
|
pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
|
|
(pci_get_vendor(dev) == BCOM_VENDORID &&
|
|
(pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
|
|
pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
|
|
pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
|
|
pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
|
|
pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
|
|
pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5906) {
|
|
/* These chips are 10/100 only. */
|
|
capmask &= ~BMSR_EXTSTAT;
|
|
sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
|
|
}
|
|
|
|
/*
|
|
* Some controllers seem to require a special firmware to use
|
|
* TSO. But the firmware is not available to FreeBSD and Linux
|
|
* claims that the TSO performed by the firmware is slower than
|
|
* hardware based TSO. Moreover the firmware based TSO has one
|
|
* known bug which can't handle TSO if Ethernet header + IP/TCP
|
|
* header is greater than 80 bytes. A workaround for the TSO
|
|
* bug exist but it seems it's too expensive than not using
|
|
* TSO at all. Some hardwares also have the TSO bug so limit
|
|
* the TSO to the controllers that are not affected TSO issues
|
|
* (e.g. 5755 or higher).
|
|
*/
|
|
if (BGE_IS_5717_PLUS(sc)) {
|
|
/* BCM5717 requires different TSO configuration. */
|
|
sc->bge_flags |= BGE_FLAG_TSO3;
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
|
|
sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
|
|
/* TSO on BCM5719 A0 does not work. */
|
|
sc->bge_flags &= ~BGE_FLAG_TSO3;
|
|
}
|
|
} else if (BGE_IS_5755_PLUS(sc)) {
|
|
/*
|
|
* BCM5754 and BCM5787 shares the same ASIC id so
|
|
* explicit device id check is required.
|
|
* Due to unknown reason TSO does not work on BCM5755M.
|
|
*/
|
|
if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
|
|
pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
|
|
pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
|
|
sc->bge_flags |= BGE_FLAG_TSO;
|
|
}
|
|
|
|
/*
|
|
* Check if this is a PCI-X or PCI Express device.
|
|
*/
|
|
if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) {
|
|
/*
|
|
* Found a PCI Express capabilities register, this
|
|
* must be a PCI Express device.
|
|
*/
|
|
sc->bge_flags |= BGE_FLAG_PCIE;
|
|
sc->bge_expcap = reg;
|
|
/* Extract supported maximum payload size. */
|
|
sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
|
|
PCIER_DEVICE_CAP, 2);
|
|
sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5720)
|
|
sc->bge_expmrq = 2048;
|
|
else
|
|
sc->bge_expmrq = 4096;
|
|
pci_set_max_read_req(dev, sc->bge_expmrq);
|
|
} else {
|
|
/*
|
|
* Check if the device is in PCI-X Mode.
|
|
* (This bit is not valid on PCI Express controllers.)
|
|
*/
|
|
if (pci_find_cap(dev, PCIY_PCIX, ®) == 0)
|
|
sc->bge_pcixcap = reg;
|
|
if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
|
|
BGE_PCISTATE_PCI_BUSMODE) == 0)
|
|
sc->bge_flags |= BGE_FLAG_PCIX;
|
|
}
|
|
|
|
/*
|
|
* The 40bit DMA bug applies to the 5714/5715 controllers and is
|
|
* not actually a MAC controller bug but an issue with the embedded
|
|
* PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
|
|
*/
|
|
if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
|
|
sc->bge_flags |= BGE_FLAG_40BIT_BUG;
|
|
/*
|
|
* Some PCI-X bridges are known to trigger write reordering to
|
|
* the mailbox registers. Typical phenomena is watchdog timeouts
|
|
* caused by out-of-order TX completions. Enable workaround for
|
|
* PCI-X devices that live behind these bridges.
|
|
* Note, PCI-X controllers can run in PCI mode so we can't use
|
|
* BGE_FLAG_PCIX flag to detect PCI-X controllers.
|
|
*/
|
|
if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
|
|
sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
|
|
/*
|
|
* Allocate the interrupt, using MSI if possible. These devices
|
|
* support 8 MSI messages, but only the first one is used in
|
|
* normal operation.
|
|
*/
|
|
rid = 0;
|
|
if (pci_find_cap(sc->bge_dev, PCIY_MSI, ®) == 0) {
|
|
sc->bge_msicap = reg;
|
|
reg = 1;
|
|
if (bge_can_use_msi(sc) && pci_alloc_msi(dev, ®) == 0) {
|
|
rid = 1;
|
|
sc->bge_flags |= BGE_FLAG_MSI;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* All controllers except BCM5700 supports tagged status but
|
|
* we use tagged status only for MSI case on BCM5717. Otherwise
|
|
* MSI on BCM5717 does not work.
|
|
*/
|
|
#ifndef DEVICE_POLLING
|
|
if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
|
|
sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
|
|
#endif
|
|
|
|
sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
|
|
|
|
if (sc->bge_irq == NULL) {
|
|
device_printf(sc->bge_dev, "couldn't map interrupt\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
bge_devinfo(sc);
|
|
|
|
sc->bge_asf_mode = 0;
|
|
/* No ASF if APE present. */
|
|
if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
|
|
if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
|
|
BGE_SRAM_DATA_SIG_MAGIC)) {
|
|
if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
|
|
BGE_HWCFG_ASF) {
|
|
sc->bge_asf_mode |= ASF_ENABLE;
|
|
sc->bge_asf_mode |= ASF_STACKUP;
|
|
if (BGE_IS_575X_PLUS(sc))
|
|
sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
|
|
}
|
|
}
|
|
}
|
|
|
|
bge_stop_fw(sc);
|
|
bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
|
|
if (bge_reset(sc)) {
|
|
device_printf(sc->bge_dev, "chip reset failed\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
|
|
bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
|
|
|
|
if (bge_chipinit(sc)) {
|
|
device_printf(sc->bge_dev, "chip initialization failed\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
error = bge_get_eaddr(sc, eaddr);
|
|
if (error) {
|
|
device_printf(sc->bge_dev,
|
|
"failed to read station address\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* 5705 limits RX return ring to 512 entries. */
|
|
if (BGE_IS_5717_PLUS(sc))
|
|
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
|
|
else if (BGE_IS_5705_PLUS(sc))
|
|
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
|
|
else
|
|
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
|
|
|
|
if (bge_dma_alloc(sc)) {
|
|
device_printf(sc->bge_dev,
|
|
"failed to allocate DMA resources\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Set default tuneable values. */
|
|
sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
|
|
sc->bge_rx_coal_ticks = 150;
|
|
sc->bge_tx_coal_ticks = 150;
|
|
sc->bge_rx_max_coal_bds = 10;
|
|
sc->bge_tx_max_coal_bds = 10;
|
|
|
|
/* Initialize checksum features to use. */
|
|
sc->bge_csum_features = BGE_CSUM_FEATURES;
|
|
if (sc->bge_forced_udpcsum != 0)
|
|
sc->bge_csum_features |= CSUM_UDP;
|
|
|
|
/* Set up ifnet structure */
|
|
ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(sc->bge_dev, "failed to if_alloc()\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
if_setsoftc(ifp, sc);
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
|
|
if_setioctlfn(ifp, bge_ioctl);
|
|
if_setstartfn(ifp, bge_start);
|
|
if_setinitfn(ifp, bge_init);
|
|
if_setgetcounterfn(ifp, bge_get_counter);
|
|
if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
|
|
if_setsendqready(ifp);
|
|
if_sethwassist(ifp, sc->bge_csum_features);
|
|
if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
|
|
IFCAP_VLAN_MTU);
|
|
if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
|
|
if_sethwassistbits(ifp, CSUM_TSO, 0);
|
|
if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
|
|
}
|
|
#ifdef IFCAP_VLAN_HWCSUM
|
|
if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
|
|
#endif
|
|
if_setcapenable(ifp, if_getcapabilities(ifp));
|
|
#ifdef DEVICE_POLLING
|
|
if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
|
|
#endif
|
|
|
|
/*
|
|
* 5700 B0 chips do not support checksumming correctly due
|
|
* to hardware bugs.
|
|
*/
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
|
|
if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
|
|
if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
|
|
if_sethwassist(ifp, 0);
|
|
}
|
|
|
|
/*
|
|
* Figure out what sort of media we have by checking the
|
|
* hardware config word in the first 32k of NIC internal memory,
|
|
* or fall back to examining the EEPROM if necessary.
|
|
* Note: on some BCM5700 cards, this value appears to be unset.
|
|
* If that's the case, we have to rely on identifying the NIC
|
|
* by its PCI subsystem ID, as we do below for the SysKonnect
|
|
* SK-9D41.
|
|
*/
|
|
if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
|
|
hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
|
|
else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
|
|
(sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
|
|
if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
|
|
sizeof(hwcfg))) {
|
|
device_printf(sc->bge_dev, "failed to read EEPROM\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
hwcfg = ntohl(hwcfg);
|
|
}
|
|
|
|
/* The SysKonnect SK-9D41 is a 1000baseSX card. */
|
|
if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
|
|
SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
|
|
if (BGE_IS_5705_PLUS(sc)) {
|
|
sc->bge_flags |= BGE_FLAG_MII_SERDES;
|
|
sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
|
|
} else
|
|
sc->bge_flags |= BGE_FLAG_TBI;
|
|
}
|
|
|
|
/* Set various PHY bug flags. */
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
|
|
sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
|
|
sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
|
|
if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
|
|
sc->bge_chiprev == BGE_CHIPREV_5704_AX)
|
|
sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
|
|
sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
|
|
if (pci_get_subvendor(dev) == DELL_VENDORID)
|
|
sc->bge_phy_flags |= BGE_PHY_NO_3LED;
|
|
if ((BGE_IS_5705_PLUS(sc)) &&
|
|
sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
|
|
sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
|
|
sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
|
|
!BGE_IS_5717_PLUS(sc)) {
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5787) {
|
|
if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
|
|
pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
|
|
sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
|
|
if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
|
|
sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
|
|
} else
|
|
sc->bge_phy_flags |= BGE_PHY_BER_BUG;
|
|
}
|
|
|
|
/*
|
|
* Don't enable Ethernet@WireSpeed for the 5700 or the
|
|
* 5705 A0 and A1 chips.
|
|
*/
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
|
|
(sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
|
|
(sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
|
|
sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
|
|
sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
|
|
|
|
if (sc->bge_flags & BGE_FLAG_TBI) {
|
|
ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
|
|
bge_ifmedia_sts);
|
|
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
|
|
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
|
|
0, NULL);
|
|
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
|
|
ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
|
|
sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
|
|
} else {
|
|
/*
|
|
* Do transceiver setup and tell the firmware the
|
|
* driver is down so we can try to get access the
|
|
* probe if ASF is running. Retry a couple of times
|
|
* if we get a conflict with the ASF firmware accessing
|
|
* the PHY.
|
|
*/
|
|
trys = 0;
|
|
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
again:
|
|
bge_asf_driver_up(sc);
|
|
|
|
error = mii_attach(dev, &sc->bge_miibus, ifp,
|
|
(ifm_change_cb_t)bge_ifmedia_upd,
|
|
(ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr,
|
|
MII_OFFSET_ANY, MIIF_DOPAUSE);
|
|
if (error != 0) {
|
|
if (trys++ < 4) {
|
|
device_printf(sc->bge_dev, "Try again\n");
|
|
bge_miibus_writereg(sc->bge_dev,
|
|
sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
|
|
goto again;
|
|
}
|
|
device_printf(sc->bge_dev, "attaching PHYs failed\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Now tell the firmware we are going up after probing the PHY
|
|
*/
|
|
if (sc->bge_asf_mode & ASF_STACKUP)
|
|
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
}
|
|
|
|
/*
|
|
* When using the BCM5701 in PCI-X mode, data corruption has
|
|
* been observed in the first few bytes of some received packets.
|
|
* Aligning the packet buffer in memory eliminates the corruption.
|
|
* Unfortunately, this misaligns the packet payloads. On platforms
|
|
* which do not support unaligned accesses, we will realign the
|
|
* payloads by copying the received packets.
|
|
*/
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
|
|
sc->bge_flags & BGE_FLAG_PCIX)
|
|
sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
ether_ifattach(ifp, eaddr);
|
|
|
|
/* Tell upper layer we support long frames. */
|
|
if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
|
|
|
|
/*
|
|
* Hookup IRQ last.
|
|
*/
|
|
if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
|
|
/* Take advantage of single-shot MSI. */
|
|
CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
|
|
~BGE_MSIMODE_ONE_SHOT_DISABLE);
|
|
sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
|
|
taskqueue_thread_enqueue, &sc->bge_tq);
|
|
if (sc->bge_tq == NULL) {
|
|
device_printf(dev, "could not create taskqueue.\n");
|
|
ether_ifdetach(ifp);
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
|
|
"%s taskq", device_get_nameunit(sc->bge_dev));
|
|
if (error != 0) {
|
|
device_printf(dev, "could not start threads.\n");
|
|
ether_ifdetach(ifp);
|
|
goto fail;
|
|
}
|
|
error = bus_setup_intr(dev, sc->bge_irq,
|
|
INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
|
|
&sc->bge_intrhand);
|
|
} else
|
|
error = bus_setup_intr(dev, sc->bge_irq,
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
|
|
&sc->bge_intrhand);
|
|
|
|
if (error) {
|
|
ether_ifdetach(ifp);
|
|
device_printf(sc->bge_dev, "couldn't set up irq\n");
|
|
}
|
|
|
|
fail:
|
|
if (error)
|
|
bge_detach(dev);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
bge_detach(device_t dev)
|
|
{
|
|
struct bge_softc *sc;
|
|
if_t ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = sc->bge_ifp;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (if_getcapenable(ifp) & IFCAP_POLLING)
|
|
ether_poll_deregister(ifp);
|
|
#endif
|
|
|
|
if (device_is_attached(dev)) {
|
|
ether_ifdetach(ifp);
|
|
BGE_LOCK(sc);
|
|
bge_stop(sc);
|
|
BGE_UNLOCK(sc);
|
|
callout_drain(&sc->bge_stat_ch);
|
|
}
|
|
|
|
if (sc->bge_tq)
|
|
taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
|
|
|
|
if (sc->bge_flags & BGE_FLAG_TBI)
|
|
ifmedia_removeall(&sc->bge_ifmedia);
|
|
else if (sc->bge_miibus != NULL) {
|
|
bus_generic_detach(dev);
|
|
device_delete_child(dev, sc->bge_miibus);
|
|
}
|
|
|
|
bge_release_resources(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bge_release_resources(struct bge_softc *sc)
|
|
{
|
|
device_t dev;
|
|
|
|
dev = sc->bge_dev;
|
|
|
|
if (sc->bge_tq != NULL)
|
|
taskqueue_free(sc->bge_tq);
|
|
|
|
if (sc->bge_intrhand != NULL)
|
|
bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
|
|
|
|
if (sc->bge_irq != NULL) {
|
|
bus_release_resource(dev, SYS_RES_IRQ,
|
|
rman_get_rid(sc->bge_irq), sc->bge_irq);
|
|
pci_release_msi(dev);
|
|
}
|
|
|
|
if (sc->bge_res != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
rman_get_rid(sc->bge_res), sc->bge_res);
|
|
|
|
if (sc->bge_res2 != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
rman_get_rid(sc->bge_res2), sc->bge_res2);
|
|
|
|
if (sc->bge_ifp != NULL)
|
|
if_free(sc->bge_ifp);
|
|
|
|
bge_dma_free(sc);
|
|
|
|
if (mtx_initialized(&sc->bge_mtx)) /* XXX */
|
|
BGE_LOCK_DESTROY(sc);
|
|
}
|
|
|
|
static int
|
|
bge_reset(struct bge_softc *sc)
|
|
{
|
|
device_t dev;
|
|
uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
|
|
void (*write_op)(struct bge_softc *, int, int);
|
|
uint16_t devctl;
|
|
int i;
|
|
|
|
dev = sc->bge_dev;
|
|
|
|
mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
|
|
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
|
|
mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
|
|
mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
|
|
|
|
if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
|
|
(sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
|
|
if (sc->bge_flags & BGE_FLAG_PCIE)
|
|
write_op = bge_writemem_direct;
|
|
else
|
|
write_op = bge_writemem_ind;
|
|
} else
|
|
write_op = bge_writereg_ind;
|
|
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
|
|
sc->bge_asicrev != BGE_ASICREV_BCM5701) {
|
|
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
|
|
for (i = 0; i < 8000; i++) {
|
|
if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
|
|
BGE_NVRAMSWARB_GNT1)
|
|
break;
|
|
DELAY(20);
|
|
}
|
|
if (i == 8000) {
|
|
if (bootverbose)
|
|
device_printf(dev, "NVRAM lock timedout!\n");
|
|
}
|
|
}
|
|
/* Take APE lock when performing reset. */
|
|
bge_ape_lock(sc, BGE_APE_LOCK_GRC);
|
|
|
|
/* Save some important PCI state. */
|
|
cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
|
|
command = pci_read_config(dev, BGE_PCI_CMD, 4);
|
|
|
|
pci_write_config(dev, BGE_PCI_MISC_CTL,
|
|
BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
|
|
BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
|
|
|
|
/* Disable fastboot on controllers that support it. */
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
|
|
BGE_IS_5755_PLUS(sc)) {
|
|
if (bootverbose)
|
|
device_printf(dev, "Disabling fastboot\n");
|
|
CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
|
|
}
|
|
|
|
/*
|
|
* Write the magic number to SRAM at offset 0xB50.
|
|
* When firmware finishes its initialization it will
|
|
* write ~BGE_SRAM_FW_MB_MAGIC to the same location.
|
|
*/
|
|
bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
|
|
|
|
reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
|
|
|
|
/* XXX: Broadcom Linux driver. */
|
|
if (sc->bge_flags & BGE_FLAG_PCIE) {
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
|
|
(sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
|
|
if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */
|
|
CSR_WRITE_4(sc, 0x7E2C, 0x20);
|
|
}
|
|
if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
|
|
/* Prevent PCIE link training during global reset */
|
|
CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
|
|
reset |= 1 << 29;
|
|
}
|
|
}
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
|
|
val = CSR_READ_4(sc, BGE_VCPU_STATUS);
|
|
CSR_WRITE_4(sc, BGE_VCPU_STATUS,
|
|
val | BGE_VCPU_STATUS_DRV_RESET);
|
|
val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
|
|
CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
|
|
val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
|
|
}
|
|
|
|
/*
|
|
* Set GPHY Power Down Override to leave GPHY
|
|
* powered up in D0 uninitialized.
|
|
*/
|
|
if (BGE_IS_5705_PLUS(sc) &&
|
|
(sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
|
|
reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
|
|
|
|
/* Issue global reset */
|
|
write_op(sc, BGE_MISC_CFG, reset);
|
|
|
|
if (sc->bge_flags & BGE_FLAG_PCIE)
|
|
DELAY(100 * 1000);
|
|
else
|
|
DELAY(1000);
|
|
|
|
/* XXX: Broadcom Linux driver. */
|
|
if (sc->bge_flags & BGE_FLAG_PCIE) {
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
|
|
DELAY(500000); /* wait for link training to complete */
|
|
val = pci_read_config(dev, 0xC4, 4);
|
|
pci_write_config(dev, 0xC4, val | (1 << 15), 4);
|
|
}
|
|
devctl = pci_read_config(dev,
|
|
sc->bge_expcap + PCIER_DEVICE_CTL, 2);
|
|
/* Clear enable no snoop and disable relaxed ordering. */
|
|
devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
|
|
PCIEM_CTL_NOSNOOP_ENABLE);
|
|
pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
|
|
devctl, 2);
|
|
pci_set_max_read_req(dev, sc->bge_expmrq);
|
|
/* Clear error status. */
|
|
pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
|
|
PCIEM_STA_CORRECTABLE_ERROR |
|
|
PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
|
|
PCIEM_STA_UNSUPPORTED_REQ, 2);
|
|
}
|
|
|
|
/* Reset some of the PCI state that got zapped by reset. */
|
|
pci_write_config(dev, BGE_PCI_MISC_CTL,
|
|
BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
|
|
BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
|
|
val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
|
|
(sc->bge_flags & BGE_FLAG_PCIX) != 0)
|
|
val |= BGE_PCISTATE_RETRY_SAME_DMA;
|
|
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
|
|
val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
|
|
BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
|
|
BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
|
|
pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
|
|
pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
|
|
pci_write_config(dev, BGE_PCI_CMD, command, 4);
|
|
/*
|
|
* Disable PCI-X relaxed ordering to ensure status block update
|
|
* comes first then packet buffer DMA. Otherwise driver may
|
|
* read stale status block.
|
|
*/
|
|
if (sc->bge_flags & BGE_FLAG_PCIX) {
|
|
devctl = pci_read_config(dev,
|
|
sc->bge_pcixcap + PCIXR_COMMAND, 2);
|
|
devctl &= ~PCIXM_COMMAND_ERO;
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
|
|
devctl &= ~PCIXM_COMMAND_MAX_READ;
|
|
devctl |= PCIXM_COMMAND_MAX_READ_2048;
|
|
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
|
|
devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
|
|
PCIXM_COMMAND_MAX_READ);
|
|
devctl |= PCIXM_COMMAND_MAX_READ_2048;
|
|
}
|
|
pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
|
|
devctl, 2);
|
|
}
|
|
/* Re-enable MSI, if necessary, and enable the memory arbiter. */
|
|
if (BGE_IS_5714_FAMILY(sc)) {
|
|
/* This chip disables MSI on reset. */
|
|
if (sc->bge_flags & BGE_FLAG_MSI) {
|
|
val = pci_read_config(dev,
|
|
sc->bge_msicap + PCIR_MSI_CTRL, 2);
|
|
pci_write_config(dev,
|
|
sc->bge_msicap + PCIR_MSI_CTRL,
|
|
val | PCIM_MSICTRL_MSI_ENABLE, 2);
|
|
val = CSR_READ_4(sc, BGE_MSI_MODE);
|
|
CSR_WRITE_4(sc, BGE_MSI_MODE,
|
|
val | BGE_MSIMODE_ENABLE);
|
|
}
|
|
val = CSR_READ_4(sc, BGE_MARB_MODE);
|
|
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
|
|
} else
|
|
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
|
|
|
|
/* Fix up byte swapping. */
|
|
CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
|
|
|
|
val = CSR_READ_4(sc, BGE_MAC_MODE);
|
|
val = (val & ~mac_mode_mask) | mac_mode;
|
|
CSR_WRITE_4(sc, BGE_MAC_MODE, val);
|
|
DELAY(40);
|
|
|
|
bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
val = CSR_READ_4(sc, BGE_VCPU_STATUS);
|
|
if (val & BGE_VCPU_STATUS_INIT_DONE)
|
|
break;
|
|
DELAY(100);
|
|
}
|
|
if (i == BGE_TIMEOUT) {
|
|
device_printf(dev, "reset timed out\n");
|
|
return (1);
|
|
}
|
|
} else {
|
|
/*
|
|
* Poll until we see the 1's complement of the magic number.
|
|
* This indicates that the firmware initialization is complete.
|
|
* We expect this to fail if no chip containing the Ethernet
|
|
* address is fitted though.
|
|
*/
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
|
|
if (val == ~BGE_SRAM_FW_MB_MAGIC)
|
|
break;
|
|
}
|
|
|
|
if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
|
|
device_printf(dev,
|
|
"firmware handshake timed out, found 0x%08x\n",
|
|
val);
|
|
/* BCM57765 A0 needs additional time before accessing. */
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
|
|
DELAY(10 * 1000); /* XXX */
|
|
}
|
|
|
|
/*
|
|
* The 5704 in TBI mode apparently needs some special
|
|
* adjustment to insure the SERDES drive level is set
|
|
* to 1.2V.
|
|
*/
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
|
|
sc->bge_flags & BGE_FLAG_TBI) {
|
|
val = CSR_READ_4(sc, BGE_SERDES_CFG);
|
|
val = (val & ~0xFFF) | 0x880;
|
|
CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
|
|
}
|
|
|
|
/* XXX: Broadcom Linux driver. */
|
|
if (sc->bge_flags & BGE_FLAG_PCIE &&
|
|
!BGE_IS_5717_PLUS(sc) &&
|
|
sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
|
|
sc->bge_asicrev != BGE_ASICREV_BCM5785) {
|
|
/* Enable Data FIFO protection. */
|
|
val = CSR_READ_4(sc, 0x7C00);
|
|
CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
|
|
}
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
|
|
BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
|
|
CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static __inline void
|
|
bge_rxreuse_std(struct bge_softc *sc, int i)
|
|
{
|
|
struct bge_rx_bd *r;
|
|
|
|
r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
|
|
r->bge_flags = BGE_RXBDFLAG_END;
|
|
r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
|
|
r->bge_idx = i;
|
|
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
|
|
}
|
|
|
|
static __inline void
|
|
bge_rxreuse_jumbo(struct bge_softc *sc, int i)
|
|
{
|
|
struct bge_extrx_bd *r;
|
|
|
|
r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
|
|
r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
|
|
r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
|
|
r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
|
|
r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
|
|
r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
|
|
r->bge_idx = i;
|
|
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
|
|
}
|
|
|
|
/*
|
|
* Frame reception handling. This is called if there's a frame
|
|
* on the receive return list.
|
|
*
|
|
* Note: we have to be able to handle two possibilities here:
|
|
* 1) the frame is from the jumbo receive ring
|
|
* 2) the frame is from the standard receive ring
|
|
*/
|
|
|
|
static int
|
|
bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
|
|
{
|
|
if_t ifp;
|
|
int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
|
|
uint16_t rx_cons;
|
|
|
|
rx_cons = sc->bge_rx_saved_considx;
|
|
|
|
/* Nothing to do. */
|
|
if (rx_cons == rx_prod)
|
|
return (rx_npkts);
|
|
|
|
ifp = sc->bge_ifp;
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
|
|
sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
|
|
if (BGE_IS_JUMBO_CAPABLE(sc) &&
|
|
if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
|
|
ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
|
|
|
|
while (rx_cons != rx_prod) {
|
|
struct bge_rx_bd *cur_rx;
|
|
uint32_t rxidx;
|
|
struct mbuf *m = NULL;
|
|
uint16_t vlan_tag = 0;
|
|
int have_tag = 0;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (if_getcapenable(ifp) & IFCAP_POLLING) {
|
|
if (sc->rxcycles <= 0)
|
|
break;
|
|
sc->rxcycles--;
|
|
}
|
|
#endif
|
|
|
|
cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
|
|
|
|
rxidx = cur_rx->bge_idx;
|
|
BGE_INC(rx_cons, sc->bge_return_ring_cnt);
|
|
|
|
if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
|
|
cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
|
|
have_tag = 1;
|
|
vlan_tag = cur_rx->bge_vlan_tag;
|
|
}
|
|
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
|
|
jumbocnt++;
|
|
m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
|
|
bge_rxreuse_jumbo(sc, rxidx);
|
|
continue;
|
|
}
|
|
if (bge_newbuf_jumbo(sc, rxidx) != 0) {
|
|
bge_rxreuse_jumbo(sc, rxidx);
|
|
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
|
|
continue;
|
|
}
|
|
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
|
|
} else {
|
|
stdcnt++;
|
|
m = sc->bge_cdata.bge_rx_std_chain[rxidx];
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
|
|
bge_rxreuse_std(sc, rxidx);
|
|
continue;
|
|
}
|
|
if (bge_newbuf_std(sc, rxidx) != 0) {
|
|
bge_rxreuse_std(sc, rxidx);
|
|
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
|
|
continue;
|
|
}
|
|
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
|
|
}
|
|
|
|
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
/*
|
|
* For architectures with strict alignment we must make sure
|
|
* the payload is aligned.
|
|
*/
|
|
if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
|
|
bcopy(m->m_data, m->m_data + ETHER_ALIGN,
|
|
cur_rx->bge_len);
|
|
m->m_data += ETHER_ALIGN;
|
|
}
|
|
#endif
|
|
m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
if (if_getcapenable(ifp) & IFCAP_RXCSUM)
|
|
bge_rxcsum(sc, cur_rx, m);
|
|
|
|
/*
|
|
* If we received a packet with a vlan tag,
|
|
* attach that information to the packet.
|
|
*/
|
|
if (have_tag) {
|
|
m->m_pkthdr.ether_vtag = vlan_tag;
|
|
m->m_flags |= M_VLANTAG;
|
|
}
|
|
|
|
if (holdlck != 0) {
|
|
BGE_UNLOCK(sc);
|
|
if_input(ifp, m);
|
|
BGE_LOCK(sc);
|
|
} else
|
|
if_input(ifp, m);
|
|
rx_npkts++;
|
|
|
|
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
|
|
return (rx_npkts);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
|
|
sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
|
|
if (stdcnt > 0)
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
|
|
|
|
if (jumbocnt > 0)
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
|
|
|
|
sc->bge_rx_saved_considx = rx_cons;
|
|
bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
|
|
if (stdcnt)
|
|
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
|
|
BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
|
|
if (jumbocnt)
|
|
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
|
|
BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
|
|
#ifdef notyet
|
|
/*
|
|
* This register wraps very quickly under heavy packet drops.
|
|
* If you need correct statistics, you can enable this check.
|
|
*/
|
|
if (BGE_IS_5705_PLUS(sc))
|
|
if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
|
|
#endif
|
|
return (rx_npkts);
|
|
}
|
|
|
|
static void
|
|
bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
|
|
{
|
|
|
|
if (BGE_IS_5717_PLUS(sc)) {
|
|
if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
|
|
if ((cur_rx->bge_error_flag &
|
|
BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
}
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
|
|
m->m_pkthdr.csum_data =
|
|
cur_rx->bge_tcp_udp_csum;
|
|
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
|
|
CSUM_PSEUDO_HDR;
|
|
}
|
|
}
|
|
} else {
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
|
|
if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
}
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
|
|
m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
|
|
m->m_pkthdr.csum_data =
|
|
cur_rx->bge_tcp_udp_csum;
|
|
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
|
|
CSUM_PSEUDO_HDR;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
|
|
{
|
|
struct bge_tx_bd *cur_tx;
|
|
if_t ifp;
|
|
|
|
BGE_LOCK_ASSERT(sc);
|
|
|
|
/* Nothing to do. */
|
|
if (sc->bge_tx_saved_considx == tx_cons)
|
|
return;
|
|
|
|
ifp = sc->bge_ifp;
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
|
|
sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
|
|
/*
|
|
* Go through our tx ring and free mbufs for those
|
|
* frames that have been sent.
|
|
*/
|
|
while (sc->bge_tx_saved_considx != tx_cons) {
|
|
uint32_t idx;
|
|
|
|
idx = sc->bge_tx_saved_considx;
|
|
cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
|
|
if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
|
|
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
|
|
if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
|
|
bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
|
|
sc->bge_cdata.bge_tx_dmamap[idx],
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
|
|
sc->bge_cdata.bge_tx_dmamap[idx]);
|
|
m_freem(sc->bge_cdata.bge_tx_chain[idx]);
|
|
sc->bge_cdata.bge_tx_chain[idx] = NULL;
|
|
}
|
|
sc->bge_txcnt--;
|
|
BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
|
|
}
|
|
|
|
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
|
|
if (sc->bge_txcnt == 0)
|
|
sc->bge_timer = 0;
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static int
|
|
bge_poll(if_t ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct bge_softc *sc = if_getsoftc(ifp);
|
|
uint16_t rx_prod, tx_cons;
|
|
uint32_t statusword;
|
|
int rx_npkts = 0;
|
|
|
|
BGE_LOCK(sc);
|
|
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
|
|
BGE_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
/* Fetch updates from the status block. */
|
|
rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
|
|
tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
|
|
|
|
statusword = sc->bge_ldata.bge_status_block->bge_status;
|
|
/* Clear the status so the next pass only sees the changes. */
|
|
sc->bge_ldata.bge_status_block->bge_status = 0;
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
|
|
if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
|
|
sc->bge_link_evt++;
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS)
|
|
if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
|
|
sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
|
|
sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
|
|
bge_link_upd(sc);
|
|
|
|
sc->rxcycles = count;
|
|
rx_npkts = bge_rxeof(sc, rx_prod, 1);
|
|
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
|
|
BGE_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
bge_txeof(sc, tx_cons);
|
|
if (!if_sendq_empty(ifp))
|
|
bge_start_locked(ifp);
|
|
|
|
BGE_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
static int
|
|
bge_msi_intr(void *arg)
|
|
{
|
|
struct bge_softc *sc;
|
|
|
|
sc = (struct bge_softc *)arg;
|
|
/*
|
|
* This interrupt is not shared and controller already
|
|
* disabled further interrupt.
|
|
*/
|
|
taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
|
|
return (FILTER_HANDLED);
|
|
}
|
|
|
|
static void
|
|
bge_intr_task(void *arg, int pending)
|
|
{
|
|
struct bge_softc *sc;
|
|
if_t ifp;
|
|
uint32_t status, status_tag;
|
|
uint16_t rx_prod, tx_cons;
|
|
|
|
sc = (struct bge_softc *)arg;
|
|
ifp = sc->bge_ifp;
|
|
|
|
BGE_LOCK(sc);
|
|
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
|
|
BGE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
/* Get updated status block. */
|
|
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
/* Save producer/consumer indices. */
|
|
rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
|
|
tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
|
|
status = sc->bge_ldata.bge_status_block->bge_status;
|
|
status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
|
|
/* Dirty the status flag. */
|
|
sc->bge_ldata.bge_status_block->bge_status = 0;
|
|
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
|
|
status_tag = 0;
|
|
|
|
if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
|
|
bge_link_upd(sc);
|
|
|
|
/* Let controller work. */
|
|
bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
|
|
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
|
|
sc->bge_rx_saved_considx != rx_prod) {
|
|
/* Check RX return ring producer/consumer. */
|
|
BGE_UNLOCK(sc);
|
|
bge_rxeof(sc, rx_prod, 0);
|
|
BGE_LOCK(sc);
|
|
}
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
|
|
/* Check TX ring producer/consumer. */
|
|
bge_txeof(sc, tx_cons);
|
|
if (!if_sendq_empty(ifp))
|
|
bge_start_locked(ifp);
|
|
}
|
|
BGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
bge_intr(void *xsc)
|
|
{
|
|
struct bge_softc *sc;
|
|
if_t ifp;
|
|
uint32_t statusword;
|
|
uint16_t rx_prod, tx_cons;
|
|
|
|
sc = xsc;
|
|
|
|
BGE_LOCK(sc);
|
|
|
|
ifp = sc->bge_ifp;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (if_getcapenable(ifp) & IFCAP_POLLING) {
|
|
BGE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't
|
|
* disable interrupts by writing nonzero like we used to, since with
|
|
* our current organization this just gives complications and
|
|
* pessimizations for re-enabling interrupts. We used to have races
|
|
* instead of the necessary complications. Disabling interrupts
|
|
* would just reduce the chance of a status update while we are
|
|
* running (by switching to the interrupt-mode coalescence
|
|
* parameters), but this chance is already very low so it is more
|
|
* efficient to get another interrupt than prevent it.
|
|
*
|
|
* We do the ack first to ensure another interrupt if there is a
|
|
* status update after the ack. We don't check for the status
|
|
* changing later because it is more efficient to get another
|
|
* interrupt than prevent it, not quite as above (not checking is
|
|
* a smaller optimization than not toggling the interrupt enable,
|
|
* since checking doesn't involve PCI accesses and toggling require
|
|
* the status check). So toggling would probably be a pessimization
|
|
* even with MSI. It would only be needed for using a task queue.
|
|
*/
|
|
bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
|
|
|
|
/*
|
|
* Do the mandatory PCI flush as well as get the link status.
|
|
*/
|
|
statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
|
|
|
|
/* Make sure the descriptor ring indexes are coherent. */
|
|
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
|
|
tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
|
|
sc->bge_ldata.bge_status_block->bge_status = 0;
|
|
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
|
|
sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
|
|
statusword || sc->bge_link_evt)
|
|
bge_link_upd(sc);
|
|
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
|
|
/* Check RX return ring producer/consumer. */
|
|
bge_rxeof(sc, rx_prod, 1);
|
|
}
|
|
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
|
|
/* Check TX ring producer/consumer. */
|
|
bge_txeof(sc, tx_cons);
|
|
}
|
|
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
|
|
!if_sendq_empty(ifp))
|
|
bge_start_locked(ifp);
|
|
|
|
BGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
bge_asf_driver_up(struct bge_softc *sc)
|
|
{
|
|
if (sc->bge_asf_mode & ASF_STACKUP) {
|
|
/* Send ASF heartbeat aprox. every 2s */
|
|
if (sc->bge_asf_count)
|
|
sc->bge_asf_count --;
|
|
else {
|
|
sc->bge_asf_count = 2;
|
|
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
|
|
BGE_FW_CMD_DRV_ALIVE);
|
|
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
|
|
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
|
|
BGE_FW_HB_TIMEOUT_SEC);
|
|
CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
|
|
CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
|
|
BGE_RX_CPU_DRV_EVENT);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bge_tick(void *xsc)
|
|
{
|
|
struct bge_softc *sc = xsc;
|
|
struct mii_data *mii = NULL;
|
|
|
|
BGE_LOCK_ASSERT(sc);
|
|
|
|
/* Synchronize with possible callout reset/stop. */
|
|
if (callout_pending(&sc->bge_stat_ch) ||
|
|
!callout_active(&sc->bge_stat_ch))
|
|
return;
|
|
|
|
if (BGE_IS_5705_PLUS(sc))
|
|
bge_stats_update_regs(sc);
|
|
else
|
|
bge_stats_update(sc);
|
|
|
|
/* XXX Add APE heartbeat check here? */
|
|
|
|
if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
|
|
mii = device_get_softc(sc->bge_miibus);
|
|
/*
|
|
* Do not touch PHY if we have link up. This could break
|
|
* IPMI/ASF mode or produce extra input errors
|
|
* (extra errors was reported for bcm5701 & bcm5704).
|
|
*/
|
|
if (!sc->bge_link)
|
|
mii_tick(mii);
|
|
} else {
|
|
/*
|
|
* Since in TBI mode auto-polling can't be used we should poll
|
|
* link status manually. Here we register pending link event
|
|
* and trigger interrupt.
|
|
*/
|
|
#ifdef DEVICE_POLLING
|
|
/* In polling mode we poll link state in bge_poll(). */
|
|
if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
|
|
#endif
|
|
{
|
|
sc->bge_link_evt++;
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
|
|
sc->bge_flags & BGE_FLAG_5788)
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
|
|
else
|
|
BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
|
|
}
|
|
}
|
|
|
|
bge_asf_driver_up(sc);
|
|
bge_watchdog(sc);
|
|
|
|
callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
|
|
}
|
|
|
|
static void
|
|
bge_stats_update_regs(struct bge_softc *sc)
|
|
{
|
|
if_t ifp;
|
|
struct bge_mac_stats *stats;
|
|
uint32_t val;
|
|
|
|
ifp = sc->bge_ifp;
|
|
stats = &sc->bge_mac_stats;
|
|
|
|
stats->ifHCOutOctets +=
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
|
|
stats->etherStatsCollisions +=
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
|
|
stats->outXonSent +=
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
|
|
stats->outXoffSent +=
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
|
|
stats->dot3StatsInternalMacTransmitErrors +=
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
|
|
stats->dot3StatsSingleCollisionFrames +=
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
|
|
stats->dot3StatsMultipleCollisionFrames +=
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
|
|
stats->dot3StatsDeferredTransmissions +=
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
|
|
stats->dot3StatsExcessiveCollisions +=
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
|
|
stats->dot3StatsLateCollisions +=
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
|
|
stats->ifHCOutUcastPkts +=
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
|
|
stats->ifHCOutMulticastPkts +=
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
|
|
stats->ifHCOutBroadcastPkts +=
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
|
|
|
|
stats->ifHCInOctets +=
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
|
|
stats->etherStatsFragments +=
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
|
|
stats->ifHCInUcastPkts +=
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
|
|
stats->ifHCInMulticastPkts +=
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
|
|
stats->ifHCInBroadcastPkts +=
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
|
|
stats->dot3StatsFCSErrors +=
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
|
|
stats->dot3StatsAlignmentErrors +=
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
|
|
stats->xonPauseFramesReceived +=
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
|
|
stats->xoffPauseFramesReceived +=
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
|
|
stats->macControlFramesReceived +=
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
|
|
stats->xoffStateEntered +=
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
|
|
stats->dot3StatsFramesTooLong +=
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
|
|
stats->etherStatsJabbers +=
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
|
|
stats->etherStatsUndersizePkts +=
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
|
|
|
|
stats->FramesDroppedDueToFilters +=
|
|
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
|
|
stats->DmaWriteQueueFull +=
|
|
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
|
|
stats->DmaWriteHighPriQueueFull +=
|
|
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
|
|
stats->NoMoreRxBDs +=
|
|
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
|
|
/*
|
|
* XXX
|
|
* Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
|
|
* counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
|
|
* includes number of unwanted multicast frames. This comes
|
|
* from silicon bug and known workaround to get rough(not
|
|
* exact) counter is to enable interrupt on MBUF low water
|
|
* attention. This can be accomplished by setting
|
|
* BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
|
|
* BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
|
|
* BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
|
|
* However that change would generate more interrupts and
|
|
* there are still possibilities of losing multiple frames
|
|
* during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
|
|
* Given that the workaround still would not get correct
|
|
* counter I don't think it's worth to implement it. So
|
|
* ignore reading the counter on controllers that have the
|
|
* silicon bug.
|
|
*/
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
|
|
sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
|
|
sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
|
|
stats->InputDiscards +=
|
|
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
|
|
stats->InputErrors +=
|
|
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
|
|
stats->RecvThresholdHit +=
|
|
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
|
|
|
|
if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
|
|
/*
|
|
* If controller transmitted more than BGE_NUM_RDMA_CHANNELS
|
|
* frames, it's safe to disable workaround for DMA engine's
|
|
* miscalculation of TXMBUF space.
|
|
*/
|
|
if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
|
|
stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
|
|
val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
|
|
val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
|
|
else
|
|
val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
|
|
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
|
|
sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bge_stats_clear_regs(struct bge_softc *sc)
|
|
{
|
|
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
|
|
CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
|
|
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
|
|
CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
|
|
|
|
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
|
|
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
|
|
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
|
|
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
|
|
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
|
|
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
|
|
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
|
|
}
|
|
|
|
static void
|
|
bge_stats_update(struct bge_softc *sc)
|
|
{
|
|
if_t ifp;
|
|
bus_size_t stats;
|
|
uint32_t cnt; /* current register value */
|
|
|
|
ifp = sc->bge_ifp;
|
|
|
|
stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
|
|
|
|
#define READ_STAT(sc, stats, stat) \
|
|
CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
|
|
|
|
cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
|
|
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
|
|
sc->bge_tx_collisions = cnt;
|
|
|
|
cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
|
|
sc->bge_rx_nobds = cnt;
|
|
cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
|
|
sc->bge_rx_inerrs = cnt;
|
|
cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
|
|
sc->bge_rx_discards = cnt;
|
|
|
|
cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
|
|
sc->bge_tx_discards = cnt;
|
|
|
|
#undef READ_STAT
|
|
}
|
|
|
|
/*
|
|
* Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
|
|
* The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
|
|
* but when such padded frames employ the bge IP/TCP checksum offload,
|
|
* the hardware checksum assist gives incorrect results (possibly
|
|
* from incorporating its own padding into the UDP/TCP checksum; who knows).
|
|
* If we pad such runts with zeros, the onboard checksum comes out correct.
|
|
*/
|
|
static __inline int
|
|
bge_cksum_pad(struct mbuf *m)
|
|
{
|
|
int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
|
|
struct mbuf *last;
|
|
|
|
/* If there's only the packet-header and we can pad there, use it. */
|
|
if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
|
|
M_TRAILINGSPACE(m) >= padlen) {
|
|
last = m;
|
|
} else {
|
|
/*
|
|
* Walk packet chain to find last mbuf. We will either
|
|
* pad there, or append a new mbuf and pad it.
|
|
*/
|
|
for (last = m; last->m_next != NULL; last = last->m_next);
|
|
if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
|
|
/* Allocate new empty mbuf, pad it. Compact later. */
|
|
struct mbuf *n;
|
|
|
|
MGET(n, M_NOWAIT, MT_DATA);
|
|
if (n == NULL)
|
|
return (ENOBUFS);
|
|
n->m_len = 0;
|
|
last->m_next = n;
|
|
last = n;
|
|
}
|
|
}
|
|
|
|
/* Now zero the pad area, to avoid the bge cksum-assist bug. */
|
|
memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
|
|
last->m_len += padlen;
|
|
m->m_pkthdr.len += padlen;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static struct mbuf *
|
|
bge_check_short_dma(struct mbuf *m)
|
|
{
|
|
struct mbuf *n;
|
|
int found;
|
|
|
|
/*
|
|
* If device receive two back-to-back send BDs with less than
|
|
* or equal to 8 total bytes then the device may hang. The two
|
|
* back-to-back send BDs must in the same frame for this failure
|
|
* to occur. Scan mbuf chains and see whether two back-to-back
|
|
* send BDs are there. If this is the case, allocate new mbuf
|
|
* and copy the frame to workaround the silicon bug.
|
|
*/
|
|
for (n = m, found = 0; n != NULL; n = n->m_next) {
|
|
if (n->m_len < 8) {
|
|
found++;
|
|
if (found > 1)
|
|
break;
|
|
continue;
|
|
}
|
|
found = 0;
|
|
}
|
|
|
|
if (found > 1) {
|
|
n = m_defrag(m, M_NOWAIT);
|
|
if (n == NULL)
|
|
m_freem(m);
|
|
} else
|
|
n = m;
|
|
return (n);
|
|
}
|
|
|
|
static struct mbuf *
|
|
bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
|
|
uint16_t *flags)
|
|
{
|
|
struct ip *ip;
|
|
struct tcphdr *tcp;
|
|
struct mbuf *n;
|
|
uint16_t hlen;
|
|
uint32_t poff;
|
|
|
|
if (M_WRITABLE(m) == 0) {
|
|
/* Get a writable copy. */
|
|
n = m_dup(m, M_NOWAIT);
|
|
m_freem(m);
|
|
if (n == NULL)
|
|
return (NULL);
|
|
m = n;
|
|
}
|
|
m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
|
|
if (m == NULL)
|
|
return (NULL);
|
|
ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
|
|
poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
|
|
m = m_pullup(m, poff + sizeof(struct tcphdr));
|
|
if (m == NULL)
|
|
return (NULL);
|
|
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
|
|
m = m_pullup(m, poff + (tcp->th_off << 2));
|
|
if (m == NULL)
|
|
return (NULL);
|
|
/*
|
|
* It seems controller doesn't modify IP length and TCP pseudo
|
|
* checksum. These checksum computed by upper stack should be 0.
|
|
*/
|
|
*mss = m->m_pkthdr.tso_segsz;
|
|
ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
|
|
ip->ip_sum = 0;
|
|
ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
|
|
/* Clear pseudo checksum computed by TCP stack. */
|
|
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
|
|
tcp->th_sum = 0;
|
|
/*
|
|
* Broadcom controllers uses different descriptor format for
|
|
* TSO depending on ASIC revision. Due to TSO-capable firmware
|
|
* license issue and lower performance of firmware based TSO
|
|
* we only support hardware based TSO.
|
|
*/
|
|
/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
|
|
hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
|
|
if (sc->bge_flags & BGE_FLAG_TSO3) {
|
|
/*
|
|
* For BCM5717 and newer controllers, hardware based TSO
|
|
* uses the 14 lower bits of the bge_mss field to store the
|
|
* MSS and the upper 2 bits to store the lowest 2 bits of
|
|
* the IP/TCP header length. The upper 6 bits of the header
|
|
* length are stored in the bge_flags[14:10,4] field. Jumbo
|
|
* frames are supported.
|
|
*/
|
|
*mss |= ((hlen & 0x3) << 14);
|
|
*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
|
|
} else {
|
|
/*
|
|
* For BCM5755 and newer controllers, hardware based TSO uses
|
|
* the lower 11 bits to store the MSS and the upper 5 bits to
|
|
* store the IP/TCP header length. Jumbo frames are not
|
|
* supported.
|
|
*/
|
|
*mss |= (hlen << 11);
|
|
}
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
|
|
* pointers to descriptors.
|
|
*/
|
|
static int
|
|
bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
|
|
{
|
|
bus_dma_segment_t segs[BGE_NSEG_NEW];
|
|
bus_dmamap_t map;
|
|
struct bge_tx_bd *d;
|
|
struct mbuf *m = *m_head;
|
|
uint32_t idx = *txidx;
|
|
uint16_t csum_flags, mss, vlan_tag;
|
|
int nsegs, i, error;
|
|
|
|
csum_flags = 0;
|
|
mss = 0;
|
|
vlan_tag = 0;
|
|
if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
|
|
m->m_next != NULL) {
|
|
*m_head = bge_check_short_dma(m);
|
|
if (*m_head == NULL)
|
|
return (ENOBUFS);
|
|
m = *m_head;
|
|
}
|
|
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
|
|
*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
|
|
if (*m_head == NULL)
|
|
return (ENOBUFS);
|
|
csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
|
|
BGE_TXBDFLAG_CPU_POST_DMA;
|
|
} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
|
|
if (m->m_pkthdr.csum_flags & CSUM_IP)
|
|
csum_flags |= BGE_TXBDFLAG_IP_CSUM;
|
|
if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
|
|
csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
|
|
if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
|
|
(error = bge_cksum_pad(m)) != 0) {
|
|
m_freem(m);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
|
|
if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
|
|
m->m_pkthdr.len > ETHER_MAX_LEN)
|
|
csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
|
|
if (sc->bge_forced_collapse > 0 &&
|
|
(sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
|
|
/*
|
|
* Forcedly collapse mbuf chains to overcome hardware
|
|
* limitation which only support a single outstanding
|
|
* DMA read operation.
|
|
*/
|
|
if (sc->bge_forced_collapse == 1)
|
|
m = m_defrag(m, M_NOWAIT);
|
|
else
|
|
m = m_collapse(m, M_NOWAIT,
|
|
sc->bge_forced_collapse);
|
|
if (m == NULL)
|
|
m = *m_head;
|
|
*m_head = m;
|
|
}
|
|
}
|
|
|
|
map = sc->bge_cdata.bge_tx_dmamap[idx];
|
|
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
|
|
&nsegs, BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
|
|
m, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
m_freem(m);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
|
|
/* Check if we have enough free send BDs. */
|
|
if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
|
|
bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
if (m->m_flags & M_VLANTAG) {
|
|
csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
|
|
vlan_tag = m->m_pkthdr.ether_vtag;
|
|
}
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
|
|
(m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
|
|
/*
|
|
* 5725 family of devices corrupts TSO packets when TSO DMA
|
|
* buffers cross into regions which are within MSS bytes of
|
|
* a 4GB boundary. If we encounter the condition, drop the
|
|
* packet.
|
|
*/
|
|
for (i = 0; ; i++) {
|
|
d = &sc->bge_ldata.bge_tx_ring[idx];
|
|
d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
|
|
d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
|
|
d->bge_len = segs[i].ds_len;
|
|
if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
|
|
d->bge_addr.bge_addr_lo)
|
|
break;
|
|
d->bge_flags = csum_flags;
|
|
d->bge_vlan_tag = vlan_tag;
|
|
d->bge_mss = mss;
|
|
if (i == nsegs - 1)
|
|
break;
|
|
BGE_INC(idx, BGE_TX_RING_CNT);
|
|
}
|
|
if (i != nsegs - 1) {
|
|
bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (EIO);
|
|
}
|
|
} else {
|
|
for (i = 0; ; i++) {
|
|
d = &sc->bge_ldata.bge_tx_ring[idx];
|
|
d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
|
|
d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
|
|
d->bge_len = segs[i].ds_len;
|
|
d->bge_flags = csum_flags;
|
|
d->bge_vlan_tag = vlan_tag;
|
|
d->bge_mss = mss;
|
|
if (i == nsegs - 1)
|
|
break;
|
|
BGE_INC(idx, BGE_TX_RING_CNT);
|
|
}
|
|
}
|
|
|
|
/* Mark the last segment as end of packet... */
|
|
d->bge_flags |= BGE_TXBDFLAG_END;
|
|
|
|
/*
|
|
* Insure that the map for this transmission
|
|
* is placed at the array index of the last descriptor
|
|
* in this chain.
|
|
*/
|
|
sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
|
|
sc->bge_cdata.bge_tx_dmamap[idx] = map;
|
|
sc->bge_cdata.bge_tx_chain[idx] = m;
|
|
sc->bge_txcnt += nsegs;
|
|
|
|
BGE_INC(idx, BGE_TX_RING_CNT);
|
|
*txidx = idx;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
|
|
* to the mbuf data regions directly in the transmit descriptors.
|
|
*/
|
|
static void
|
|
bge_start_locked(if_t ifp)
|
|
{
|
|
struct bge_softc *sc;
|
|
struct mbuf *m_head;
|
|
uint32_t prodidx;
|
|
int count;
|
|
|
|
sc = if_getsoftc(ifp);
|
|
BGE_LOCK_ASSERT(sc);
|
|
|
|
if (!sc->bge_link ||
|
|
(if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
prodidx = sc->bge_tx_prodidx;
|
|
|
|
for (count = 0; !if_sendq_empty(ifp);) {
|
|
if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
|
|
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
|
|
break;
|
|
}
|
|
m_head = if_dequeue(ifp);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (bge_encap(sc, &m_head, &prodidx)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
if_sendq_prepend(ifp, m_head);
|
|
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
|
|
break;
|
|
}
|
|
++count;
|
|
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
if_bpfmtap(ifp, m_head);
|
|
}
|
|
|
|
if (count > 0) {
|
|
bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
|
|
sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
|
|
/* Transmit. */
|
|
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
|
|
/* 5700 b2 errata */
|
|
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
|
|
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
|
|
|
|
sc->bge_tx_prodidx = prodidx;
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
sc->bge_timer = BGE_TX_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
|
|
* to the mbuf data regions directly in the transmit descriptors.
|
|
*/
|
|
static void
|
|
bge_start(if_t ifp)
|
|
{
|
|
struct bge_softc *sc;
|
|
|
|
sc = if_getsoftc(ifp);
|
|
BGE_LOCK(sc);
|
|
bge_start_locked(ifp);
|
|
BGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
bge_init_locked(struct bge_softc *sc)
|
|
{
|
|
if_t ifp;
|
|
uint16_t *m;
|
|
uint32_t mode;
|
|
|
|
BGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->bge_ifp;
|
|
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
/* Cancel pending I/O and flush buffers. */
|
|
bge_stop(sc);
|
|
|
|
bge_stop_fw(sc);
|
|
bge_sig_pre_reset(sc, BGE_RESET_START);
|
|
bge_reset(sc);
|
|
bge_sig_legacy(sc, BGE_RESET_START);
|
|
bge_sig_post_reset(sc, BGE_RESET_START);
|
|
|
|
bge_chipinit(sc);
|
|
|
|
/*
|
|
* Init the various state machines, ring
|
|
* control blocks and firmware.
|
|
*/
|
|
if (bge_blockinit(sc)) {
|
|
device_printf(sc->bge_dev, "initialization failure\n");
|
|
return;
|
|
}
|
|
|
|
ifp = sc->bge_ifp;
|
|
|
|
/* Specify MTU. */
|
|
CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
|
|
ETHER_HDR_LEN + ETHER_CRC_LEN +
|
|
(if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
|
|
|
|
/* Load our MAC address. */
|
|
m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
|
|
CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
|
|
CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
|
|
|
|
/* Program promiscuous mode. */
|
|
bge_setpromisc(sc);
|
|
|
|
/* Program multicast filter. */
|
|
bge_setmulti(sc);
|
|
|
|
/* Program VLAN tag stripping. */
|
|
bge_setvlan(sc);
|
|
|
|
/* Override UDP checksum offloading. */
|
|
if (sc->bge_forced_udpcsum == 0)
|
|
sc->bge_csum_features &= ~CSUM_UDP;
|
|
else
|
|
sc->bge_csum_features |= CSUM_UDP;
|
|
if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
|
|
if_getcapenable(ifp) & IFCAP_TXCSUM) {
|
|
if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
|
|
if_sethwassistbits(ifp, sc->bge_csum_features, 0);
|
|
}
|
|
|
|
/* Init RX ring. */
|
|
if (bge_init_rx_ring_std(sc) != 0) {
|
|
device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
|
|
bge_stop(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
|
|
* memory to insure that the chip has in fact read the first
|
|
* entry of the ring.
|
|
*/
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
|
|
uint32_t v, i;
|
|
for (i = 0; i < 10; i++) {
|
|
DELAY(20);
|
|
v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
|
|
if (v == (MCLBYTES - ETHER_ALIGN))
|
|
break;
|
|
}
|
|
if (i == 10)
|
|
device_printf (sc->bge_dev,
|
|
"5705 A0 chip failed to load RX ring\n");
|
|
}
|
|
|
|
/* Init jumbo RX ring. */
|
|
if (BGE_IS_JUMBO_CAPABLE(sc) &&
|
|
if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
|
|
ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
|
|
if (bge_init_rx_ring_jumbo(sc) != 0) {
|
|
device_printf(sc->bge_dev,
|
|
"no memory for jumbo Rx buffers.\n");
|
|
bge_stop(sc);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Init our RX return ring index. */
|
|
sc->bge_rx_saved_considx = 0;
|
|
|
|
/* Init our RX/TX stat counters. */
|
|
sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
|
|
|
|
/* Init TX ring. */
|
|
bge_init_tx_ring(sc);
|
|
|
|
/* Enable TX MAC state machine lockup fix. */
|
|
mode = CSR_READ_4(sc, BGE_TX_MODE);
|
|
if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
|
|
mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5762) {
|
|
mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
|
|
mode |= CSR_READ_4(sc, BGE_TX_MODE) &
|
|
(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
|
|
}
|
|
/* Turn on transmitter. */
|
|
CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
|
|
DELAY(100);
|
|
|
|
/* Turn on receiver. */
|
|
mode = CSR_READ_4(sc, BGE_RX_MODE);
|
|
if (BGE_IS_5755_PLUS(sc))
|
|
mode |= BGE_RXMODE_IPV6_ENABLE;
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
|
|
mode |= BGE_RXMODE_IPV4_FRAG_FIX;
|
|
CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
|
|
DELAY(10);
|
|
|
|
/*
|
|
* Set the number of good frames to receive after RX MBUF
|
|
* Low Watermark has been reached. After the RX MAC receives
|
|
* this number of frames, it will drop subsequent incoming
|
|
* frames until the MBUF High Watermark is reached.
|
|
*/
|
|
if (BGE_IS_57765_PLUS(sc))
|
|
CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
|
|
else
|
|
CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
|
|
|
|
/* Clear MAC statistics. */
|
|
if (BGE_IS_5705_PLUS(sc))
|
|
bge_stats_clear_regs(sc);
|
|
|
|
/* Tell firmware we're alive. */
|
|
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/* Disable interrupts if we are polling. */
|
|
if (if_getcapenable(ifp) & IFCAP_POLLING) {
|
|
BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
|
|
BGE_PCIMISCCTL_MASK_PCI_INTR);
|
|
bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
|
|
} else
|
|
#endif
|
|
|
|
/* Enable host interrupts. */
|
|
{
|
|
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
|
|
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
|
|
bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
|
|
}
|
|
|
|
if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
|
|
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
|
|
|
|
bge_ifmedia_upd_locked(ifp);
|
|
|
|
callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
|
|
}
|
|
|
|
static void
|
|
bge_init(void *xsc)
|
|
{
|
|
struct bge_softc *sc = xsc;
|
|
|
|
BGE_LOCK(sc);
|
|
bge_init_locked(sc);
|
|
BGE_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
bge_ifmedia_upd(if_t ifp)
|
|
{
|
|
struct bge_softc *sc = if_getsoftc(ifp);
|
|
int res;
|
|
|
|
BGE_LOCK(sc);
|
|
res = bge_ifmedia_upd_locked(ifp);
|
|
BGE_UNLOCK(sc);
|
|
|
|
return (res);
|
|
}
|
|
|
|
static int
|
|
bge_ifmedia_upd_locked(if_t ifp)
|
|
{
|
|
struct bge_softc *sc = if_getsoftc(ifp);
|
|
struct mii_data *mii;
|
|
struct mii_softc *miisc;
|
|
struct ifmedia *ifm;
|
|
|
|
BGE_LOCK_ASSERT(sc);
|
|
|
|
ifm = &sc->bge_ifmedia;
|
|
|
|
/* If this is a 1000baseX NIC, enable the TBI port. */
|
|
if (sc->bge_flags & BGE_FLAG_TBI) {
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return (EINVAL);
|
|
switch(IFM_SUBTYPE(ifm->ifm_media)) {
|
|
case IFM_AUTO:
|
|
/*
|
|
* The BCM5704 ASIC appears to have a special
|
|
* mechanism for programming the autoneg
|
|
* advertisement registers in TBI mode.
|
|
*/
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
|
|
uint32_t sgdig;
|
|
sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
|
|
if (sgdig & BGE_SGDIGSTS_DONE) {
|
|
CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
|
|
sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
|
|
sgdig |= BGE_SGDIGCFG_AUTO |
|
|
BGE_SGDIGCFG_PAUSE_CAP |
|
|
BGE_SGDIGCFG_ASYM_PAUSE;
|
|
CSR_WRITE_4(sc, BGE_SGDIG_CFG,
|
|
sgdig | BGE_SGDIGCFG_SEND);
|
|
DELAY(5);
|
|
CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
|
|
}
|
|
}
|
|
break;
|
|
case IFM_1000_SX:
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
|
|
BGE_CLRBIT(sc, BGE_MAC_MODE,
|
|
BGE_MACMODE_HALF_DUPLEX);
|
|
} else {
|
|
BGE_SETBIT(sc, BGE_MAC_MODE,
|
|
BGE_MACMODE_HALF_DUPLEX);
|
|
}
|
|
DELAY(40);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
sc->bge_link_evt++;
|
|
mii = device_get_softc(sc->bge_miibus);
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
PHY_RESET(miisc);
|
|
mii_mediachg(mii);
|
|
|
|
/*
|
|
* Force an interrupt so that we will call bge_link_upd
|
|
* if needed and clear any pending link state attention.
|
|
* Without this we are not getting any further interrupts
|
|
* for link state changes and thus will not UP the link and
|
|
* not be able to send in bge_start_locked. The only
|
|
* way to get things working was to receive a packet and
|
|
* get an RX intr.
|
|
* bge_tick should help for fiber cards and we might not
|
|
* need to do this here if BGE_FLAG_TBI is set but as
|
|
* we poll for fiber anyway it should not harm.
|
|
*/
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
|
|
sc->bge_flags & BGE_FLAG_5788)
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
|
|
else
|
|
BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct bge_softc *sc = if_getsoftc(ifp);
|
|
struct mii_data *mii;
|
|
|
|
BGE_LOCK(sc);
|
|
|
|
if ((if_getflags(ifp) & IFF_UP) == 0) {
|
|
BGE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
if (sc->bge_flags & BGE_FLAG_TBI) {
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
if (CSR_READ_4(sc, BGE_MAC_STS) &
|
|
BGE_MACSTAT_TBI_PCS_SYNCHED)
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
else {
|
|
ifmr->ifm_active |= IFM_NONE;
|
|
BGE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
ifmr->ifm_active |= IFM_1000_SX;
|
|
if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
BGE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
mii = device_get_softc(sc->bge_miibus);
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
|
|
BGE_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
bge_ioctl(if_t ifp, u_long command, caddr_t data)
|
|
{
|
|
struct bge_softc *sc = if_getsoftc(ifp);
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
struct mii_data *mii;
|
|
int flags, mask, error = 0;
|
|
|
|
switch (command) {
|
|
case SIOCSIFMTU:
|
|
if (BGE_IS_JUMBO_CAPABLE(sc) ||
|
|
(sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
|
|
if (ifr->ifr_mtu < ETHERMIN ||
|
|
ifr->ifr_mtu > BGE_JUMBO_MTU) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
BGE_LOCK(sc);
|
|
if (if_getmtu(ifp) != ifr->ifr_mtu) {
|
|
if_setmtu(ifp, ifr->ifr_mtu);
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
|
|
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
|
|
bge_init_locked(sc);
|
|
}
|
|
}
|
|
BGE_UNLOCK(sc);
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
BGE_LOCK(sc);
|
|
if (if_getflags(ifp) & IFF_UP) {
|
|
/*
|
|
* If only the state of the PROMISC flag changed,
|
|
* then just use the 'set promisc mode' command
|
|
* instead of reinitializing the entire NIC. Doing
|
|
* a full re-init means reloading the firmware and
|
|
* waiting for it to start up, which may take a
|
|
* second or two. Similarly for ALLMULTI.
|
|
*/
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
|
|
flags = if_getflags(ifp) ^ sc->bge_if_flags;
|
|
if (flags & IFF_PROMISC)
|
|
bge_setpromisc(sc);
|
|
if (flags & IFF_ALLMULTI)
|
|
bge_setmulti(sc);
|
|
} else
|
|
bge_init_locked(sc);
|
|
} else {
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
|
|
bge_stop(sc);
|
|
}
|
|
}
|
|
sc->bge_if_flags = if_getflags(ifp);
|
|
BGE_UNLOCK(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
|
|
BGE_LOCK(sc);
|
|
bge_setmulti(sc);
|
|
BGE_UNLOCK(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
if (sc->bge_flags & BGE_FLAG_TBI) {
|
|
error = ifmedia_ioctl(ifp, ifr,
|
|
&sc->bge_ifmedia, command);
|
|
} else {
|
|
mii = device_get_softc(sc->bge_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr,
|
|
&mii->mii_media, command);
|
|
}
|
|
break;
|
|
case SIOCSIFCAP:
|
|
mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
|
|
#ifdef DEVICE_POLLING
|
|
if (mask & IFCAP_POLLING) {
|
|
if (ifr->ifr_reqcap & IFCAP_POLLING) {
|
|
error = ether_poll_register(bge_poll, ifp);
|
|
if (error)
|
|
return (error);
|
|
BGE_LOCK(sc);
|
|
BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
|
|
BGE_PCIMISCCTL_MASK_PCI_INTR);
|
|
bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
|
|
if_setcapenablebit(ifp, IFCAP_POLLING, 0);
|
|
BGE_UNLOCK(sc);
|
|
} else {
|
|
error = ether_poll_deregister(ifp);
|
|
/* Enable interrupt even in error case */
|
|
BGE_LOCK(sc);
|
|
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
|
|
BGE_PCIMISCCTL_MASK_PCI_INTR);
|
|
bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
|
|
if_setcapenablebit(ifp, 0, IFCAP_POLLING);
|
|
BGE_UNLOCK(sc);
|
|
}
|
|
}
|
|
#endif
|
|
if ((mask & IFCAP_TXCSUM) != 0 &&
|
|
(if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
|
|
if_togglecapenable(ifp, IFCAP_TXCSUM);
|
|
if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
|
|
if_sethwassistbits(ifp,
|
|
sc->bge_csum_features, 0);
|
|
else
|
|
if_sethwassistbits(ifp, 0,
|
|
sc->bge_csum_features);
|
|
}
|
|
|
|
if ((mask & IFCAP_RXCSUM) != 0 &&
|
|
(if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
|
|
if_togglecapenable(ifp, IFCAP_RXCSUM);
|
|
|
|
if ((mask & IFCAP_TSO4) != 0 &&
|
|
(if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
|
|
if_togglecapenable(ifp, IFCAP_TSO4);
|
|
if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
|
|
if_sethwassistbits(ifp, CSUM_TSO, 0);
|
|
else
|
|
if_sethwassistbits(ifp, 0, CSUM_TSO);
|
|
}
|
|
|
|
if (mask & IFCAP_VLAN_MTU) {
|
|
if_togglecapenable(ifp, IFCAP_VLAN_MTU);
|
|
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
|
|
bge_init(sc);
|
|
}
|
|
|
|
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
|
|
(if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
|
|
if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
|
|
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
|
|
(if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
|
|
if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
|
|
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
|
|
if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
|
|
BGE_LOCK(sc);
|
|
bge_setvlan(sc);
|
|
BGE_UNLOCK(sc);
|
|
}
|
|
#ifdef VLAN_CAPABILITIES
|
|
if_vlancap(ifp);
|
|
#endif
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
bge_watchdog(struct bge_softc *sc)
|
|
{
|
|
if_t ifp;
|
|
uint32_t status;
|
|
|
|
BGE_LOCK_ASSERT(sc);
|
|
|
|
if (sc->bge_timer == 0 || --sc->bge_timer)
|
|
return;
|
|
|
|
/* If pause frames are active then don't reset the hardware. */
|
|
if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
|
|
status = CSR_READ_4(sc, BGE_RX_STS);
|
|
if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
|
|
/*
|
|
* If link partner has us in XOFF state then wait for
|
|
* the condition to clear.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_RX_STS, status);
|
|
sc->bge_timer = BGE_TX_TIMEOUT;
|
|
return;
|
|
} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
|
|
(status & BGE_RXSTAT_RCVD_XON) != 0) {
|
|
/*
|
|
* If link partner has us in XOFF state then wait for
|
|
* the condition to clear.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_RX_STS, status);
|
|
sc->bge_timer = BGE_TX_TIMEOUT;
|
|
return;
|
|
}
|
|
/*
|
|
* Any other condition is unexpected and the controller
|
|
* should be reset.
|
|
*/
|
|
}
|
|
|
|
ifp = sc->bge_ifp;
|
|
|
|
if_printf(ifp, "watchdog timeout -- resetting\n");
|
|
|
|
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
|
|
bge_init_locked(sc);
|
|
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
}
|
|
|
|
static void
|
|
bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
|
|
{
|
|
int i;
|
|
|
|
BGE_CLRBIT(sc, reg, bit);
|
|
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
if ((CSR_READ_4(sc, reg) & bit) == 0)
|
|
return;
|
|
DELAY(100);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void
|
|
bge_stop(struct bge_softc *sc)
|
|
{
|
|
if_t ifp;
|
|
|
|
BGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->bge_ifp;
|
|
|
|
callout_stop(&sc->bge_stat_ch);
|
|
|
|
/* Disable host interrupts. */
|
|
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
|
|
bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
|
|
|
|
/*
|
|
* Tell firmware we're shutting down.
|
|
*/
|
|
bge_stop_fw(sc);
|
|
bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
|
|
|
|
/*
|
|
* Disable all of the receiver blocks.
|
|
*/
|
|
bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
|
|
if (BGE_IS_5700_FAMILY(sc))
|
|
bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
|
|
|
|
/*
|
|
* Disable all of the transmit blocks.
|
|
*/
|
|
bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
|
|
if (BGE_IS_5700_FAMILY(sc))
|
|
bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
|
|
|
|
/*
|
|
* Shut down all of the memory managers and related
|
|
* state machines.
|
|
*/
|
|
bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
|
|
if (BGE_IS_5700_FAMILY(sc))
|
|
bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
|
|
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
|
|
if (!(BGE_IS_5705_PLUS(sc))) {
|
|
BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
|
|
BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
|
|
}
|
|
/* Update MAC statistics. */
|
|
if (BGE_IS_5705_PLUS(sc))
|
|
bge_stats_update_regs(sc);
|
|
|
|
bge_reset(sc);
|
|
bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
|
|
bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
|
|
|
|
/*
|
|
* Keep the ASF firmware running if up.
|
|
*/
|
|
if (sc->bge_asf_mode & ASF_STACKUP)
|
|
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
else
|
|
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
|
|
/* Free the RX lists. */
|
|
bge_free_rx_ring_std(sc);
|
|
|
|
/* Free jumbo RX list. */
|
|
if (BGE_IS_JUMBO_CAPABLE(sc))
|
|
bge_free_rx_ring_jumbo(sc);
|
|
|
|
/* Free TX buffers. */
|
|
bge_free_tx_ring(sc);
|
|
|
|
sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
|
|
|
|
/* Clear MAC's link state (PHY may still have link UP). */
|
|
if (bootverbose && sc->bge_link)
|
|
if_printf(sc->bge_ifp, "link DOWN\n");
|
|
sc->bge_link = 0;
|
|
|
|
if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static int
|
|
bge_shutdown(device_t dev)
|
|
{
|
|
struct bge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
BGE_LOCK(sc);
|
|
bge_stop(sc);
|
|
BGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
bge_suspend(device_t dev)
|
|
{
|
|
struct bge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
BGE_LOCK(sc);
|
|
bge_stop(sc);
|
|
BGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
bge_resume(device_t dev)
|
|
{
|
|
struct bge_softc *sc;
|
|
if_t ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
BGE_LOCK(sc);
|
|
ifp = sc->bge_ifp;
|
|
if (if_getflags(ifp) & IFF_UP) {
|
|
bge_init_locked(sc);
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
|
|
bge_start_locked(ifp);
|
|
}
|
|
BGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bge_link_upd(struct bge_softc *sc)
|
|
{
|
|
struct mii_data *mii;
|
|
uint32_t link, status;
|
|
|
|
BGE_LOCK_ASSERT(sc);
|
|
|
|
/* Clear 'pending link event' flag. */
|
|
sc->bge_link_evt = 0;
|
|
|
|
/*
|
|
* Process link state changes.
|
|
* Grrr. The link status word in the status block does
|
|
* not work correctly on the BCM5700 rev AX and BX chips,
|
|
* according to all available information. Hence, we have
|
|
* to enable MII interrupts in order to properly obtain
|
|
* async link changes. Unfortunately, this also means that
|
|
* we have to read the MAC status register to detect link
|
|
* changes, thereby adding an additional register access to
|
|
* the interrupt handler.
|
|
*
|
|
* XXX: perhaps link state detection procedure used for
|
|
* BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
|
|
*/
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
|
|
sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
|
|
status = CSR_READ_4(sc, BGE_MAC_STS);
|
|
if (status & BGE_MACSTAT_MI_INTERRUPT) {
|
|
mii = device_get_softc(sc->bge_miibus);
|
|
mii_pollstat(mii);
|
|
if (!sc->bge_link &&
|
|
mii->mii_media_status & IFM_ACTIVE &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
|
|
sc->bge_link++;
|
|
if (bootverbose)
|
|
if_printf(sc->bge_ifp, "link UP\n");
|
|
} else if (sc->bge_link &&
|
|
(!(mii->mii_media_status & IFM_ACTIVE) ||
|
|
IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
|
|
sc->bge_link = 0;
|
|
if (bootverbose)
|
|
if_printf(sc->bge_ifp, "link DOWN\n");
|
|
}
|
|
|
|
/* Clear the interrupt. */
|
|
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
|
|
BGE_EVTENB_MI_INTERRUPT);
|
|
bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
|
|
BRGPHY_MII_ISR);
|
|
bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
|
|
BRGPHY_MII_IMR, BRGPHY_INTRS);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (sc->bge_flags & BGE_FLAG_TBI) {
|
|
status = CSR_READ_4(sc, BGE_MAC_STS);
|
|
if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
|
|
if (!sc->bge_link) {
|
|
sc->bge_link++;
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
|
|
BGE_CLRBIT(sc, BGE_MAC_MODE,
|
|
BGE_MACMODE_TBI_SEND_CFGS);
|
|
DELAY(40);
|
|
}
|
|
CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
|
|
if (bootverbose)
|
|
if_printf(sc->bge_ifp, "link UP\n");
|
|
if_link_state_change(sc->bge_ifp,
|
|
LINK_STATE_UP);
|
|
}
|
|
} else if (sc->bge_link) {
|
|
sc->bge_link = 0;
|
|
if (bootverbose)
|
|
if_printf(sc->bge_ifp, "link DOWN\n");
|
|
if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
|
|
}
|
|
} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
|
|
/*
|
|
* Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
|
|
* in status word always set. Workaround this bug by reading
|
|
* PHY link status directly.
|
|
*/
|
|
link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
|
|
|
|
if (link != sc->bge_link ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5700) {
|
|
mii = device_get_softc(sc->bge_miibus);
|
|
mii_pollstat(mii);
|
|
if (!sc->bge_link &&
|
|
mii->mii_media_status & IFM_ACTIVE &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
|
|
sc->bge_link++;
|
|
if (bootverbose)
|
|
if_printf(sc->bge_ifp, "link UP\n");
|
|
} else if (sc->bge_link &&
|
|
(!(mii->mii_media_status & IFM_ACTIVE) ||
|
|
IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
|
|
sc->bge_link = 0;
|
|
if (bootverbose)
|
|
if_printf(sc->bge_ifp, "link DOWN\n");
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* For controllers that call mii_tick, we have to poll
|
|
* link status.
|
|
*/
|
|
mii = device_get_softc(sc->bge_miibus);
|
|
mii_pollstat(mii);
|
|
bge_miibus_statchg(sc->bge_dev);
|
|
}
|
|
|
|
/* Disable MAC attention when link is up. */
|
|
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
|
|
BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
|
|
BGE_MACSTAT_LINK_CHANGED);
|
|
}
|
|
|
|
static void
|
|
bge_add_sysctls(struct bge_softc *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid_list *children;
|
|
int unit;
|
|
|
|
ctx = device_get_sysctl_ctx(sc->bge_dev);
|
|
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
|
|
|
|
#ifdef BGE_REGISTER_DEBUG
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
|
|
CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
|
|
"Debug Information");
|
|
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
|
|
CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
|
|
"MAC Register Read");
|
|
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
|
|
CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
|
|
"APE Register Read");
|
|
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
|
|
CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
|
|
"Memory Read");
|
|
|
|
#endif
|
|
|
|
unit = device_get_unit(sc->bge_dev);
|
|
/*
|
|
* A common design characteristic for many Broadcom client controllers
|
|
* is that they only support a single outstanding DMA read operation
|
|
* on the PCIe bus. This means that it will take twice as long to fetch
|
|
* a TX frame that is split into header and payload buffers as it does
|
|
* to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
|
|
* these controllers, coalescing buffers to reduce the number of memory
|
|
* reads is effective way to get maximum performance(about 940Mbps).
|
|
* Without collapsing TX buffers the maximum TCP bulk transfer
|
|
* performance is about 850Mbps. However forcing coalescing mbufs
|
|
* consumes a lot of CPU cycles, so leave it off by default.
|
|
*/
|
|
sc->bge_forced_collapse = 0;
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
|
|
CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
|
|
"Number of fragmented TX buffers of a frame allowed before "
|
|
"forced collapsing");
|
|
|
|
sc->bge_msi = 1;
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
|
|
CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
|
|
|
|
/*
|
|
* It seems all Broadcom controllers have a bug that can generate UDP
|
|
* datagrams with checksum value 0 when TX UDP checksum offloading is
|
|
* enabled. Generating UDP checksum value 0 is RFC 768 violation.
|
|
* Even though the probability of generating such UDP datagrams is
|
|
* low, I don't want to see FreeBSD boxes to inject such datagrams
|
|
* into network so disable UDP checksum offloading by default. Users
|
|
* still override this behavior by setting a sysctl variable,
|
|
* dev.bge.0.forced_udpcsum.
|
|
*/
|
|
sc->bge_forced_udpcsum = 0;
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
|
|
CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
|
|
"Enable UDP checksum offloading even if controller can "
|
|
"generate UDP checksum value 0");
|
|
|
|
if (BGE_IS_5705_PLUS(sc))
|
|
bge_add_sysctl_stats_regs(sc, ctx, children);
|
|
else
|
|
bge_add_sysctl_stats(sc, ctx, children);
|
|
}
|
|
|
|
#define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
|
|
SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
|
|
sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
|
|
desc)
|
|
|
|
static void
|
|
bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
|
|
struct sysctl_oid_list *parent)
|
|
{
|
|
struct sysctl_oid *tree;
|
|
struct sysctl_oid_list *children, *schildren;
|
|
|
|
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
|
|
NULL, "BGE Statistics");
|
|
schildren = children = SYSCTL_CHILDREN(tree);
|
|
BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
|
|
children, COSFramesDroppedDueToFilters,
|
|
"FramesDroppedDueToFilters");
|
|
BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
|
|
children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
|
|
BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
|
|
children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
|
|
BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
|
|
children, nicNoMoreRxBDs, "NoMoreRxBDs");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
|
|
children, ifInDiscards, "InputDiscards");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
|
|
children, ifInErrors, "InputErrors");
|
|
BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
|
|
children, nicRecvThresholdHit, "RecvThresholdHit");
|
|
BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
|
|
children, nicDmaReadQueueFull, "DmaReadQueueFull");
|
|
BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
|
|
children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
|
|
BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
|
|
children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
|
|
BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
|
|
children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
|
|
BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
|
|
children, nicRingStatusUpdate, "RingStatusUpdate");
|
|
BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
|
|
children, nicInterrupts, "Interrupts");
|
|
BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
|
|
children, nicAvoidedInterrupts, "AvoidedInterrupts");
|
|
BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
|
|
children, nicSendThresholdHit, "SendThresholdHit");
|
|
|
|
tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
|
|
NULL, "BGE RX Statistics");
|
|
children = SYSCTL_CHILDREN(tree);
|
|
BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
|
|
children, rxstats.ifHCInOctets, "ifHCInOctets");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Fragments",
|
|
children, rxstats.etherStatsFragments, "Fragments");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
|
|
children, rxstats.ifHCInUcastPkts, "UnicastPkts");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
|
|
children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
|
|
BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
|
|
children, rxstats.dot3StatsFCSErrors, "FCSErrors");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
|
|
children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
|
|
BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
|
|
children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
|
|
BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
|
|
children, rxstats.xoffPauseFramesReceived,
|
|
"xoffPauseFramesReceived");
|
|
BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
|
|
children, rxstats.macControlFramesReceived,
|
|
"ControlFramesReceived");
|
|
BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
|
|
children, rxstats.xoffStateEntered, "xoffStateEntered");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
|
|
children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
|
|
children, rxstats.etherStatsJabbers, "Jabbers");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
|
|
children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
|
|
children, rxstats.inRangeLengthError, "inRangeLengthError");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
|
|
children, rxstats.outRangeLengthError, "outRangeLengthError");
|
|
|
|
tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
|
|
NULL, "BGE TX Statistics");
|
|
children = SYSCTL_CHILDREN(tree);
|
|
BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
|
|
children, txstats.ifHCOutOctets, "ifHCOutOctets");
|
|
BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
|
|
children, txstats.etherStatsCollisions, "Collisions");
|
|
BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
|
|
children, txstats.outXonSent, "XonSent");
|
|
BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
|
|
children, txstats.outXoffSent, "XoffSent");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
|
|
children, txstats.flowControlDone, "flowControlDone");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
|
|
children, txstats.dot3StatsInternalMacTransmitErrors,
|
|
"InternalMacTransmitErrors");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
|
|
children, txstats.dot3StatsSingleCollisionFrames,
|
|
"SingleCollisionFrames");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
|
|
children, txstats.dot3StatsMultipleCollisionFrames,
|
|
"MultipleCollisionFrames");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
|
|
children, txstats.dot3StatsDeferredTransmissions,
|
|
"DeferredTransmissions");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
|
|
children, txstats.dot3StatsExcessiveCollisions,
|
|
"ExcessiveCollisions");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
|
|
children, txstats.dot3StatsLateCollisions,
|
|
"LateCollisions");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
|
|
children, txstats.ifHCOutUcastPkts, "UnicastPkts");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
|
|
children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
|
|
children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
|
|
children, txstats.dot3StatsCarrierSenseErrors,
|
|
"CarrierSenseErrors");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
|
|
children, txstats.ifOutDiscards, "Discards");
|
|
BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
|
|
children, txstats.ifOutErrors, "Errors");
|
|
}
|
|
|
|
#undef BGE_SYSCTL_STAT
|
|
|
|
#define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d) \
|
|
SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
|
|
|
|
static void
|
|
bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
|
|
struct sysctl_oid_list *parent)
|
|
{
|
|
struct sysctl_oid *tree;
|
|
struct sysctl_oid_list *child, *schild;
|
|
struct bge_mac_stats *stats;
|
|
|
|
stats = &sc->bge_mac_stats;
|
|
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
|
|
NULL, "BGE Statistics");
|
|
schild = child = SYSCTL_CHILDREN(tree);
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
|
|
&stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
|
|
&stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
|
|
&stats->DmaWriteHighPriQueueFull,
|
|
"NIC DMA Write High Priority Queue Full");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
|
|
&stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
|
|
&stats->InputDiscards, "Discarded Input Frames");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
|
|
&stats->InputErrors, "Input Errors");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
|
|
&stats->RecvThresholdHit, "NIC Recv Threshold Hit");
|
|
|
|
tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
|
|
NULL, "BGE RX Statistics");
|
|
child = SYSCTL_CHILDREN(tree);
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
|
|
&stats->ifHCInOctets, "Inbound Octets");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
|
|
&stats->etherStatsFragments, "Fragments");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
|
|
&stats->ifHCInUcastPkts, "Inbound Unicast Packets");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
|
|
&stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
|
|
&stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
|
|
&stats->dot3StatsFCSErrors, "FCS Errors");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
|
|
&stats->dot3StatsAlignmentErrors, "Alignment Errors");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
|
|
&stats->xonPauseFramesReceived, "XON Pause Frames Received");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
|
|
&stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
|
|
&stats->macControlFramesReceived, "MAC Control Frames Received");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
|
|
&stats->xoffStateEntered, "XOFF State Entered");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
|
|
&stats->dot3StatsFramesTooLong, "Frames Too Long");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
|
|
&stats->etherStatsJabbers, "Jabbers");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
|
|
&stats->etherStatsUndersizePkts, "Undersized Packets");
|
|
|
|
tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
|
|
NULL, "BGE TX Statistics");
|
|
child = SYSCTL_CHILDREN(tree);
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
|
|
&stats->ifHCOutOctets, "Outbound Octets");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
|
|
&stats->etherStatsCollisions, "TX Collisions");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
|
|
&stats->outXonSent, "XON Sent");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
|
|
&stats->outXoffSent, "XOFF Sent");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
|
|
&stats->dot3StatsInternalMacTransmitErrors,
|
|
"Internal MAC TX Errors");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
|
|
&stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
|
|
&stats->dot3StatsMultipleCollisionFrames,
|
|
"Multiple Collision Frames");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
|
|
&stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
|
|
&stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
|
|
&stats->dot3StatsLateCollisions, "Late Collisions");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
|
|
&stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
|
|
&stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
|
|
BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
|
|
&stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
|
|
}
|
|
|
|
#undef BGE_SYSCTL_STAT_ADD64
|
|
|
|
static int
|
|
bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct bge_softc *sc;
|
|
uint32_t result;
|
|
int offset;
|
|
|
|
sc = (struct bge_softc *)arg1;
|
|
offset = arg2;
|
|
result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
|
|
offsetof(bge_hostaddr, bge_addr_lo));
|
|
return (sysctl_handle_int(oidp, &result, 0, req));
|
|
}
|
|
|
|
#ifdef BGE_REGISTER_DEBUG
|
|
static int
|
|
bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct bge_softc *sc;
|
|
uint16_t *sbdata;
|
|
int error, result, sbsz;
|
|
int i, j;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
if (error || (req->newptr == NULL))
|
|
return (error);
|
|
|
|
if (result == 1) {
|
|
sc = (struct bge_softc *)arg1;
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
|
|
sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
|
|
sbsz = BGE_STATUS_BLK_SZ;
|
|
else
|
|
sbsz = 32;
|
|
sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
|
|
printf("Status Block:\n");
|
|
BGE_LOCK(sc);
|
|
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
|
|
printf("%06x:", i);
|
|
for (j = 0; j < 8; j++)
|
|
printf(" %04x", sbdata[i++]);
|
|
printf("\n");
|
|
}
|
|
|
|
printf("Registers:\n");
|
|
for (i = 0x800; i < 0xA00; ) {
|
|
printf("%06x:", i);
|
|
for (j = 0; j < 8; j++) {
|
|
printf(" %08x", CSR_READ_4(sc, i));
|
|
i += 4;
|
|
}
|
|
printf("\n");
|
|
}
|
|
BGE_UNLOCK(sc);
|
|
|
|
printf("Hardware Flags:\n");
|
|
if (BGE_IS_5717_PLUS(sc))
|
|
printf(" - 5717 Plus\n");
|
|
if (BGE_IS_5755_PLUS(sc))
|
|
printf(" - 5755 Plus\n");
|
|
if (BGE_IS_575X_PLUS(sc))
|
|
printf(" - 575X Plus\n");
|
|
if (BGE_IS_5705_PLUS(sc))
|
|
printf(" - 5705 Plus\n");
|
|
if (BGE_IS_5714_FAMILY(sc))
|
|
printf(" - 5714 Family\n");
|
|
if (BGE_IS_5700_FAMILY(sc))
|
|
printf(" - 5700 Family\n");
|
|
if (sc->bge_flags & BGE_FLAG_JUMBO)
|
|
printf(" - Supports Jumbo Frames\n");
|
|
if (sc->bge_flags & BGE_FLAG_PCIX)
|
|
printf(" - PCI-X Bus\n");
|
|
if (sc->bge_flags & BGE_FLAG_PCIE)
|
|
printf(" - PCI Express Bus\n");
|
|
if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
|
|
printf(" - No 3 LEDs\n");
|
|
if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
|
|
printf(" - RX Alignment Bug\n");
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct bge_softc *sc;
|
|
int error;
|
|
uint16_t result;
|
|
uint32_t val;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
if (error || (req->newptr == NULL))
|
|
return (error);
|
|
|
|
if (result < 0x8000) {
|
|
sc = (struct bge_softc *)arg1;
|
|
val = CSR_READ_4(sc, result);
|
|
printf("reg 0x%06X = 0x%08X\n", result, val);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct bge_softc *sc;
|
|
int error;
|
|
uint16_t result;
|
|
uint32_t val;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
if (error || (req->newptr == NULL))
|
|
return (error);
|
|
|
|
if (result < 0x8000) {
|
|
sc = (struct bge_softc *)arg1;
|
|
val = APE_READ_4(sc, result);
|
|
printf("reg 0x%06X = 0x%08X\n", result, val);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct bge_softc *sc;
|
|
int error;
|
|
uint16_t result;
|
|
uint32_t val;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
if (error || (req->newptr == NULL))
|
|
return (error);
|
|
|
|
if (result < 0x8000) {
|
|
sc = (struct bge_softc *)arg1;
|
|
val = bge_readmem_ind(sc, result);
|
|
printf("mem 0x%06X = 0x%08X\n", result, val);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
|
|
{
|
|
|
|
if (sc->bge_flags & BGE_FLAG_EADDR)
|
|
return (1);
|
|
|
|
#ifdef __sparc64__
|
|
OF_getetheraddr(sc->bge_dev, ether_addr);
|
|
return (0);
|
|
#endif
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
|
|
{
|
|
uint32_t mac_addr;
|
|
|
|
mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
|
|
if ((mac_addr >> 16) == 0x484b) {
|
|
ether_addr[0] = (uint8_t)(mac_addr >> 8);
|
|
ether_addr[1] = (uint8_t)mac_addr;
|
|
mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
|
|
ether_addr[2] = (uint8_t)(mac_addr >> 24);
|
|
ether_addr[3] = (uint8_t)(mac_addr >> 16);
|
|
ether_addr[4] = (uint8_t)(mac_addr >> 8);
|
|
ether_addr[5] = (uint8_t)mac_addr;
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
|
|
{
|
|
int mac_offset = BGE_EE_MAC_OFFSET;
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
|
|
mac_offset = BGE_EE_MAC_OFFSET_5906;
|
|
|
|
return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
|
|
ETHER_ADDR_LEN));
|
|
}
|
|
|
|
static int
|
|
bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
|
|
{
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
|
|
return (1);
|
|
|
|
return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
|
|
ETHER_ADDR_LEN));
|
|
}
|
|
|
|
static int
|
|
bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
|
|
{
|
|
static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
|
|
/* NOTE: Order is critical */
|
|
bge_get_eaddr_fw,
|
|
bge_get_eaddr_mem,
|
|
bge_get_eaddr_nvram,
|
|
bge_get_eaddr_eeprom,
|
|
NULL
|
|
};
|
|
const bge_eaddr_fcn_t *func;
|
|
|
|
for (func = bge_eaddr_funcs; *func != NULL; ++func) {
|
|
if ((*func)(sc, eaddr) == 0)
|
|
break;
|
|
}
|
|
return (*func == NULL ? ENXIO : 0);
|
|
}
|
|
|
|
static uint64_t
|
|
bge_get_counter(if_t ifp, ift_counter cnt)
|
|
{
|
|
struct bge_softc *sc;
|
|
struct bge_mac_stats *stats;
|
|
|
|
sc = if_getsoftc(ifp);
|
|
if (!BGE_IS_5705_PLUS(sc))
|
|
return (if_get_counter_default(ifp, cnt));
|
|
stats = &sc->bge_mac_stats;
|
|
|
|
switch (cnt) {
|
|
case IFCOUNTER_IERRORS:
|
|
return (stats->NoMoreRxBDs + stats->InputDiscards +
|
|
stats->InputErrors);
|
|
case IFCOUNTER_COLLISIONS:
|
|
return (stats->etherStatsCollisions);
|
|
default:
|
|
return (if_get_counter_default(ifp, cnt));
|
|
}
|
|
}
|