freebsd-dev/sys/dev/sound/pci/csa.c
Seigo Tanimura fb0ef52838 Finally merge newmidi.
(I had been busy for my own research activity until the last weekend)

Supported devices:

SB Midi Port			(sbc + midi)
SB OPL3				(sbc + midi)
16550 UART			(midi, needs a trick in your hint)
CS461x Midi Port		(csa + midi)

OSS-compatible sequencer	(seq)

Supported playing software:

playmidi			(We definitely need more)

Notes:

/dev/midistat now reports installed midi drivers. /dev/sndstat reports
only pcm drivers. We need the new name(pcmstat?).

EMU8000(SB AWE) does not sound yet but does get probed so that the OPL3
synth on an AWE card works.

TODO:

MSS/PCI bridge drivers
Midi-tty interface to support general serial devices
Modules
2000-07-11 11:49:33 +00:00

918 lines
23 KiB
C

/*
* Copyright (c) 1999 Seigo Tanimura
* All rights reserved.
*
* Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
* cwcealdr1.zip, the sample sources by Crystal Semiconductor.
* Copyright (c) 1996-1998 Crystal Semiconductor Corp.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include <machine/clock.h>
#include <sys/rman.h>
#include <sys/soundcard.h>
#include <dev/sound/pcm/sound.h>
#include <dev/sound/chip.h>
#include <dev/sound/pci/csareg.h>
#include <dev/sound/pci/csavar.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#include <dev/sound/pci/csaimg.h>
/* Here is the parameter structure per a device. */
struct csa_softc {
device_t dev; /* device */
csa_res res; /* resources */
device_t pcm; /* pcm device */
driver_intr_t* pcmintr; /* pcm intr */
void *pcmintr_arg; /* pcm intr arg */
device_t midi; /* midi device */
driver_intr_t* midiintr; /* midi intr */
void *midiintr_arg; /* midi intr arg */
void *ih; /* cookie */
struct csa_bridgeinfo binfo; /* The state of this bridge. */
};
typedef struct csa_softc *sc_p;
static int csa_probe(device_t dev);
static int csa_attach(device_t dev);
static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags);
static int csa_release_resource(device_t bus, device_t child, int type, int rid,
struct resource *r);
static int csa_setup_intr(device_t bus, device_t child,
struct resource *irq, int flags,
driver_intr_t *intr, void *arg, void **cookiep);
static int csa_teardown_intr(device_t bus, device_t child,
struct resource *irq, void *cookie);
static driver_intr_t csa_intr;
static int csa_initialize(sc_p scp);
static void csa_resetdsp(csa_res *resp);
static int csa_downloadimage(csa_res *resp);
static int csa_transferimage(csa_res *resp, u_long *src, u_long dest, u_long len);
static devclass_t csa_devclass;
static int
csa_probe(device_t dev)
{
char *s;
s = NULL;
switch (pci_get_devid(dev)) {
case CS4610_PCI_ID:
s = "Crystal Semiconductor CS4610/4611 Audio accelerator";
break;
case CS4614_PCI_ID:
s = "Crystal Semiconductor CS4614/4622/4624 Audio accelerator/4280 Audio controller";
break;
case CS4615_PCI_ID:
s = "Crystal Semiconductor CS4615 Audio accelerator";
break;
}
if (s != NULL) {
device_set_desc(dev, s);
return (0);
}
return (ENXIO);
}
static int
csa_attach(device_t dev)
{
u_int32_t stcmd;
sc_p scp;
csa_res *resp;
struct sndcard_func *func;
scp = device_get_softc(dev);
/* Fill in the softc. */
bzero(scp, sizeof(*scp));
scp->dev = dev;
/* Wake up the device. */
stcmd = pci_read_config(dev, PCIR_COMMAND, 4);
if ((stcmd & PCIM_CMD_MEMEN) == 0 || (stcmd & PCIM_CMD_BUSMASTEREN) == 0) {
stcmd |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCIR_COMMAND, 4, stcmd);
}
/* Allocate the resources. */
resp = &scp->res;
resp->io_rid = CS461x_IO_OFFSET;
resp->io = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->io_rid, 0, ~0, CS461x_IO_SIZE, RF_ACTIVE);
if (resp->io == NULL)
return (ENXIO);
resp->mem_rid = CS461x_MEM_OFFSET;
resp->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->mem_rid, 0, ~0, CS461x_MEM_SIZE, RF_ACTIVE);
if (resp->mem == NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
return (ENXIO);
}
resp->irq_rid = 0;
resp->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &resp->irq_rid, 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
if (resp->irq == NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
return (ENXIO);
}
/* Enable interrupt. */
if (bus_setup_intr(dev, resp->irq, INTR_TYPE_TTY, csa_intr, scp, &scp->ih)) {
bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
return (ENXIO);
}
if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
/* Initialize the chip. */
if (csa_initialize(scp)) {
bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
return (ENXIO);
}
/* Reset the Processor. */
csa_resetdsp(resp);
/* Download the Processor Image to the processor. */
if (csa_downloadimage(resp)) {
bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
return (ENXIO);
}
/* Attach the children. */
/* PCM Audio */
func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT);
if (func == NULL)
return (ENOMEM);
bzero(func, sizeof(*func));
func->varinfo = &scp->binfo;
func->func = SCF_PCM;
scp->pcm = device_add_child(dev, "pcm", -1);
device_set_ivars(scp->pcm, func);
/* Midi Interface */
func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT);
if (func == NULL)
return (ENOMEM);
bzero(func, sizeof(*func));
func->varinfo = &scp->binfo;
func->func = SCF_MIDI;
scp->midi = device_add_child(dev, "midi", -1);
device_set_ivars(scp->midi, func);
bus_generic_attach(dev);
return (0);
}
static struct resource *
csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags)
{
sc_p scp;
csa_res *resp;
struct resource *res;
scp = device_get_softc(bus);
resp = &scp->res;
switch (type) {
case SYS_RES_IRQ:
if (*rid != 0)
return (NULL);
res = resp->irq;
break;
case SYS_RES_MEMORY:
switch (*rid) {
case CS461x_IO_OFFSET:
res = resp->io;
break;
case CS461x_MEM_OFFSET:
res = resp->mem;
break;
default:
return (NULL);
}
break;
default:
return (NULL);
}
return res;
}
static int
csa_release_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
return (0);
}
/*
* The following three functions deal with interrupt handling.
* An interrupt is primarily handled by the bridge driver.
* The bridge driver then determines the child devices to pass
* the interrupt. Certain information of the device can be read
* only once(eg the value of HISR). The bridge driver is responsible
* to pass such the information to the children.
*/
static int
csa_setup_intr(device_t bus, device_t child,
struct resource *irq, int flags,
driver_intr_t *intr, void *arg, void **cookiep)
{
sc_p scp;
csa_res *resp;
struct sndcard_func *func;
scp = device_get_softc(bus);
resp = &scp->res;
/*
* Look at the function code of the child to determine
* the appropriate hander for it.
*/
func = device_get_ivars(child);
if (func == NULL || irq != resp->irq)
return (EINVAL);
switch (func->func) {
case SCF_PCM:
scp->pcmintr = intr;
scp->pcmintr_arg = arg;
break;
case SCF_MIDI:
scp->midiintr = intr;
scp->midiintr_arg = arg;
break;
default:
return (EINVAL);
}
*cookiep = scp;
if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
return (0);
}
static int
csa_teardown_intr(device_t bus, device_t child,
struct resource *irq, void *cookie)
{
sc_p scp;
csa_res *resp;
struct sndcard_func *func;
scp = device_get_softc(bus);
resp = &scp->res;
/*
* Look at the function code of the child to determine
* the appropriate hander for it.
*/
func = device_get_ivars(child);
if (func == NULL || irq != resp->irq || cookie != scp)
return (EINVAL);
switch (func->func) {
case SCF_PCM:
scp->pcmintr = NULL;
scp->pcmintr_arg = NULL;
break;
case SCF_MIDI:
scp->midiintr = NULL;
scp->midiintr_arg = NULL;
break;
default:
return (EINVAL);
}
return (0);
}
/* The interrupt handler */
static void
csa_intr(void *arg)
{
sc_p scp = arg;
csa_res *resp;
u_int32_t hisr;
resp = &scp->res;
/* Is this interrupt for us? */
hisr = csa_readio(resp, BA0_HISR);
if ((hisr & ~HISR_INTENA) == 0) {
/* Throw an eoi. */
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
return;
}
/*
* Pass the value of HISR via struct csa_bridgeinfo.
* The children get access through their ivars.
*/
scp->binfo.hisr = hisr;
/* Invoke the handlers of the children. */
if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL)
scp->pcmintr(scp->pcmintr_arg);
if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL)
scp->midiintr(scp->midiintr_arg);
/* Throw an eoi. */
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
}
static int
csa_initialize(sc_p scp)
{
int i;
u_int32_t acsts, acisv;
csa_res *resp;
resp = &scp->res;
/*
* First, blast the clock control register to zero so that the PLL starts
* out in a known state, and blast the master serial port control register
* to zero so that the serial ports also start out in a known state.
*/
csa_writeio(resp, BA0_CLKCR1, 0);
csa_writeio(resp, BA0_SERMC1, 0);
/*
* If we are in AC97 mode, then we must set the part to a host controlled
* AC-link. Otherwise, we won't be able to bring up the link.
*/
#if 1
csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
#else
csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
#endif /* 1 */
/*
* Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
* spec) and then drive it high. This is done for non AC97 modes since
* there might be logic external to the CS461x that uses the ARST# line
* for a reset.
*/
csa_writeio(resp, BA0_ACCTL, 0);
DELAY(100);
csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
/*
* The first thing we do here is to enable sync generation. As soon
* as we start receiving bit clock, we'll start producing the SYNC
* signal.
*/
csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
/*
* Now wait for a short while to allow the AC97 part to start
* generating bit clock (so we don't try to start the PLL without an
* input clock).
*/
DELAY(50000);
/*
* Set the serial port timing configuration, so that
* the clock control circuit gets its clock from the correct place.
*/
csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
/*
* Write the selected clock control setup to the hardware. Do not turn on
* SWCE yet (if requested), so that the devices clocked by the output of
* PLL are not clocked until the PLL is stable.
*/
csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
csa_writeio(resp, BA0_PLLM, 0x3a);
csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
/*
* Power up the PLL.
*/
csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
/*
* Wait until the PLL has stabilized.
*/
DELAY(50000);
/*
* Turn on clocking of the core so that we can setup the serial ports.
*/
csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
/*
* Fill the serial port FIFOs with silence.
*/
csa_clearserialfifos(resp);
/*
* Set the serial port FIFO pointer to the first sample in the FIFO.
*/
#if notdef
csa_writeio(resp, BA0_SERBSP, 0);
#endif /* notdef */
/*
* Write the serial port configuration to the part. The master
* enable bit is not set until all other values have been written.
*/
csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
/*
* Wait for the codec ready signal from the AC97 codec.
*/
acsts = 0;
for (i = 0 ; i < 1000 ; i++) {
/*
* First, lets wait a short while to let things settle out a bit,
* and to prevent retrying the read too quickly.
*/
DELAY(125);
/*
* Read the AC97 status register to see if we've seen a CODEC READY
* signal from the AC97 codec.
*/
acsts = csa_readio(resp, BA0_ACSTS);
if ((acsts & ACSTS_CRDY) != 0)
break;
}
/*
* Make sure we sampled CODEC READY.
*/
if ((acsts & ACSTS_CRDY) == 0)
return (ENXIO);
/*
* Assert the vaid frame signal so that we can start sending commands
* to the AC97 codec.
*/
csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
/*
* Wait until we've sampled input slots 3 and 4 as valid, meaning that
* the codec is pumping ADC data across the AC-link.
*/
acisv = 0;
for (i = 0 ; i < 1000 ; i++) {
/*
* First, lets wait a short while to let things settle out a bit,
* and to prevent retrying the read too quickly.
*/
#if notdef
DELAY(10000000L); /* clw */
#else
DELAY(1000);
#endif /* notdef */
/*
* Read the input slot valid register and see if input slots 3 and
* 4 are valid yet.
*/
acisv = csa_readio(resp, BA0_ACISV);
if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
break;
}
/*
* Make sure we sampled valid input slots 3 and 4. If not, then return
* an error.
*/
if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
return (ENXIO);
/*
* Now, assert valid frame and the slot 3 and 4 valid bits. This will
* commense the transfer of digital audio data to the AC97 codec.
*/
csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
/*
* Power down the DAC and ADC. We will power them up (if) when we need
* them.
*/
#if notdef
csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
#endif /* notdef */
/*
* Turn off the Processor by turning off the software clock enable flag in
* the clock control register.
*/
#if notdef
clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
csa_writeio(resp, BA0_CLKCR1, clkcr1);
#endif /* notdef */
/*
* Enable interrupts on the part.
*/
#if notdef
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
#endif /* notdef */
return (0);
}
void
csa_clearserialfifos(csa_res *resp)
{
int i, j, pwr;
u_int8_t clkcr1, serbst;
/*
* See if the devices are powered down. If so, we must power them up first
* or they will not respond.
*/
pwr = 1;
clkcr1 = csa_readio(resp, BA0_CLKCR1);
if ((clkcr1 & CLKCR1_SWCE) == 0) {
csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
pwr = 0;
}
/*
* We want to clear out the serial port FIFOs so we don't end up playing
* whatever random garbage happens to be in them. We fill the sample FIFOs
* with zero (silence).
*/
csa_writeio(resp, BA0_SERBWP, 0);
/* Fill all 256 sample FIFO locations. */
serbst = 0;
for (i = 0 ; i < 256 ; i++) {
/* Make sure the previous FIFO write operation has completed. */
for (j = 0 ; j < 5 ; j++) {
DELAY(100);
serbst = csa_readio(resp, BA0_SERBST);
if ((serbst & SERBST_WBSY) == 0)
break;
}
if ((serbst & SERBST_WBSY) != 0) {
if (!pwr)
csa_writeio(resp, BA0_CLKCR1, clkcr1);
}
/* Write the serial port FIFO index. */
csa_writeio(resp, BA0_SERBAD, i);
/* Tell the serial port to load the new value into the FIFO location. */
csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
}
/*
* Now, if we powered up the devices, then power them back down again.
* This is kinda ugly, but should never happen.
*/
if (!pwr)
csa_writeio(resp, BA0_CLKCR1, clkcr1);
}
static void
csa_resetdsp(csa_res *resp)
{
int i;
/*
* Write the reset bit of the SP control register.
*/
csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
/*
* Write the control register.
*/
csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
/*
* Clear the trap registers.
*/
for (i = 0 ; i < 8 ; i++) {
csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
csa_writemem(resp, BA1_TWPR, 0xffff);
}
csa_writemem(resp, BA1_DREG, 0);
/*
* Set the frame timer to reflect the number of cycles per frame.
*/
csa_writemem(resp, BA1_FRMT, 0xadf);
}
static int
csa_downloadimage(csa_res *resp)
{
int ret;
u_long ul, offset;
for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) {
/*
* DMA this block from host memory to the appropriate
* memory on the CSDevice.
*/
ret = csa_transferimage(
resp,
BA1Struct.BA1Array + offset,
BA1Struct.MemoryStat[ul].ulDestByteOffset,
BA1Struct.MemoryStat[ul].ulSourceByteSize);
if (ret)
return (ret);
offset += BA1Struct.MemoryStat[ul].ulSourceByteSize >> 2;
}
return (0);
}
static int
csa_transferimage(csa_res *resp, u_long *src, u_long dest, u_long len)
{
u_long ul;
/*
* We do not allow DMAs from host memory to host memory (although the DMA
* can do it) and we do not allow DMAs which are not a multiple of 4 bytes
* in size (because that DMA can not do that). Return an error if either
* of these conditions exist.
*/
if ((len & 0x3) != 0)
return (EINVAL);
/* Check the destination address that it is a multiple of 4 */
if ((dest & 0x3) != 0)
return (EINVAL);
/* Write the buffer out. */
for (ul = 0 ; ul < len ; ul += 4)
csa_writemem(resp, dest + ul, src[ul >> 2]);
return (0);
}
int
csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
{
int i;
u_int32_t acsda, acctl, acsts;
/*
* Make sure that there is not data sitting around from a previous
* uncompleted access. ACSDA = Status Data Register = 47Ch
*/
acsda = csa_readio(resp, BA0_ACSDA);
/*
* Setup the AC97 control registers on the CS461x to send the
* appropriate command to the AC97 to perform the read.
* ACCAD = Command Address Register = 46Ch
* ACCDA = Command Data Register = 470h
* ACCTL = Control Register = 460h
* set DCV - will clear when process completed
* set CRW - Read command
* set VFRM - valid frame enabled
* set ESYN - ASYNC generation enabled
* set RSTN - ARST# inactive, AC97 codec not reset
*/
/*
* Get the actual AC97 register from the offset
*/
csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
csa_writeio(resp, BA0_ACCDA, 0);
csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
/*
* Wait for the read to occur.
*/
acctl = 0;
for (i = 0 ; i < 10 ; i++) {
/*
* First, we want to wait for a short time.
*/
DELAY(25);
/*
* Now, check to see if the read has completed.
* ACCTL = 460h, DCV should be reset by now and 460h = 17h
*/
acctl = csa_readio(resp, BA0_ACCTL);
if ((acctl & ACCTL_DCV) == 0)
break;
}
/*
* Make sure the read completed.
*/
if ((acctl & ACCTL_DCV) != 0)
return (EAGAIN);
/*
* Wait for the valid status bit to go active.
*/
acsts = 0;
for (i = 0 ; i < 10 ; i++) {
/*
* Read the AC97 status register.
* ACSTS = Status Register = 464h
*/
acsts = csa_readio(resp, BA0_ACSTS);
/*
* See if we have valid status.
* VSTS - Valid Status
*/
if ((acsts & ACSTS_VSTS) != 0)
break;
/*
* Wait for a short while.
*/
DELAY(25);
}
/*
* Make sure we got valid status.
*/
if ((acsts & ACSTS_VSTS) == 0)
return (EAGAIN);
/*
* Read the data returned from the AC97 register.
* ACSDA = Status Data Register = 474h
*/
*data = csa_readio(resp, BA0_ACSDA);
return (0);
}
int
csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
{
int i;
u_int32_t acctl;
/*
* Setup the AC97 control registers on the CS461x to send the
* appropriate command to the AC97 to perform the write.
* ACCAD = Command Address Register = 46Ch
* ACCDA = Command Data Register = 470h
* ACCTL = Control Register = 460h
* set DCV - will clear when process completed
* set VFRM - valid frame enabled
* set ESYN - ASYNC generation enabled
* set RSTN - ARST# inactive, AC97 codec not reset
*/
/*
* Get the actual AC97 register from the offset
*/
csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
csa_writeio(resp, BA0_ACCDA, data);
csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
/*
* Wait for the write to occur.
*/
acctl = 0;
for (i = 0 ; i < 10 ; i++) {
/*
* First, we want to wait for a short time.
*/
DELAY(25);
/*
* Now, check to see if the read has completed.
* ACCTL = 460h, DCV should be reset by now and 460h = 17h
*/
acctl = csa_readio(resp, BA0_ACCTL);
if ((acctl & ACCTL_DCV) == 0)
break;
}
/*
* Make sure the write completed.
*/
if ((acctl & ACCTL_DCV) != 0)
return (EAGAIN);
return (0);
}
u_int32_t
csa_readio(csa_res *resp, u_long offset)
{
u_int32_t ul;
if (offset < BA0_AC97_RESET)
return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
else {
if (csa_readcodec(resp, offset, &ul))
ul = 0;
return (ul);
}
}
void
csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
{
if (offset < BA0_AC97_RESET)
bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
else
csa_writecodec(resp, offset, data);
}
u_int32_t
csa_readmem(csa_res *resp, u_long offset)
{
return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset) & 0xffffffff;
}
void
csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
{
bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
}
static device_method_t csa_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, csa_probe),
DEVMETHOD(device_attach, csa_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, bus_generic_resume),
/* Bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_alloc_resource, csa_alloc_resource),
DEVMETHOD(bus_release_resource, csa_release_resource),
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
DEVMETHOD(bus_setup_intr, csa_setup_intr),
DEVMETHOD(bus_teardown_intr, csa_teardown_intr),
{ 0, 0 }
};
static driver_t csa_driver = {
"csa",
csa_methods,
sizeof(struct csa_softc),
};
/*
* csa can be attached to a pci bus.
*/
DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0);
MODULE_DEPEND(snd_csa, snd_pcm, PCM_MINVER, PCM_PREFVER, PCM_MAXVER);
MODULE_VERSION(snd_csa, 1);