freebsd-dev/usr.sbin/bsnmpd/modules/snmp_wlan/wlan_sys.c
Enji Cooper e1d581b289 style(9): clean up trailing whitespace
MFC after:	3 weeks
2016-12-27 23:32:54 +00:00

3146 lines
78 KiB
C

/*-
* Copyright (c) 2010 The FreeBSD Foundation
* All rights reserved.
* This software was developed by Shteryana Sotirova Shopova under
* sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/ioctl.h>
#include <sys/param.h>
#include <sys/module.h>
#include <sys/linker.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_mib.h>
#include <net/if_types.h>
#include <net80211/ieee80211.h>
#include <net80211/ieee80211_ioctl.h>
#include <net80211/ieee80211_regdomain.h>
#include <errno.h>
#include <ifaddrs.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <syslog.h>
#include <bsnmp/snmpmod.h>
#include <bsnmp/snmp_mibII.h>
#include "wlan_tree.h"
#include "wlan_snmp.h"
static int sock = -1;
static int wlan_ioctl(char *, uint16_t, int *, void *, size_t *, int);
static int wlan_kmod_load(const char *);
static uint32_t wlan_drivercaps_to_snmp(uint32_t);
static uint32_t wlan_cryptocaps_to_snmp(uint32_t);
static uint32_t wlan_htcaps_to_snmp(uint32_t);
static uint32_t wlan_peerstate_to_snmp(uint32_t);
static uint32_t wlan_peercaps_to_snmp(uint32_t );
static uint32_t wlan_channel_flags_to_snmp_phy(uint32_t);
static uint32_t wlan_regdomain_to_snmp(int);
static uint32_t wlan_snmp_to_scan_flags(int);
static int wlan_config_snmp2ioctl(int);
static int wlan_snmp_to_regdomain(enum WlanRegDomainCode);
static int wlan_config_get_country(struct wlan_iface *);
static int wlan_config_set_country(struct wlan_iface *, char *, int);
static int wlan_config_get_dchannel(struct wlan_iface *wif);
static int wlan_config_set_dchannel(struct wlan_iface *wif, uint32_t);
static int wlan_config_get_bssid(struct wlan_iface *);
static int wlan_config_set_bssid(struct wlan_iface *, uint8_t *);
static void wlan_config_set_snmp_intval(struct wlan_iface *, int, int);
static int wlan_config_snmp2value(int, int, int *);
static int wlan_config_check(struct wlan_iface *, int);
static int wlan_config_get_intval(struct wlan_iface *, int);
static int wlan_config_set_intval(struct wlan_iface *, int, int);
static int wlan_add_new_scan_result(struct wlan_iface *,
const struct ieee80211req_scan_result *, uint8_t *);
static int wlan_add_mac_macinfo(struct wlan_iface *,
const struct ieee80211req_maclist *);
static struct wlan_peer *wlan_add_peerinfo(const struct ieee80211req_sta_info *);
int
wlan_ioctl_init(void)
{
if ((sock = socket(PF_INET, SOCK_DGRAM, 0)) < 0) {
syslog(LOG_ERR, "cannot open socket : %s", strerror(errno));
return (-1);
}
return (0);
}
/*
* Load the needed modules in kernel if not already there.
*/
enum wlan_kmodules {
WLAN_KMOD = 0,
WLAN_KMOD_ACL,
WLAN_KMOD_WEP,
WLAN_KMODS_MAX
};
static const char *wmod_names[] = {
"wlan",
"wlan_wlan_acl",
"wlan_wep",
NULL
};
static int
wlan_kmod_load(const char *modname)
{
int fileid, modid;
struct module_stat mstat;
mstat.version = sizeof(struct module_stat);
for (fileid = kldnext(0); fileid > 0; fileid = kldnext(fileid)) {
for (modid = kldfirstmod(fileid); modid > 0;
modid = modfnext(modid)) {
if (modstat(modid, &mstat) < 0)
continue;
if (strcmp(modname, mstat.name) == 0)
return (0);
}
}
/* Not present - load it. */
if (kldload(modname) < 0) {
syslog(LOG_ERR, "failed to load %s kernel module - %s", modname,
strerror(errno));
return (-1);
}
return (1);
}
int
wlan_kmodules_load(void)
{
if (wlan_kmod_load(wmod_names[WLAN_KMOD]) < 0)
return (-1);
if (wlan_kmod_load(wmod_names[WLAN_KMOD_ACL]) > 0)
syslog(LOG_NOTICE, "SNMP wlan loaded %s module",
wmod_names[WLAN_KMOD_ACL]);
if (wlan_kmod_load(wmod_names[WLAN_KMOD_WEP]) > 0)
syslog(LOG_NOTICE, "SNMP wlan loaded %s module",
wmod_names[WLAN_KMOD_WEP]);
return (0);
}
/* XXX: FIXME */
static int
wlan_ioctl(char *wif_name, uint16_t req_type, int *val, void *arg,
size_t *argsize, int set)
{
struct ieee80211req ireq;
memset(&ireq, 0, sizeof(struct ieee80211req));
strlcpy(ireq.i_name, wif_name, IFNAMSIZ);
ireq.i_type = req_type;
ireq.i_val = *val;
ireq.i_len = *argsize;
ireq.i_data = arg;
if (ioctl(sock, set ? SIOCS80211 : SIOCG80211, &ireq) < 0) {
syslog(LOG_ERR, "iface %s - %s param: ioctl(%d) "
"failed: %s", wif_name, set ? "set" : "get",
req_type, strerror(errno));
return (-1);
}
*argsize = ireq.i_len;
*val = ireq.i_val;
return (0);
}
int
wlan_check_media(char *ifname)
{
struct ifmediareq ifmr;
memset(&ifmr, 0, sizeof(struct ifmediareq));
strlcpy(ifmr.ifm_name, ifname, sizeof(ifmr.ifm_name));
if (ioctl(sock, SIOCGIFMEDIA, &ifmr) < 0 || ifmr.ifm_count == 0)
return (0); /* Interface doesn't support SIOCGIFMEDIA. */
if ((ifmr.ifm_status & IFM_AVALID) == 0)
return (0);
return (IFM_TYPE(ifmr.ifm_active));
}
int
wlan_get_opmode(struct wlan_iface *wif)
{
struct ifmediareq ifmr;
memset(&ifmr, 0, sizeof(struct ifmediareq));
strlcpy(ifmr.ifm_name, wif->wname, sizeof(ifmr.ifm_name));
if (ioctl(sock, SIOCGIFMEDIA, &ifmr) < 0) {
if (errno == ENXIO)
return (-1);
wif->mode = WlanIfaceOperatingModeType_station;
return (0);
}
if (ifmr.ifm_current & IFM_IEEE80211_ADHOC) {
if (ifmr.ifm_current & IFM_FLAG0)
wif->mode = WlanIfaceOperatingModeType_adhocDemo;
else
wif->mode = WlanIfaceOperatingModeType_ibss;
} else if (ifmr.ifm_current & IFM_IEEE80211_HOSTAP)
wif->mode = WlanIfaceOperatingModeType_hostAp;
else if (ifmr.ifm_current & IFM_IEEE80211_MONITOR)
wif->mode = WlanIfaceOperatingModeType_monitor;
else if (ifmr.ifm_current & IFM_IEEE80211_MBSS)
wif->mode = WlanIfaceOperatingModeType_meshPoint;
else if (ifmr.ifm_current & IFM_IEEE80211_WDS)
wif->mode = WlanIfaceOperatingModeType_wds;
return (0);
}
int
wlan_config_state(struct wlan_iface *wif, uint8_t set)
{
int flags;
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strcpy(ifr.ifr_name, wif->wname);
if (ioctl(sock, SIOCGIFFLAGS, (caddr_t) &ifr) < 0) {
syslog(LOG_ERR, "set %s status: ioctl(SIOCGIFFLAGS) "
"failed: %s", wif->wname, strerror(errno));
return (-1);
}
if (set == 0) {
if ((ifr.ifr_flags & IFF_UP) != 0)
wif->state = wlanIfaceState_up;
else
wif->state = wlanIfaceState_down;
return (0);
}
flags = (ifr.ifr_flags & 0xffff) | (ifr.ifr_flagshigh << 16);
if (wif->state == wlanIfaceState_up)
flags |= IFF_UP;
else
flags &= ~IFF_UP;
ifr.ifr_flags = flags & 0xffff;
ifr.ifr_flagshigh = flags >> 16;
if (ioctl(sock, SIOCSIFFLAGS, (caddr_t) &ifr) < 0) {
syslog(LOG_ERR, "set %s %s: ioctl(SIOCSIFFLAGS) failed: %s",
wif->wname, wif->state == wlanIfaceState_up?"up":"down",
strerror(errno));
return (-1);
}
return (0);
}
int
wlan_get_local_addr(struct wlan_iface *wif)
{
int len;
char ifname[IFNAMSIZ];
struct ifaddrs *ifap, *ifa;
struct sockaddr_dl sdl;
if (getifaddrs(&ifap) != 0) {
syslog(LOG_ERR, "wlan get mac: getifaddrs() failed - %s",
strerror(errno));
return (-1);
}
for (ifa = ifap; ifa != NULL; ifa = ifa->ifa_next) {
if (ifa->ifa_addr->sa_family != AF_LINK)
continue;
memcpy(&sdl, ifa->ifa_addr, sizeof(struct sockaddr_dl));
if (sdl.sdl_alen > IEEE80211_ADDR_LEN)
continue;
if ((len = sdl.sdl_nlen) >= IFNAMSIZ)
len = IFNAMSIZ - 1;
memcpy(ifname, sdl.sdl_data, len);
ifname[len] = '\0';
if (strcmp(wif->wname, ifname) == 0)
break;
}
freeifaddrs(ifap);
return (0);
}
int
wlan_get_parent(struct wlan_iface *wif __unused)
{
/* XXX: There's no way to fetch this from the kernel. */
return (0);
}
/* XXX */
#define IEEE80211_C_STA 0x00000001 /* CAPABILITY: STA available */
#define IEEE80211_C_8023ENCAP 0x00000002 /* CAPABILITY: 802.3 encap */
#define IEEE80211_C_FF 0x00000040 /* CAPABILITY: ATH FF avail */
#define IEEE80211_C_TURBOP 0x00000080 /* CAPABILITY: ATH Turbo avail*/
#define IEEE80211_C_IBSS 0x00000100 /* CAPABILITY: IBSS available */
#define IEEE80211_C_PMGT 0x00000200 /* CAPABILITY: Power mgmt */
#define IEEE80211_C_HOSTAP 0x00000400 /* CAPABILITY: HOSTAP avail */
#define IEEE80211_C_AHDEMO 0x00000800 /* CAPABILITY: Old Adhoc Demo */
#define IEEE80211_C_SWRETRY 0x00001000 /* CAPABILITY: sw tx retry */
#define IEEE80211_C_TXPMGT 0x00002000 /* CAPABILITY: tx power mgmt */
#define IEEE80211_C_SHSLOT 0x00004000 /* CAPABILITY: short slottime */
#define IEEE80211_C_SHPREAMBLE 0x00008000 /* CAPABILITY: short preamble */
#define IEEE80211_C_MONITOR 0x00010000 /* CAPABILITY: monitor mode */
#define IEEE80211_C_DFS 0x00020000 /* CAPABILITY: DFS/radar avail*/
#define IEEE80211_C_MBSS 0x00040000 /* CAPABILITY: MBSS available */
/* 0x7c0000 available */
#define IEEE80211_C_WPA1 0x00800000 /* CAPABILITY: WPA1 avail */
#define IEEE80211_C_WPA2 0x01000000 /* CAPABILITY: WPA2 avail */
#define IEEE80211_C_WPA 0x01800000 /* CAPABILITY: WPA1+WPA2 avail*/
#define IEEE80211_C_BURST 0x02000000 /* CAPABILITY: frame bursting */
#define IEEE80211_C_WME 0x04000000 /* CAPABILITY: WME avail */
#define IEEE80211_C_WDS 0x08000000 /* CAPABILITY: 4-addr support */
/* 0x10000000 reserved */
#define IEEE80211_C_BGSCAN 0x20000000 /* CAPABILITY: bg scanning */
#define IEEE80211_C_TXFRAG 0x40000000 /* CAPABILITY: tx fragments */
#define IEEE80211_C_TDMA 0x80000000 /* CAPABILITY: TDMA avail */
static uint32_t
wlan_drivercaps_to_snmp(uint32_t dcaps)
{
uint32_t scaps = 0;
if ((dcaps & IEEE80211_C_STA) != 0)
scaps |= (0x1 << WlanDriverCaps_station);
if ((dcaps & IEEE80211_C_8023ENCAP) != 0)
scaps |= (0x1 << WlanDriverCaps_ieee8023encap);
if ((dcaps & IEEE80211_C_FF) != 0)
scaps |= (0x1 << WlanDriverCaps_athFastFrames);
if ((dcaps & IEEE80211_C_TURBOP) != 0)
scaps |= (0x1 << WlanDriverCaps_athTurbo);
if ((dcaps & IEEE80211_C_IBSS) != 0)
scaps |= (0x1 << WlanDriverCaps_ibss);
if ((dcaps & IEEE80211_C_PMGT) != 0)
scaps |= (0x1 << WlanDriverCaps_pmgt);
if ((dcaps & IEEE80211_C_HOSTAP) != 0)
scaps |= (0x1 << WlanDriverCaps_hostAp);
if ((dcaps & IEEE80211_C_AHDEMO) != 0)
scaps |= (0x1 << WlanDriverCaps_ahDemo);
if ((dcaps & IEEE80211_C_SWRETRY) != 0)
scaps |= (0x1 << WlanDriverCaps_swRetry);
if ((dcaps & IEEE80211_C_TXPMGT) != 0)
scaps |= (0x1 << WlanDriverCaps_txPmgt);
if ((dcaps & IEEE80211_C_SHSLOT) != 0)
scaps |= (0x1 << WlanDriverCaps_shortSlot);
if ((dcaps & IEEE80211_C_SHPREAMBLE) != 0)
scaps |= (0x1 << WlanDriverCaps_shortPreamble);
if ((dcaps & IEEE80211_C_MONITOR) != 0)
scaps |= (0x1 << WlanDriverCaps_monitor);
if ((dcaps & IEEE80211_C_DFS) != 0)
scaps |= (0x1 << WlanDriverCaps_dfs);
if ((dcaps & IEEE80211_C_MBSS) != 0)
scaps |= (0x1 << WlanDriverCaps_mbss);
if ((dcaps & IEEE80211_C_WPA1) != 0)
scaps |= (0x1 << WlanDriverCaps_wpa1);
if ((dcaps & IEEE80211_C_WPA2) != 0)
scaps |= (0x1 << WlanDriverCaps_wpa2);
if ((dcaps & IEEE80211_C_BURST) != 0)
scaps |= (0x1 << WlanDriverCaps_burst);
if ((dcaps & IEEE80211_C_WME) != 0)
scaps |= (0x1 << WlanDriverCaps_wme);
if ((dcaps & IEEE80211_C_WDS) != 0)
scaps |= (0x1 << WlanDriverCaps_wds);
if ((dcaps & IEEE80211_C_BGSCAN) != 0)
scaps |= (0x1 << WlanDriverCaps_bgScan);
if ((dcaps & IEEE80211_C_TXFRAG) != 0)
scaps |= (0x1 << WlanDriverCaps_txFrag);
if ((dcaps & IEEE80211_C_TDMA) != 0)
scaps |= (0x1 << WlanDriverCaps_tdma);
return (scaps);
}
static uint32_t
wlan_cryptocaps_to_snmp(uint32_t ccaps)
{
uint32_t scaps = 0;
#if NOT_YET
if ((ccaps & IEEE80211_CRYPTO_WEP) != 0)
scaps |= (0x1 << wlanCryptoCaps_wep);
if ((ccaps & IEEE80211_CRYPTO_TKIP) != 0)
scaps |= (0x1 << wlanCryptoCaps_tkip);
if ((ccaps & IEEE80211_CRYPTO_AES_OCB) != 0)
scaps |= (0x1 << wlanCryptoCaps_aes);
if ((ccaps & IEEE80211_CRYPTO_AES_CCM) != 0)
scaps |= (0x1 << wlanCryptoCaps_aesCcm);
if ((ccaps & IEEE80211_CRYPTO_TKIPMIC) != 0)
scaps |= (0x1 << wlanCryptoCaps_tkipMic);
if ((ccaps & IEEE80211_CRYPTO_CKIP) != 0)
scaps |= (0x1 << wlanCryptoCaps_ckip);
#else /* !NOT_YET */
scaps = ccaps;
#endif
return (scaps);
}
#define IEEE80211_HTC_AMPDU 0x00010000 /* CAPABILITY: A-MPDU tx */
#define IEEE80211_HTC_AMSDU 0x00020000 /* CAPABILITY: A-MSDU tx */
/* NB: HT40 is implied by IEEE80211_HTCAP_CHWIDTH40 */
#define IEEE80211_HTC_HT 0x00040000 /* CAPABILITY: HT operation */
#define IEEE80211_HTC_SMPS 0x00080000 /* CAPABILITY: MIMO power save*/
#define IEEE80211_HTC_RIFS 0x00100000 /* CAPABILITY: RIFS support */
static uint32_t
wlan_htcaps_to_snmp(uint32_t hcaps)
{
uint32_t scaps = 0;
if ((hcaps & IEEE80211_HTCAP_LDPC) != 0)
scaps |= (0x1 << WlanHTCaps_ldpc);
if ((hcaps & IEEE80211_HTCAP_CHWIDTH40) != 0)
scaps |= (0x1 << WlanHTCaps_chwidth40);
if ((hcaps & IEEE80211_HTCAP_GREENFIELD) != 0)
scaps |= (0x1 << WlanHTCaps_greenField);
if ((hcaps & IEEE80211_HTCAP_SHORTGI20) != 0)
scaps |= (0x1 << WlanHTCaps_shortGi20);
if ((hcaps & IEEE80211_HTCAP_SHORTGI40) != 0)
scaps |= (0x1 << WlanHTCaps_shortGi40);
if ((hcaps & IEEE80211_HTCAP_TXSTBC) != 0)
scaps |= (0x1 << WlanHTCaps_txStbc);
if ((hcaps & IEEE80211_HTCAP_DELBA) != 0)
scaps |= (0x1 << WlanHTCaps_delba);
if ((hcaps & IEEE80211_HTCAP_MAXAMSDU_7935) != 0)
scaps |= (0x1 << WlanHTCaps_amsdu7935);
if ((hcaps & IEEE80211_HTCAP_DSSSCCK40) != 0)
scaps |= (0x1 << WlanHTCaps_dssscck40);
if ((hcaps & IEEE80211_HTCAP_PSMP) != 0)
scaps |= (0x1 << WlanHTCaps_psmp);
if ((hcaps & IEEE80211_HTCAP_40INTOLERANT) != 0)
scaps |= (0x1 << WlanHTCaps_fortyMHzIntolerant);
if ((hcaps & IEEE80211_HTCAP_LSIGTXOPPROT) != 0)
scaps |= (0x1 << WlanHTCaps_lsigTxOpProt);
if ((hcaps & IEEE80211_HTC_AMPDU) != 0)
scaps |= (0x1 << WlanHTCaps_htcAmpdu);
if ((hcaps & IEEE80211_HTC_AMSDU) != 0)
scaps |= (0x1 << WlanHTCaps_htcAmsdu);
if ((hcaps & IEEE80211_HTC_HT) != 0)
scaps |= (0x1 << WlanHTCaps_htcHt);
if ((hcaps & IEEE80211_HTC_SMPS) != 0)
scaps |= (0x1 << WlanHTCaps_htcSmps);
if ((hcaps & IEEE80211_HTC_RIFS) != 0)
scaps |= (0x1 << WlanHTCaps_htcRifs);
return (scaps);
}
/* XXX: Not here? */
#define WLAN_SET_TDMA_OPMODE(w) do { \
if ((w)->mode == WlanIfaceOperatingModeType_adhocDemo && \
((w)->drivercaps & WlanDriverCaps_tdma) != 0) \
(w)->mode = WlanIfaceOperatingModeType_tdma; \
} while (0)
int
wlan_get_driver_caps(struct wlan_iface *wif)
{
int val = 0;
size_t argsize;
struct ieee80211_devcaps_req dc;
memset(&dc, 0, sizeof(struct ieee80211_devcaps_req));
argsize = sizeof(struct ieee80211_devcaps_req);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_DEVCAPS, &val, &dc,
&argsize, 0) < 0)
return (-1);
wif->drivercaps = wlan_drivercaps_to_snmp(dc.dc_drivercaps);
wif->cryptocaps = wlan_cryptocaps_to_snmp(dc.dc_cryptocaps);
wif->htcaps = wlan_htcaps_to_snmp(dc.dc_htcaps);
WLAN_SET_TDMA_OPMODE(wif);
argsize = dc.dc_chaninfo.ic_nchans * sizeof(struct ieee80211_channel);
wif->chanlist = (struct ieee80211_channel *)malloc(argsize);
if (wif->chanlist == NULL)
return (0);
memcpy(wif->chanlist, dc.dc_chaninfo.ic_chans, argsize);
wif->nchannels = dc.dc_chaninfo.ic_nchans;
return (0);
}
uint8_t
wlan_channel_state_to_snmp(uint8_t cstate)
{
uint8_t cs = 0;
if ((cstate & IEEE80211_CHANSTATE_RADAR) != 0)
cs |= (0x1 << WlanIfaceChannelStateType_radar);
if ((cstate & IEEE80211_CHANSTATE_CACDONE) != 0)
cs |= (0x1 << WlanIfaceChannelStateType_cacDone);
if ((cstate & IEEE80211_CHANSTATE_CWINT) != 0)
cs |= (0x1 << WlanIfaceChannelStateType_interferenceDetected);
if ((cstate & IEEE80211_CHANSTATE_NORADAR) != 0)
cs |= (0x1 << WlanIfaceChannelStateType_radarClear);
return (cs);
}
uint32_t
wlan_channel_flags_to_snmp(uint32_t cflags)
{
uint32_t cf = 0;
if ((cflags & IEEE80211_CHAN_TURBO) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_turbo);
if ((cflags & IEEE80211_CHAN_CCK) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_cck);
if ((cflags & IEEE80211_CHAN_OFDM) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_ofdm);
if ((cflags & IEEE80211_CHAN_2GHZ) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_spectrum2Ghz);
if ((cflags & IEEE80211_CHAN_5GHZ) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_spectrum5Ghz);
if ((cflags & IEEE80211_CHAN_PASSIVE) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_passiveScan);
if ((cflags & IEEE80211_CHAN_DYN) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_dynamicCckOfdm);
if ((cflags & IEEE80211_CHAN_GFSK) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_gfsk);
if ((cflags & IEEE80211_CHAN_GSM) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_spectrum900Mhz);
if ((cflags & IEEE80211_CHAN_STURBO) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_dot11aStaticTurbo);
if ((cflags & IEEE80211_CHAN_HALF) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_halfRate);
if ((cflags & IEEE80211_CHAN_QUARTER) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_quarterRate);
if ((cflags & IEEE80211_CHAN_HT20) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_ht20);
if ((cflags & IEEE80211_CHAN_HT40U) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_ht40u);
if ((cflags & IEEE80211_CHAN_HT40D) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_ht40d);
if ((cflags & IEEE80211_CHAN_DFS) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_dfs);
if ((cflags & IEEE80211_CHAN_4MSXMIT) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_xmit4ms);
if ((cflags & IEEE80211_CHAN_NOADHOC) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_noAdhoc);
if ((cflags & IEEE80211_CHAN_NOHOSTAP) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_noHostAp);
if ((cflags & IEEE80211_CHAN_11D) != 0)
cf |= (0x1 << WlanIfaceChannelFlagsType_dot11d);
return (cf);
}
/* XXX: */
#define WLAN_SNMP_MAX_CHANS 256
int
wlan_get_channel_list(struct wlan_iface *wif)
{
int val = 0;
uint32_t i, nchans;
size_t argsize;
struct ieee80211req_chaninfo *chaninfo;
struct ieee80211req_chanlist active;
const struct ieee80211_channel *c;
argsize = sizeof(struct ieee80211req_chaninfo) +
sizeof(struct ieee80211_channel) * WLAN_SNMP_MAX_CHANS;
chaninfo = (struct ieee80211req_chaninfo *)malloc(argsize);
if (chaninfo == NULL)
return (-1);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_CHANINFO, &val, chaninfo,
&argsize, 0) < 0)
return (-1);
argsize = sizeof(active);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_CHANLIST, &val, &active,
&argsize, 0) < 0)
goto error;
for (i = 0, nchans = 0; i < chaninfo->ic_nchans; i++) {
c = &chaninfo->ic_chans[i];
if (!isset(active.ic_channels, c->ic_ieee))
continue;
nchans++;
}
wif->chanlist = (struct ieee80211_channel *)reallocf(wif->chanlist,
nchans * sizeof(*c));
if (wif->chanlist == NULL)
goto error;
wif->nchannels = nchans;
for (i = 0, nchans = 0; i < chaninfo->ic_nchans; i++) {
c = &chaninfo->ic_chans[i];
if (!isset(active.ic_channels, c->ic_ieee))
continue;
memcpy(wif->chanlist + nchans, c, sizeof (*c));
nchans++;
}
free(chaninfo);
return (0);
error:
wif->nchannels = 0;
free(chaninfo);
return (-1);
}
static enum WlanIfPhyMode
wlan_channel_flags_to_snmp_phy(uint32_t cflags)
{
/* XXX: recheck */
if ((cflags & IEEE80211_CHAN_A) != 0)
return (WlanIfPhyMode_dot11a);
if ((cflags & IEEE80211_CHAN_B) != 0)
return (WlanIfPhyMode_dot11b);
if ((cflags & IEEE80211_CHAN_G) != 0 ||
(cflags & IEEE80211_CHAN_PUREG) != 0)
return (WlanIfPhyMode_dot11g);
if ((cflags & IEEE80211_CHAN_FHSS) != 0)
return (WlanIfPhyMode_fh);
if ((cflags & IEEE80211_CHAN_TURBO) != 0 &&
(cflags & IEEE80211_CHAN_A) != 0)
return (WlanIfPhyMode_turboA);
if ((cflags & IEEE80211_CHAN_TURBO) != 0 &&
(cflags & IEEE80211_CHAN_G) != 0)
return (WlanIfPhyMode_turboG);
if ((cflags & IEEE80211_CHAN_STURBO) != 0)
return (WlanIfPhyMode_sturboA);
if ((cflags & IEEE80211_CHAN_HALF) != 0)
return (WlanIfPhyMode_ofdmHalf);
if ((cflags & IEEE80211_CHAN_QUARTER) != 0)
return (WlanIfPhyMode_ofdmQuarter);
return (WlanIfPhyMode_auto);
}
int
wlan_get_roam_params(struct wlan_iface *wif)
{
int val = 0;
size_t argsize;
argsize = sizeof(struct ieee80211_roamparams_req);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_ROAM, &val,
&wif->roamparams, &argsize, 0) < 0)
return (-1);
return (0);
}
int
wlan_get_tx_params(struct wlan_iface *wif)
{
int val = 0;
size_t argsize;
/*
* XXX: Reset IEEE80211_RATE_MCS bit on IEEE80211_MODE_11NA
* and IEEE80211_MODE_11NG modes.
*/
argsize = sizeof(struct ieee80211_txparams_req);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_TXPARAMS, &val,
&wif->txparams, &argsize, 0) < 0)
return (-1);
return (0);
}
int
wlan_set_tx_params(struct wlan_iface *wif, int32_t pmode __unused)
{
int val = 0;
size_t argsize;
/*
* XXX: Set IEEE80211_RATE_MCS bit on IEEE80211_MODE_11NA
* and IEEE80211_MODE_11NG modes.
*/
argsize = sizeof(struct ieee80211_txparams_req);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_TXPARAMS, &val,
&wif->txparams, &argsize, 1) < 0)
return (-1);
return (0);
}
int
wlan_clone_create(struct wlan_iface *wif)
{
struct ifreq ifr;
struct ieee80211_clone_params wcp;
static const uint8_t zerobssid[IEEE80211_ADDR_LEN];
memset(&wcp, 0, sizeof(wcp));
memset(&ifr, 0, sizeof(ifr));
/* Sanity checks. */
if (wif == NULL || wif->pname[0] == '\0' || wif->mode > WLAN_IFMODE_MAX)
return (SNMP_ERR_INCONS_VALUE);
if (wif->mode == WlanIfaceOperatingModeType_wds &&
memcmp(wif->dbssid, zerobssid, IEEE80211_ADDR_LEN) == 0)
return (SNMP_ERR_INCONS_VALUE);
strlcpy(wcp.icp_parent, wif->pname, IFNAMSIZ);
if ((wif->flags & WlanIfaceFlagsType_uniqueBssid) != 0)
wcp.icp_flags |= IEEE80211_CLONE_BSSID;
if ((wif->flags & WlanIfaceFlagsType_noBeacons) != 0)
wcp.icp_flags |= IEEE80211_CLONE_NOBEACONS;
if (wif->mode == WlanIfaceOperatingModeType_wds &&
(wif->flags & WlanIfaceFlagsType_wdsLegacy) != 0)
wcp.icp_flags |= IEEE80211_CLONE_WDSLEGACY;
switch (wif->mode) {
case WlanIfaceOperatingModeType_ibss:
wcp.icp_opmode = IEEE80211_M_IBSS;
break;
case WlanIfaceOperatingModeType_station:
wcp.icp_opmode = IEEE80211_M_STA;
break;
case WlanIfaceOperatingModeType_wds:
wcp.icp_opmode = IEEE80211_M_WDS;
break;
case WlanIfaceOperatingModeType_adhocDemo:
wcp.icp_opmode = IEEE80211_M_AHDEMO;
break;
case WlanIfaceOperatingModeType_hostAp:
wcp.icp_opmode = IEEE80211_M_HOSTAP;
break;
case WlanIfaceOperatingModeType_monitor:
wcp.icp_opmode = IEEE80211_M_MONITOR;
break;
case WlanIfaceOperatingModeType_meshPoint:
wcp.icp_opmode = IEEE80211_M_MBSS;
break;
case WlanIfaceOperatingModeType_tdma:
wcp.icp_opmode = IEEE80211_M_AHDEMO;
wcp.icp_flags |= IEEE80211_CLONE_TDMA;
break;
}
memcpy(wcp.icp_bssid, wif->dbssid, IEEE80211_ADDR_LEN);
if (memcmp(wif->dlmac, zerobssid, IEEE80211_ADDR_LEN) != 0) {
memcpy(wcp.icp_macaddr, wif->dlmac, IEEE80211_ADDR_LEN);
wcp.icp_flags |= IEEE80211_CLONE_MACADDR;
}
strlcpy(ifr.ifr_name, wif->wname, IFNAMSIZ);
ifr.ifr_data = (caddr_t) &wcp;
if (ioctl(sock, SIOCIFCREATE2, (caddr_t) &ifr) < 0) {
syslog(LOG_ERR, "wlan clone create: ioctl(SIOCIFCREATE2) "
"failed: %s", strerror(errno));
return (SNMP_ERR_GENERR);
}
return (SNMP_ERR_NOERROR);
}
int
wlan_clone_destroy(struct wlan_iface *wif)
{
struct ifreq ifr;
if (wif == NULL)
return (SNMP_ERR_INCONS_VALUE);
memset(&ifr, 0, sizeof(ifr));
strcpy(ifr.ifr_name, wif->wname);
if (ioctl(sock, SIOCIFDESTROY, &ifr) < 0) {
syslog(LOG_ERR, "wlan clone destroy: ioctl(SIOCIFDESTROY) "
"failed: %s", strerror(errno));
return (SNMP_ERR_GENERR);
}
return (SNMP_ERR_NOERROR);
}
static int
wlan_config_snmp2ioctl(int which)
{
int op;
switch (which) {
case LEAF_wlanIfacePacketBurst:
op = IEEE80211_IOC_BURST;
break;
case LEAF_wlanIfaceCountryCode:
op = IEEE80211_IOC_REGDOMAIN;
break;
case LEAF_wlanIfaceRegDomain:
op = IEEE80211_IOC_REGDOMAIN;
break;
case LEAF_wlanIfaceDesiredSsid:
op = IEEE80211_IOC_SSID;
break;
case LEAF_wlanIfaceDesiredChannel:
op = IEEE80211_IOC_CURCHAN;
break;
case LEAF_wlanIfaceDynamicFreqSelection:
op = IEEE80211_IOC_DFS;
break;
case LEAF_wlanIfaceFastFrames:
op = IEEE80211_IOC_FF;
break;
case LEAF_wlanIfaceDturbo:
op = IEEE80211_IOC_TURBOP;
break;
case LEAF_wlanIfaceTxPower:
op = IEEE80211_IOC_TXPOWER;
break;
case LEAF_wlanIfaceFragmentThreshold:
op = IEEE80211_IOC_FRAGTHRESHOLD;
break;
case LEAF_wlanIfaceRTSThreshold:
op = IEEE80211_IOC_RTSTHRESHOLD;
break;
case LEAF_wlanIfaceWlanPrivacySubscribe:
op = IEEE80211_IOC_WPS;
break;
case LEAF_wlanIfaceBgScan:
op = IEEE80211_IOC_BGSCAN;
break;
case LEAF_wlanIfaceBgScanIdle:
op = IEEE80211_IOC_BGSCAN_IDLE;
break;
case LEAF_wlanIfaceBgScanInterval:
op = IEEE80211_IOC_BGSCAN_INTERVAL;
break;
case LEAF_wlanIfaceBeaconMissedThreshold:
op = IEEE80211_IOC_BMISSTHRESHOLD;
break;
case LEAF_wlanIfaceDesiredBssid:
op = IEEE80211_IOC_BSSID;
break;
case LEAF_wlanIfaceRoamingMode:
op = IEEE80211_IOC_ROAMING;
break;
case LEAF_wlanIfaceDot11d:
op = IEEE80211_IOC_DOTD;
break;
case LEAF_wlanIfaceDot11h:
op = IEEE80211_IOC_DOTH;
break;
case LEAF_wlanIfaceDynamicWds:
op = IEEE80211_IOC_DWDS;
break;
case LEAF_wlanIfacePowerSave:
op = IEEE80211_IOC_POWERSAVE;
break;
case LEAF_wlanIfaceApBridge:
op = IEEE80211_IOC_APBRIDGE;
break;
case LEAF_wlanIfaceBeaconInterval:
op = IEEE80211_IOC_BEACON_INTERVAL;
break;
case LEAF_wlanIfaceDtimPeriod:
op = IEEE80211_IOC_DTIM_PERIOD;
break;
case LEAF_wlanIfaceHideSsid:
op = IEEE80211_IOC_HIDESSID;
break;
case LEAF_wlanIfaceInactivityProccess:
op = IEEE80211_IOC_INACTIVITY;
break;
case LEAF_wlanIfaceDot11gProtMode:
op = IEEE80211_IOC_PROTMODE;
break;
case LEAF_wlanIfaceDot11gPureMode:
op = IEEE80211_IOC_PUREG;
break;
case LEAF_wlanIfaceDot11nPureMode:
op = IEEE80211_IOC_PUREN;
break;
case LEAF_wlanIfaceDot11nAmpdu:
op = IEEE80211_IOC_AMPDU;
break;
case LEAF_wlanIfaceDot11nAmpduDensity:
op = IEEE80211_IOC_AMPDU_DENSITY;
break;
case LEAF_wlanIfaceDot11nAmpduLimit:
op = IEEE80211_IOC_AMPDU_LIMIT;
break;
case LEAF_wlanIfaceDot11nAmsdu:
op = IEEE80211_IOC_AMSDU;
break;
case LEAF_wlanIfaceDot11nAmsduLimit:
op = IEEE80211_IOC_AMSDU_LIMIT;
break;
case LEAF_wlanIfaceDot11nHighThroughput:
op = IEEE80211_IOC_HTCONF;
break;
case LEAF_wlanIfaceDot11nHTCompatible:
op = IEEE80211_IOC_HTCOMPAT;
break;
case LEAF_wlanIfaceDot11nHTProtMode:
op = IEEE80211_IOC_HTPROTMODE;
break;
case LEAF_wlanIfaceDot11nRIFS:
op = IEEE80211_IOC_RIFS;
break;
case LEAF_wlanIfaceDot11nShortGI:
op = IEEE80211_IOC_SHORTGI;
break;
case LEAF_wlanIfaceDot11nSMPSMode:
op = IEEE80211_IOC_SMPS;
break;
case LEAF_wlanIfaceTdmaSlot:
op = IEEE80211_IOC_TDMA_SLOT;
break;
case LEAF_wlanIfaceTdmaSlotCount:
op = IEEE80211_IOC_TDMA_SLOTCNT;
break;
case LEAF_wlanIfaceTdmaSlotLength:
op = IEEE80211_IOC_TDMA_SLOTLEN;
break;
case LEAF_wlanIfaceTdmaBeaconInterval:
op = IEEE80211_IOC_TDMA_BINTERVAL;
break;
default:
op = -1;
}
return (op);
}
static enum WlanRegDomainCode
wlan_regdomain_to_snmp(int which)
{
enum WlanRegDomainCode reg_domain;
switch (which) {
case SKU_FCC:
reg_domain = WlanRegDomainCode_fcc;
break;
case SKU_CA:
reg_domain = WlanRegDomainCode_ca;
break;
case SKU_ETSI:
reg_domain = WlanRegDomainCode_etsi;
break;
case SKU_ETSI2:
reg_domain = WlanRegDomainCode_etsi2;
break;
case SKU_ETSI3:
reg_domain = WlanRegDomainCode_etsi3;
break;
case SKU_FCC3:
reg_domain = WlanRegDomainCode_fcc3;
break;
case SKU_JAPAN:
reg_domain = WlanRegDomainCode_japan;
break;
case SKU_KOREA:
reg_domain = WlanRegDomainCode_korea;
break;
case SKU_APAC:
reg_domain = WlanRegDomainCode_apac;
break;
case SKU_APAC2:
reg_domain = WlanRegDomainCode_apac2;
break;
case SKU_APAC3:
reg_domain = WlanRegDomainCode_apac3;
break;
case SKU_ROW:
reg_domain = WlanRegDomainCode_row;
break;
case SKU_NONE:
reg_domain = WlanRegDomainCode_none;
break;
case SKU_DEBUG:
reg_domain = WlanRegDomainCode_debug;
break;
case SKU_SR9:
reg_domain = WlanRegDomainCode_sr9;
break;
case SKU_XR9:
reg_domain = WlanRegDomainCode_xr9;
break;
case SKU_GZ901:
reg_domain = WlanRegDomainCode_gz901;
break;
case 0:
reg_domain = WlanRegDomainCode_none;
break;
default:
syslog(LOG_ERR, "unknown regdomain (0x%x) ", which);
reg_domain = WlanRegDomainCode_none;
break;
}
return (reg_domain);
}
static int
wlan_snmp_to_regdomain(enum WlanRegDomainCode regdomain)
{
int which;
switch (regdomain) {
case WlanRegDomainCode_fcc:
which = SKU_FCC;
break;
case WlanRegDomainCode_ca:
which = SKU_CA;
break;
case WlanRegDomainCode_etsi:
which = SKU_ETSI;
break;
case WlanRegDomainCode_etsi2:
which = SKU_ETSI2;
break;
case WlanRegDomainCode_etsi3:
which = SKU_ETSI3;
break;
case WlanRegDomainCode_fcc3:
which = SKU_FCC3;
break;
case WlanRegDomainCode_japan:
which = SKU_JAPAN;
break;
case WlanRegDomainCode_korea:
which = SKU_KOREA;
break;
case WlanRegDomainCode_apac:
which = SKU_APAC;
break;
case WlanRegDomainCode_apac2:
which = SKU_APAC2;
break;
case WlanRegDomainCode_apac3:
which = SKU_APAC3;
break;
case WlanRegDomainCode_row:
which = SKU_ROW;
break;
case WlanRegDomainCode_none:
which = SKU_NONE;
break;
case WlanRegDomainCode_debug:
which = SKU_DEBUG;
break;
case WlanRegDomainCode_sr9:
which = SKU_SR9;
break;
case WlanRegDomainCode_xr9:
which = SKU_XR9;
break;
case WlanRegDomainCode_gz901:
which = SKU_GZ901;
break;
default:
syslog(LOG_ERR, "unknown snmp regdomain (0x%x) ", regdomain);
which = SKU_NONE;
break;
}
return (which);
}
static int
wlan_config_get_country(struct wlan_iface *wif)
{
int val = 0;
size_t argsize;
struct ieee80211_regdomain regdomain;
memset(&regdomain, 0, sizeof(regdomain));
argsize = sizeof(regdomain);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_REGDOMAIN, &val, &regdomain,
&argsize, 0) < 0)
return (-1);
wif->reg_domain = wlan_regdomain_to_snmp(regdomain.regdomain);
wif->country_code[0] = regdomain.isocc[0];
wif->country_code[1] = regdomain.isocc[1];
wif->country_code[2] = regdomain.location;
return (0);
}
static int
wlan_config_set_country(struct wlan_iface *wif, char *ccode, int rdomain)
{
int val = 0, txpowermax;
uint32_t i;
size_t argsize = 0;
struct ieee80211_regdomain_req *regdomain;
if (wlan_get_channel_list(wif) < 0)
return (-1);
if (wif->nchannels == 0) {
syslog(LOG_ERR, "iface %s - set regdomain failed", wif->wname);
return (-1);
}
if (wlan_ioctl(wif->wname, IEEE80211_IOC_TXPOWMAX, &txpowermax, 0,
&argsize, 0) < 0)
return (-1);
regdomain = malloc(IEEE80211_REGDOMAIN_SIZE(wif->nchannels));
if (regdomain == NULL)
return (-1);
memset(regdomain, 0, IEEE80211_REGDOMAIN_SIZE(wif->nchannels));
argsize = IEEE80211_REGDOMAIN_SIZE(wif->nchannels);
/* XXX: recheck with how this is done by ifconfig(8) */
regdomain->rd.regdomain = wlan_snmp_to_regdomain(rdomain);
regdomain->rd.isocc[0] = ccode[0];
regdomain->rd.isocc[1] = ccode[1];
regdomain->rd.location = ccode[2];
/* XXX: fill the channel list properly */
regdomain->chaninfo.ic_nchans = wif->nchannels;
memcpy(regdomain->chaninfo.ic_chans, wif->chanlist,
wif->nchannels * sizeof(struct ieee80211_channel));
for (i = 0; i < wif->nchannels; i++)
regdomain->chaninfo.ic_chans[i].ic_maxregpower = txpowermax;
wif->state = wlanIfaceState_down;
if (wlan_config_state(wif, 1) < 0 ||
wlan_ioctl(wif->wname, IEEE80211_IOC_REGDOMAIN, &val, regdomain,
&argsize, 1) < 0) {
free(regdomain);
return (-1);
}
wif->state = wlanIfaceState_up;
(void)wlan_config_state(wif, 1);
wif->reg_domain = wlan_regdomain_to_snmp(regdomain->rd.regdomain);
wif->country_code[0] = regdomain->rd.isocc[0];
wif->country_code[1] = regdomain->rd.isocc[1];
wif->country_code[2] = regdomain->rd.location;
free(regdomain);
return (0);
}
int
wlan_config_get_dssid(struct wlan_iface *wif)
{
int val = -1;
size_t argsize = IEEE80211_NWID_LEN + 1;
char ssid[IEEE80211_NWID_LEN + 1];
memset(ssid, 0, IEEE80211_NWID_LEN + 1);
if (wlan_ioctl(wif->wname,
(wif->mode == WlanIfaceOperatingModeType_meshPoint) ?
IEEE80211_IOC_MESH_ID : IEEE80211_IOC_SSID, &val, ssid,
&argsize, 0) < 0)
return (-1);
if (argsize > IEEE80211_NWID_LEN)
argsize = IEEE80211_NWID_LEN;
memcpy(wif->desired_ssid, ssid, argsize);
wif->desired_ssid[argsize] = '\0';
return (0);
}
int
wlan_config_set_dssid(struct wlan_iface *wif, char *ssid, int slen)
{
int val = 0;
size_t argsize = slen;
if (wlan_ioctl(wif->wname,
(wif->mode == WlanIfaceOperatingModeType_meshPoint) ?
IEEE80211_IOC_MESH_ID : IEEE80211_IOC_SSID, &val, ssid,
&argsize, 1) < 0)
return (-1);
if (argsize > IEEE80211_NWID_LEN)
argsize = IEEE80211_NWID_LEN;
memcpy(wif->desired_ssid, ssid, argsize);
wif->desired_ssid[argsize] = '\0';
return (0);
}
static int
wlan_config_get_dchannel(struct wlan_iface *wif)
{
uint32_t i = 0;
int val = 0;
size_t argsize = sizeof(struct ieee80211_channel);
struct ieee80211_channel chan;
if (wlan_get_channel_list(wif) < 0)
return (-1);
memset(&chan, 0, sizeof(chan));
if (wlan_ioctl(wif->wname, IEEE80211_IOC_CURCHAN, &val, &chan,
&argsize, 0) < 0)
return (-1);
for (i = 0; i < wif->nchannels; i++)
if (chan.ic_ieee == wif->chanlist[i].ic_ieee &&
chan.ic_flags == wif->chanlist[i].ic_flags) {
wif->desired_channel = i + 1;
break;
}
return (0);
}
static int
wlan_config_set_dchannel(struct wlan_iface *wif, uint32_t dchannel)
{
int val = 0;
size_t argsize = sizeof(struct ieee80211_channel);
struct ieee80211_channel chan;
if (wlan_get_channel_list(wif) < 0)
return (-1);
if (dchannel > wif->nchannels)
return (-1);
memcpy(&chan, wif->chanlist + dchannel - 1, sizeof(chan));
if (wlan_ioctl(wif->wname, IEEE80211_IOC_CURCHAN, &val, &chan,
&argsize, 1) < 0)
return (-1);
wif->desired_channel = dchannel;
return (0);
}
static int
wlan_config_get_bssid(struct wlan_iface *wif)
{
int val = 0;
size_t argsize = IEEE80211_ADDR_LEN;
char bssid[IEEE80211_ADDR_LEN];
memset(bssid, 0, IEEE80211_ADDR_LEN);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_BSSID, &val, bssid,
&argsize, 0) < 0 || argsize != IEEE80211_ADDR_LEN)
return (-1);
memcpy(wif->desired_bssid, bssid, IEEE80211_ADDR_LEN);
return (0);
}
static int
wlan_config_set_bssid(struct wlan_iface *wif, uint8_t *bssid)
{
int val = 0;
size_t argsize = IEEE80211_ADDR_LEN;
if (wlan_ioctl(wif->wname, IEEE80211_IOC_BSSID, &val, bssid,
&argsize, 1) < 0 || argsize != IEEE80211_ADDR_LEN)
return (-1);
memcpy(wif->desired_bssid, bssid, IEEE80211_ADDR_LEN);
return (0);
}
/*
* Convert the value returned by the kernel to the appropriate SNMP
* representation and set the corresponding interface member accordingly.
*/
static void
wlan_config_set_snmp_intval(struct wlan_iface *wif, int op, int val)
{
switch (op) {
case IEEE80211_IOC_BURST:
if (val == 0)
wif->packet_burst = TruthValue_false;
else
wif->packet_burst = TruthValue_true;
break;
case IEEE80211_IOC_DFS:
if (val == 0)
wif->dyn_frequency = TruthValue_false;
else
wif->dyn_frequency = TruthValue_true;
break;
case IEEE80211_IOC_FF:
if (val == 0)
wif->fast_frames = TruthValue_false;
else
wif->fast_frames = TruthValue_true;
break;
case IEEE80211_IOC_TURBOP:
if (val == 0)
wif->dturbo = TruthValue_false;
else
wif->dturbo = TruthValue_true;
break;
case IEEE80211_IOC_TXPOWER:
wif->tx_power = val / 2;
break;
case IEEE80211_IOC_FRAGTHRESHOLD:
wif->frag_threshold = val;
break;
case IEEE80211_IOC_RTSTHRESHOLD:
wif->rts_threshold = val;
break;
case IEEE80211_IOC_WPS:
if (val == 0)
wif->priv_subscribe = TruthValue_false;
else
wif->priv_subscribe = TruthValue_true;
break;
case IEEE80211_IOC_BGSCAN:
if (val == 0)
wif->bg_scan = TruthValue_false;
else
wif->bg_scan = TruthValue_true;
break;
case IEEE80211_IOC_BGSCAN_IDLE:
wif->bg_scan_idle = val;
break;
case IEEE80211_IOC_BGSCAN_INTERVAL:
wif->bg_scan_interval = val;
break;
case IEEE80211_IOC_BMISSTHRESHOLD:
wif->beacons_missed = val;
break;
case IEEE80211_IOC_ROAMING:
switch (val) {
case IEEE80211_ROAMING_DEVICE:
wif->roam_mode = wlanIfaceRoamingMode_device;
break;
case IEEE80211_ROAMING_MANUAL:
wif->roam_mode = wlanIfaceRoamingMode_manual;
break;
case IEEE80211_ROAMING_AUTO:
/* FALTHROUGH */
default:
wif->roam_mode = wlanIfaceRoamingMode_auto;
break;
}
break;
case IEEE80211_IOC_DOTD:
if (val == 0)
wif->dot11d = TruthValue_false;
else
wif->dot11d = TruthValue_true;
break;
case IEEE80211_IOC_DOTH:
if (val == 0)
wif->dot11h = TruthValue_false;
else
wif->dot11h = TruthValue_true;
break;
case IEEE80211_IOC_DWDS:
if (val == 0)
wif->dynamic_wds = TruthValue_false;
else
wif->dynamic_wds = TruthValue_true;
break;
case IEEE80211_IOC_POWERSAVE:
if (val == 0)
wif->power_save = TruthValue_false;
else
wif->power_save = TruthValue_true;
break;
case IEEE80211_IOC_APBRIDGE:
if (val == 0)
wif->ap_bridge = TruthValue_false;
else
wif->ap_bridge = TruthValue_true;
break;
case IEEE80211_IOC_BEACON_INTERVAL:
wif->beacon_interval = val;
break;
case IEEE80211_IOC_DTIM_PERIOD:
wif->dtim_period = val;
break;
case IEEE80211_IOC_HIDESSID:
if (val == 0)
wif->hide_ssid = TruthValue_false;
else
wif->hide_ssid = TruthValue_true;
break;
case IEEE80211_IOC_INACTIVITY:
if (val == 0)
wif->inact_process = TruthValue_false;
else
wif->inact_process = TruthValue_true;
break;
case IEEE80211_IOC_PROTMODE:
switch (val) {
case IEEE80211_PROTMODE_CTS:
wif->do11g_protect = wlanIfaceDot11gProtMode_cts;
break;
case IEEE80211_PROTMODE_RTSCTS:
wif->do11g_protect = wlanIfaceDot11gProtMode_rtscts;
break;
case IEEE80211_PROTMODE_OFF:
/* FALLTHROUGH */
default:
wif->do11g_protect = wlanIfaceDot11gProtMode_off;
break;
}
break;
case IEEE80211_IOC_PUREG:
if (val == 0)
wif->dot11g_pure = TruthValue_false;
else
wif->dot11g_pure = TruthValue_true;
break;
case IEEE80211_IOC_PUREN:
if (val == 0)
wif->dot11n_pure = TruthValue_false;
else
wif->dot11n_pure = TruthValue_true;
break;
case IEEE80211_IOC_AMPDU:
switch (val) {
case 0:
wif->ampdu = WlanIfaceDot11nPduType_disabled;
break;
case 1:
wif->ampdu = WlanIfaceDot11nPduType_txOnly;
break;
case 2:
wif->ampdu = WlanIfaceDot11nPduType_rxOnly;
break;
case 3:
/* FALLTHROUGH */
default:
wif->ampdu = WlanIfaceDot11nPduType_txAndRx;
break;
}
break;
case IEEE80211_IOC_AMPDU_DENSITY:
switch (val) {
case IEEE80211_HTCAP_MPDUDENSITY_025:
wif->ampdu_density = 25;
break;
case IEEE80211_HTCAP_MPDUDENSITY_05:
wif->ampdu_density = 50;
break;
case IEEE80211_HTCAP_MPDUDENSITY_1:
wif->ampdu_density = 100;
break;
case IEEE80211_HTCAP_MPDUDENSITY_2:
wif->ampdu_density = 200;
break;
case IEEE80211_HTCAP_MPDUDENSITY_4:
wif->ampdu_density = 400;
break;
case IEEE80211_HTCAP_MPDUDENSITY_8:
wif->ampdu_density = 800;
break;
case IEEE80211_HTCAP_MPDUDENSITY_16:
wif->ampdu_density = 1600;
break;
case IEEE80211_HTCAP_MPDUDENSITY_NA:
default:
wif->ampdu_density = 0;
break;
}
break;
case IEEE80211_IOC_AMPDU_LIMIT:
switch (val) {
case IEEE80211_HTCAP_MAXRXAMPDU_8K:
wif->ampdu_limit = 8192;
break;
case IEEE80211_HTCAP_MAXRXAMPDU_16K:
wif->ampdu_limit = 16384;
break;
case IEEE80211_HTCAP_MAXRXAMPDU_32K:
wif->ampdu_limit = 32768;
break;
case IEEE80211_HTCAP_MAXRXAMPDU_64K:
default:
wif->ampdu_limit = 65536;
break;
}
break;
case IEEE80211_IOC_AMSDU:
switch (val) {
case 0:
wif->amsdu = WlanIfaceDot11nPduType_disabled;
break;
case 1:
wif->amsdu = WlanIfaceDot11nPduType_txOnly;
break;
case 3:
wif->amsdu = WlanIfaceDot11nPduType_txAndRx;
break;
case 2:
default:
/* FALLTHROUGH */
wif->amsdu = WlanIfaceDot11nPduType_rxOnly;
break;
}
break;
case IEEE80211_IOC_AMSDU_LIMIT:
wif->amsdu_limit = val;
break;
case IEEE80211_IOC_HTCONF:
if (val == 0) /* XXX */
wif->ht_enabled = TruthValue_false;
else
wif->ht_enabled = TruthValue_true;
break;
case IEEE80211_IOC_HTCOMPAT:
if (val == 0)
wif->ht_compatible = TruthValue_false;
else
wif->ht_compatible = TruthValue_true;
break;
case IEEE80211_IOC_HTPROTMODE:
if (val == IEEE80211_PROTMODE_RTSCTS)
wif->ht_prot_mode = wlanIfaceDot11nHTProtMode_rts;
else
wif->ht_prot_mode = wlanIfaceDot11nHTProtMode_off;
break;
case IEEE80211_IOC_RIFS:
if (val == 0)
wif->rifs = TruthValue_false;
else
wif->rifs = TruthValue_true;
break;
case IEEE80211_IOC_SHORTGI:
if (val == 0)
wif->short_gi = TruthValue_false;
else
wif->short_gi = TruthValue_true;
break;
case IEEE80211_IOC_SMPS:
switch (val) {
case IEEE80211_HTCAP_SMPS_DYNAMIC:
wif->smps_mode = wlanIfaceDot11nSMPSMode_dynamic;
break;
case IEEE80211_HTCAP_SMPS_ENA:
wif->smps_mode = wlanIfaceDot11nSMPSMode_static;
break;
case IEEE80211_HTCAP_SMPS_OFF:
/* FALLTHROUGH */
default:
wif->smps_mode = wlanIfaceDot11nSMPSMode_disabled;
break;
}
break;
case IEEE80211_IOC_TDMA_SLOT:
wif->tdma_slot = val;
break;
case IEEE80211_IOC_TDMA_SLOTCNT:
wif->tdma_slot_count = val;
break;
case IEEE80211_IOC_TDMA_SLOTLEN:
wif->tdma_slot_length = val;
break;
case IEEE80211_IOC_TDMA_BINTERVAL:
wif->tdma_binterval = val;
break;
default:
break;
}
}
/*
* Convert an SNMP value to the kernel equivalent and also do sanity check
* for each specific type.
*/
static int
wlan_config_snmp2value(int which, int sval, int *value)
{
*value = 0;
switch (which) {
case IEEE80211_IOC_BURST:
case IEEE80211_IOC_DFS:
case IEEE80211_IOC_FF:
case IEEE80211_IOC_TURBOP:
case IEEE80211_IOC_WPS:
case IEEE80211_IOC_BGSCAN:
case IEEE80211_IOC_DOTD:
case IEEE80211_IOC_DOTH:
case IEEE80211_IOC_DWDS:
case IEEE80211_IOC_POWERSAVE:
case IEEE80211_IOC_APBRIDGE:
case IEEE80211_IOC_HIDESSID:
case IEEE80211_IOC_INACTIVITY:
case IEEE80211_IOC_PUREG:
case IEEE80211_IOC_PUREN:
case IEEE80211_IOC_HTCONF:
case IEEE80211_IOC_HTCOMPAT:
case IEEE80211_IOC_RIFS:
if (sval == TruthValue_true)
*value = 1;
else if (sval != TruthValue_false)
return (SNMP_ERR_INCONS_VALUE);
break;
case IEEE80211_IOC_REGDOMAIN:
break;
case IEEE80211_IOC_SSID:
break;
case IEEE80211_IOC_CURCHAN:
break;
case IEEE80211_IOC_TXPOWER:
*value = sval * 2;
break;
case IEEE80211_IOC_FRAGTHRESHOLD:
if (sval < IEEE80211_FRAG_MIN || sval > IEEE80211_FRAG_MAX)
return (SNMP_ERR_INCONS_VALUE);
*value = sval;
break;
case IEEE80211_IOC_RTSTHRESHOLD:
if (sval < IEEE80211_RTS_MIN || sval > IEEE80211_RTS_MAX)
return (SNMP_ERR_INCONS_VALUE);
*value = sval;
break;
case IEEE80211_IOC_BGSCAN_IDLE:
if (sval < WLAN_BGSCAN_IDLE_MIN)
return (SNMP_ERR_INCONS_VALUE);
*value = sval;
break;
case IEEE80211_IOC_BGSCAN_INTERVAL:
if (sval < WLAN_SCAN_VALID_MIN)
return (SNMP_ERR_INCONS_VALUE);
*value = sval;
break;
case IEEE80211_IOC_BMISSTHRESHOLD:
if (sval < IEEE80211_HWBMISS_MIN || sval > IEEE80211_HWBMISS_MAX)
return (SNMP_ERR_INCONS_VALUE);
*value = sval;
break;
case IEEE80211_IOC_BSSID:
break;
case IEEE80211_IOC_ROAMING:
switch (sval) {
case wlanIfaceRoamingMode_device:
*value = IEEE80211_ROAMING_DEVICE;
break;
case wlanIfaceRoamingMode_manual:
*value = IEEE80211_ROAMING_MANUAL;
break;
case wlanIfaceRoamingMode_auto:
*value = IEEE80211_ROAMING_AUTO;
break;
default:
return (SNMP_ERR_INCONS_VALUE);
}
break;
case IEEE80211_IOC_BEACON_INTERVAL:
if (sval < IEEE80211_BINTVAL_MIN || sval > IEEE80211_BINTVAL_MAX)
return (SNMP_ERR_INCONS_VALUE);
*value = sval;
break;
case IEEE80211_IOC_DTIM_PERIOD:
if (sval < IEEE80211_DTIM_MIN || sval > IEEE80211_DTIM_MAX)
return (SNMP_ERR_INCONS_VALUE);
*value = sval;
break;
case IEEE80211_IOC_PROTMODE:
switch (sval) {
case wlanIfaceDot11gProtMode_cts:
*value = IEEE80211_PROTMODE_CTS;
break;
case wlanIfaceDot11gProtMode_rtscts:
*value = IEEE80211_PROTMODE_RTSCTS;
break;
case wlanIfaceDot11gProtMode_off:
*value = IEEE80211_PROTMODE_OFF;
break;
default:
return (SNMP_ERR_INCONS_VALUE);
}
break;
case IEEE80211_IOC_AMPDU:
switch (sval) {
case WlanIfaceDot11nPduType_disabled:
break;
case WlanIfaceDot11nPduType_txOnly:
*value = 1;
break;
case WlanIfaceDot11nPduType_rxOnly:
*value = 2;
break;
case WlanIfaceDot11nPduType_txAndRx:
*value = 3;
break;
default:
return (SNMP_ERR_INCONS_VALUE);
}
break;
case IEEE80211_IOC_AMPDU_DENSITY:
switch (sval) {
case 0:
*value = IEEE80211_HTCAP_MPDUDENSITY_NA;
break;
case 25:
*value = IEEE80211_HTCAP_MPDUDENSITY_025;
break;
case 50:
*value = IEEE80211_HTCAP_MPDUDENSITY_05;
break;
case 100:
*value = IEEE80211_HTCAP_MPDUDENSITY_1;
break;
case 200:
*value = IEEE80211_HTCAP_MPDUDENSITY_2;
break;
case 400:
*value = IEEE80211_HTCAP_MPDUDENSITY_4;
break;
case 800:
*value = IEEE80211_HTCAP_MPDUDENSITY_8;
break;
case 1600:
*value = IEEE80211_HTCAP_MPDUDENSITY_16;
break;
default:
return (SNMP_ERR_INCONS_VALUE);
}
break;
case IEEE80211_IOC_AMPDU_LIMIT:
switch (sval) {
case 8192:
*value = IEEE80211_HTCAP_MAXRXAMPDU_8K;
break;
case 16384:
*value = IEEE80211_HTCAP_MAXRXAMPDU_16K;
break;
case 32768:
*value = IEEE80211_HTCAP_MAXRXAMPDU_32K;
break;
case 65536:
*value = IEEE80211_HTCAP_MAXRXAMPDU_64K;
break;
default:
return (SNMP_ERR_INCONS_VALUE);
}
break;
case IEEE80211_IOC_AMSDU:
switch (sval) {
case WlanIfaceDot11nPduType_disabled:
break;
case WlanIfaceDot11nPduType_txOnly:
*value = 1;
break;
case WlanIfaceDot11nPduType_rxOnly:
*value = 2;
break;
case WlanIfaceDot11nPduType_txAndRx:
*value = 3;
break;
default:
return (SNMP_ERR_INCONS_VALUE);
}
break;
case IEEE80211_IOC_AMSDU_LIMIT:
if (sval == 3839 || sval == 0)
*value = IEEE80211_HTCAP_MAXAMSDU_3839;
else if (sval == 7935)
*value = IEEE80211_HTCAP_MAXAMSDU_7935;
else
return (SNMP_ERR_INCONS_VALUE);
break;
case IEEE80211_IOC_HTPROTMODE:
switch (sval) {
case wlanIfaceDot11nHTProtMode_rts:
*value = IEEE80211_PROTMODE_RTSCTS;
break;
case wlanIfaceDot11nHTProtMode_off:
break;
default:
return (SNMP_ERR_INCONS_VALUE);
}
break;
case IEEE80211_IOC_SHORTGI:
if (sval == TruthValue_true)
*value = IEEE80211_HTCAP_SHORTGI20 |
IEEE80211_HTCAP_SHORTGI40;
else if (sval != TruthValue_false)
return (SNMP_ERR_INCONS_VALUE);
break;
case IEEE80211_IOC_SMPS:
switch (sval) {
case wlanIfaceDot11nSMPSMode_disabled:
*value = IEEE80211_HTCAP_SMPS_OFF;
break;
case wlanIfaceDot11nSMPSMode_static:
*value = IEEE80211_HTCAP_SMPS_ENA;
break;
case wlanIfaceDot11nSMPSMode_dynamic:
*value = IEEE80211_HTCAP_SMPS_DYNAMIC;
break;
default:
return (SNMP_ERR_INCONS_VALUE);
}
break;
case IEEE80211_IOC_TDMA_SLOT:
if (sval < 0 || sval > WLAN_TDMA_MAXSLOTS) /* XXX */
return (SNMP_ERR_INCONS_VALUE);
*value = sval;
break;
case IEEE80211_IOC_TDMA_SLOTCNT:
if (sval < 0 || sval > WLAN_TDMA_MAXSLOTS) /* XXX */
return (SNMP_ERR_INCONS_VALUE);
*value = sval;
break;
case IEEE80211_IOC_TDMA_SLOTLEN:
if (sval < 2*100 || sval > 0xfffff) /* XXX */
return (SNMP_ERR_INCONS_VALUE);
*value = sval;
break;
case IEEE80211_IOC_TDMA_BINTERVAL:
if (sval < 1) /* XXX */
return (SNMP_ERR_INCONS_VALUE);
*value = sval;
break;
default:
return (SNMP_ERR_INCONS_VALUE);
}
return (SNMP_ERR_NOERROR);
}
/*
* Sanity checks for the wlanIfaceConfigTable.
*/
static int
wlan_config_check(struct wlan_iface *wif, int op)
{
switch (op) {
case IEEE80211_IOC_BURST:
if ((wif->drivercaps & (0x1 << WlanDriverCaps_burst)) == 0) {
wif->packet_burst = TruthValue_false;
return (-1);
}
break;
case IEEE80211_IOC_DFS:
if ((wif->drivercaps & (0x1 << WlanDriverCaps_dfs)) == 0) {
wif->dyn_frequency = TruthValue_false;
return (-1);
}
break;
case IEEE80211_IOC_FF:
if ((wif->drivercaps & (0x1 << WlanDriverCaps_athFastFrames))
== 0) {
wif->fast_frames = TruthValue_false;
return (-1);
}
break;
case IEEE80211_IOC_TURBOP:
if ((wif->drivercaps & (0x1 << WlanDriverCaps_athTurbo)) == 0) {
wif->dturbo = TruthValue_false;
return (-1);
}
break;
case IEEE80211_IOC_TXPOWER:
if ((wif->drivercaps & (0x1 << WlanDriverCaps_txPmgt)) == 0) {
wif->tx_power = 0;
return (-1);
}
break;
case IEEE80211_IOC_FRAGTHRESHOLD:
if ((wif->drivercaps & (0x1 << WlanDriverCaps_txFrag)) == 0) {
wif->frag_threshold = IEEE80211_FRAG_MAX;
return (-1);
}
break;
case IEEE80211_IOC_DWDS:
if ((wif->drivercaps & (0x1 << WlanDriverCaps_wds)) == 0) {
wif->dynamic_wds = TruthValue_false;
return (-1);
}
break;
case IEEE80211_IOC_POWERSAVE:
if ((wif->drivercaps & (0x1 << WlanDriverCaps_pmgt)) == 0) {
wif->power_save = TruthValue_false;
return (-1);
}
break;
case IEEE80211_IOC_BEACON_INTERVAL:
if (wif->mode != WlanIfaceOperatingModeType_hostAp &&
wif->mode != WlanIfaceOperatingModeType_meshPoint &&
wif->mode != WlanIfaceOperatingModeType_ibss) {
wif->beacon_interval = 100; /* XXX */
return (-1);
}
break;
case IEEE80211_IOC_DTIM_PERIOD:
if (wif->mode != WlanIfaceOperatingModeType_hostAp &&
wif->mode != WlanIfaceOperatingModeType_meshPoint &&
wif->mode != WlanIfaceOperatingModeType_ibss) {
wif->dtim_period = 1; /* XXX */
return (-1);
}
break;
case IEEE80211_IOC_PUREN:
if ((wif->htcaps & (0x1 << WlanHTCaps_htcHt)) == 0) {
wif->dot11n_pure = TruthValue_false;
return (-1);
}
break;
case IEEE80211_IOC_AMPDU:
if ((wif->htcaps & (0x1 << WlanHTCaps_htcAmpdu)) == 0) {
wif->ampdu = WlanIfaceDot11nPduType_disabled;
return (-1);
}
break;
case IEEE80211_IOC_AMSDU:
if ((wif->htcaps & (0x1 << WlanHTCaps_htcAmsdu)) == 0) {
wif->amsdu = WlanIfaceDot11nPduType_disabled;
return (-1);
}
break;
case IEEE80211_IOC_RIFS:
if ((wif->htcaps & (0x1 << WlanHTCaps_htcRifs)) == 0) {
wif->rifs = TruthValue_false;
return (-1);
}
break;
case IEEE80211_IOC_SHORTGI:
if ((wif->htcaps & (0x1 << WlanHTCaps_shortGi20 |
0x1 << WlanHTCaps_shortGi40)) == 0) {
wif->short_gi = TruthValue_false;
return (-1);
}
break;
case IEEE80211_IOC_SMPS:
if ((wif->htcaps & (0x1 << WlanHTCaps_htcSmps)) == 0) {
wif->smps_mode = wlanIfaceDot11nSMPSMode_disabled;
return (-1);
}
break;
case IEEE80211_IOC_TDMA_SLOT:
if ((wif->drivercaps & (0x1 << WlanDriverCaps_tdma)) == 0) {
wif->tdma_slot = 0;
return (-1);
}
break;
case IEEE80211_IOC_TDMA_SLOTCNT:
if ((wif->drivercaps & (0x1 << WlanDriverCaps_tdma)) == 0) {
wif->tdma_slot_count = 0;
return (-1);
}
break;
case IEEE80211_IOC_TDMA_SLOTLEN:
if ((wif->drivercaps & (0x1 << WlanDriverCaps_tdma)) == 0) {
wif->tdma_slot_length = 0;
return (-1);
}
break;
case IEEE80211_IOC_TDMA_BINTERVAL:
if ((wif->drivercaps & (0x1 << WlanDriverCaps_tdma)) == 0) {
wif->tdma_binterval = 0;
return (-1);
}
break;
default:
break;
}
return (0);
}
static int
wlan_config_get_intval(struct wlan_iface *wif, int op)
{
int val = 0;
size_t argsize = 0;
if (wlan_config_check(wif, op) < 0)
return (0);
if (wlan_ioctl(wif->wname, op, &val, NULL, &argsize, 0) < 0)
return (-1);
wlan_config_set_snmp_intval(wif, op, val);
return (0);
}
static int
wlan_config_set_intval(struct wlan_iface *wif, int op, int sval)
{
size_t argsize = 0;
int val;
if (wlan_config_check(wif, op) < 0)
return (-1);
if (wlan_config_snmp2value(op, sval, &val) != SNMP_ERR_NOERROR)
return (-1);
if (wlan_ioctl(wif->wname, op, &val, NULL, &argsize, 1) < 0)
return (-1);
wlan_config_set_snmp_intval(wif, op, val);
return (0);
}
int
wlan_config_get_ioctl(struct wlan_iface *wif, int which)
{
int op;
switch (which) {
case LEAF_wlanIfaceCountryCode:
/* FALLTHROUGH */
case LEAF_wlanIfaceRegDomain:
return (wlan_config_get_country(wif));
case LEAF_wlanIfaceDesiredSsid:
return (wlan_config_get_dssid(wif));
case LEAF_wlanIfaceDesiredChannel:
return (wlan_config_get_dchannel(wif));
case LEAF_wlanIfaceDesiredBssid:
return (wlan_config_get_bssid(wif));
default:
op = wlan_config_snmp2ioctl(which);
return (wlan_config_get_intval(wif, op));
}
return (-1);
}
int
wlan_config_set_ioctl(struct wlan_iface *wif, int which, int val,
char *strval, int len)
{
int op;
switch (which) {
case LEAF_wlanIfaceCountryCode:
return (wlan_config_set_country(wif, strval,
wif->reg_domain));
case LEAF_wlanIfaceRegDomain:
return (wlan_config_set_country(wif, wif->country_code,
val));
case LEAF_wlanIfaceDesiredSsid:
return (wlan_config_set_dssid(wif, strval, len));
case LEAF_wlanIfaceDesiredChannel:
return (wlan_config_set_dchannel(wif, val));
case LEAF_wlanIfaceDesiredBssid:
return (wlan_config_set_bssid(wif, strval));
default:
op = wlan_config_snmp2ioctl(which);
return (wlan_config_set_intval(wif, op, val));
}
return (-1);
}
static uint32_t
wlan_snmp_to_scan_flags(int flags)
{
int sr_flags = 0;
if ((flags & (0x1 << WlanScanFlagsType_noSelection)) != 0)
sr_flags |= IEEE80211_IOC_SCAN_NOPICK;
if ((flags & (0x1 << WlanScanFlagsType_activeScan)) != 0)
sr_flags |= IEEE80211_IOC_SCAN_ACTIVE;
if ((flags & (0x1 << WlanScanFlagsType_pickFirst)) != 0)
sr_flags |= IEEE80211_IOC_SCAN_PICK1ST;
if ((flags & (0x1 << WlanScanFlagsType_backgroundScan)) != 0)
sr_flags |= IEEE80211_IOC_SCAN_BGSCAN;
if ((flags & (0x1 << WlanScanFlagsType_once)) != 0)
sr_flags |= IEEE80211_IOC_SCAN_ONCE;
if ((flags & (0x1 << WlanScanFlagsType_noBroadcast)) != 0)
sr_flags |= IEEE80211_IOC_SCAN_NOBCAST;
if ((flags & (0x1 << WlanScanFlagsType_noAutoSequencing)) != 0)
sr_flags |= IEEE80211_IOC_SCAN_NOJOIN;
if ((flags & (0x1 << WlanScanFlagsType_flushCashe)) != 0)
sr_flags |= IEEE80211_IOC_SCAN_FLUSH;
if ((flags & (0x1 << WlanScanFlagsType_chechCashe)) != 0)
sr_flags |= IEEE80211_IOC_SCAN_CHECK;
return (sr_flags);
}
int
wlan_set_scan_config(struct wlan_iface *wif)
{
int val = 0;
size_t argsize;
struct ieee80211_scan_req sr;
memset(&sr, 0, sizeof(sr));
argsize = sizeof(struct ieee80211_scan_req);
sr.sr_flags = wlan_snmp_to_scan_flags(wif->scan_flags);
sr.sr_flags |= IEEE80211_IOC_SCAN_BGSCAN;
sr.sr_duration = wif->scan_duration;
sr.sr_mindwell = wif->scan_mindwell;
sr.sr_maxdwell = wif->scan_maxdwell;
sr.sr_nssid = 0;
if (wlan_ioctl(wif->wname, IEEE80211_IOC_SCAN_REQ,
&val, &sr, &argsize, 1) < 0)
return (-1);
wif->scan_status = wlanScanConfigStatus_running;
return (0);
}
static uint32_t
wlan_peercaps_to_snmp(uint32_t pcaps)
{
uint32_t scaps = 0;
if ((pcaps & IEEE80211_CAPINFO_ESS) != 0)
scaps |= (0x1 << WlanPeerCapabilityFlags_ess);
if ((pcaps & IEEE80211_CAPINFO_IBSS) != 0)
scaps |= (0x1 << WlanPeerCapabilityFlags_ibss);
if ((pcaps & IEEE80211_CAPINFO_CF_POLLABLE) != 0)
scaps |= (0x1 << WlanPeerCapabilityFlags_cfPollable);
if ((pcaps & IEEE80211_CAPINFO_CF_POLLREQ) != 0)
scaps |= (0x1 << WlanPeerCapabilityFlags_cfPollRequest);
if ((pcaps & IEEE80211_CAPINFO_PRIVACY) != 0)
scaps |= (0x1 << WlanPeerCapabilityFlags_privacy);
if ((pcaps & IEEE80211_CAPINFO_SHORT_PREAMBLE) != 0)
scaps |= (0x1 << WlanPeerCapabilityFlags_shortPreamble);
if ((pcaps & IEEE80211_CAPINFO_PBCC) != 0)
scaps |= (0x1 << WlanPeerCapabilityFlags_pbcc);
if ((pcaps & IEEE80211_CAPINFO_CHNL_AGILITY) != 0)
scaps |= (0x1 << WlanPeerCapabilityFlags_channelAgility);
if ((pcaps & IEEE80211_CAPINFO_SHORT_SLOTTIME) != 0)
scaps |= (0x1 << WlanPeerCapabilityFlags_shortSlotTime);
if ((pcaps & IEEE80211_CAPINFO_RSN) != 0)
scaps |= (0x1 << WlanPeerCapabilityFlags_rsn);
if ((pcaps & IEEE80211_CAPINFO_DSSSOFDM) != 0)
scaps |= (0x1 << WlanPeerCapabilityFlags_dsssofdm);
return (scaps);
}
static int
wlan_add_new_scan_result(struct wlan_iface *wif,
const struct ieee80211req_scan_result *isr, uint8_t *ssid)
{
struct wlan_scan_result *sr;
if ((sr = wlan_scan_new_result(ssid, isr->isr_bssid)) == NULL)
return (-1);
sr->opchannel = wlan_channel_flags_to_snmp_phy(isr->isr_flags);
sr->rssi = isr->isr_rssi;
sr->frequency = isr->isr_freq;
sr->noise = isr->isr_noise;
sr->bintval = isr->isr_intval;
sr->capinfo = wlan_peercaps_to_snmp(isr->isr_capinfo);
if (wlan_scan_add_result(wif, sr) < 0) {
wlan_scan_free_result(sr);
return (-1);
}
return (0);
}
int
wlan_get_scan_results(struct wlan_iface *wif)
{
int ssidlen, val = 0;
uint8_t buf[24 * 1024];
size_t argsize;
const uint8_t *cp, *idp;
uint8_t ssid[IEEE80211_NWID_LEN + 1];
struct ieee80211req_scan_result isr;
argsize = sizeof(buf);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_SCAN_RESULTS, &val, &buf,
&argsize, 0) < 0)
return (-1);
if (argsize < sizeof(struct ieee80211req_scan_result))
return (0);
cp = buf;
do {
memcpy(&isr, cp, sizeof(struct ieee80211req_scan_result));
memset(ssid, 0, IEEE80211_NWID_LEN + 1);
if (isr.isr_meshid_len) {
idp = cp + isr.isr_ie_off + isr.isr_ssid_len;
ssidlen = isr.isr_meshid_len;
} else {
idp = cp + isr.isr_ie_off;
ssidlen = isr.isr_ssid_len;
}
if (ssidlen > IEEE80211_NWID_LEN)
ssidlen = IEEE80211_NWID_LEN;
memcpy(ssid, idp, ssidlen);
ssid[IEEE80211_NWID_LEN] = '\0';
(void)wlan_add_new_scan_result(wif, &isr, ssid);
cp += isr.isr_len;
argsize -= isr.isr_len;
} while (argsize >= sizeof(struct ieee80211req_scan_result));
return (0);
}
int
wlan_get_stats(struct wlan_iface *wif)
{
struct ifreq ifr;
memset(&ifr, 0, sizeof(struct ifreq));
strlcpy(ifr.ifr_name, wif->wname, IFNAMSIZ);
ifr.ifr_data = (caddr_t) &wif->stats;
if (ioctl(sock, SIOCG80211STATS, &ifr) < 0) {
syslog(LOG_ERR, "iface %s - ioctl(SIOCG80211STATS) failed: %s",
wif->wname, strerror(errno));
return (-1);
}
return (0);
}
int
wlan_get_wepmode(struct wlan_iface *wif)
{
int val = 0;
size_t argsize = 0;
if (wlan_ioctl(wif->wname, IEEE80211_IOC_WEP, &val, NULL,
&argsize, 0) < 0 || val == IEEE80211_WEP_NOSUP) {
wif->wepsupported = 0; /* XXX */
wif->wepmode = wlanWepMode_off;
wif->weptxkey = 0;
return (-1);
}
wif->wepsupported = 1;
switch (val) {
case IEEE80211_WEP_ON:
wif->wepmode = wlanWepMode_on;
break;
case IEEE80211_WEP_MIXED:
wif->wepmode = wlanWepMode_mixed;
break;
case IEEE80211_WEP_OFF:
/* FALLTHROUGH */
default:
wif->wepmode = wlanWepMode_off;
break;
}
return (0);
}
int
wlan_set_wepmode(struct wlan_iface *wif)
{
int val;
size_t argsize = 0;
if (!wif->wepsupported)
return (-1);
switch (wif->wepmode) {
case wlanWepMode_off:
val = IEEE80211_WEP_OFF;
break;
case wlanWepMode_on:
val = IEEE80211_WEP_ON;
break;
case wlanWepMode_mixed:
val = IEEE80211_WEP_MIXED;
break;
default:
return (-1);
}
if (wlan_ioctl(wif->wname, IEEE80211_IOC_WEP, &val, NULL,
&argsize, 1) < 0)
return (-1);
return (0);
}
int
wlan_get_weptxkey(struct wlan_iface *wif)
{
int val;
size_t argsize = 0;
if (!wif->wepsupported)
return (0);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_WEPTXKEY, &val, NULL,
&argsize, 0) < 0)
return (-1);
if (val == IEEE80211_KEYIX_NONE)
wif->weptxkey = 0;
else
wif->weptxkey = val + 1;
return (0);
}
int
wlan_set_weptxkey(struct wlan_iface *wif)
{
int val;
size_t argsize = 0;
if (!wif->wepsupported)
return (0);
if (wif->weptxkey >= IEEE80211_WEP_NKID)
return (-1);
if (wif->weptxkey == 0)
val = IEEE80211_KEYIX_NONE;
else
val = wif->weptxkey - 1;
if (wlan_ioctl(wif->wname, IEEE80211_IOC_WEPTXKEY, &val, NULL,
&argsize, 1) < 0)
return (-1);
return (0);
}
int
wlan_get_wepkeys(struct wlan_iface *wif __unused)
{
/* XXX: should they be visible via SNMP */
return (0);
}
int
wlan_set_wepkeys(struct wlan_iface *wif __unused)
{
/* XXX: should they be configurable via SNMP */
return (0);
}
int
wlan_get_mac_policy(struct wlan_iface *wif)
{
int val = IEEE80211_MACCMD_POLICY;
size_t argsize = 0;
struct ieee80211req ireq;
memset(&ireq, 0, sizeof(struct ieee80211req));
strlcpy(ireq.i_name, wif->wname, IFNAMSIZ);
ireq.i_type = IEEE80211_IOC_MACCMD;
ireq.i_val = IEEE80211_MACCMD_POLICY;
if (ioctl(sock, SIOCG80211, &ireq) < 0) {
if (errno != EINVAL) {
syslog(LOG_ERR, "iface %s - get param: ioctl(%d) "
"failed: %s", wif->wname, ireq.i_type,
strerror(errno));
wif->macsupported = 0;
return (-1);
} else {
wif->macsupported = 1;
wif->mac_policy = wlanMACAccessControlPolicy_open;
return (0);
}
}
wif->macsupported = 1;
switch (val) {
case IEEE80211_MACCMD_POLICY_ALLOW:
wif->mac_policy = wlanMACAccessControlPolicy_allow;
break;
case IEEE80211_MACCMD_POLICY_DENY:
wif->mac_policy = wlanMACAccessControlPolicy_deny;
break;
case IEEE80211_MACCMD_POLICY_RADIUS:
wif->mac_policy = wlanMACAccessControlPolicy_radius;
break;
case IEEE80211_MACCMD_POLICY_OPEN:
/* FALLTHROUGH */
default:
wif->mac_policy = wlanMACAccessControlPolicy_open;
break;
}
argsize = 0;
val = IEEE80211_MACCMD_LIST;
if (wlan_ioctl(wif->wname, IEEE80211_IOC_MACCMD, &val, NULL,
&argsize, 0) < 0)
return (-1);
wif->mac_nacls = argsize / sizeof(struct ieee80211req_maclist *);
return (0);
}
int
wlan_set_mac_policy(struct wlan_iface *wif)
{
int val;
size_t argsize = 0;
if (!wif->macsupported)
return (-1);
switch (wif->mac_policy) {
case wlanMACAccessControlPolicy_allow:
val = IEEE80211_MACCMD_POLICY_ALLOW;
break;
case wlanMACAccessControlPolicy_deny:
val = IEEE80211_MACCMD_POLICY_DENY;
break;
case wlanMACAccessControlPolicy_radius:
val = IEEE80211_MACCMD_POLICY_RADIUS;
break;
case wlanMACAccessControlPolicy_open:
val = IEEE80211_MACCMD_POLICY_OPEN;
break;
default:
return (-1);
}
if (wlan_ioctl(wif->wname, IEEE80211_IOC_MACCMD, &val, NULL,
&argsize, 1) < 0)
return (-1);
return (0);
}
int
wlan_flush_mac_mac(struct wlan_iface *wif)
{
int val = IEEE80211_MACCMD_FLUSH;
size_t argsize = 0;
if (wlan_ioctl(wif->wname, IEEE80211_IOC_MACCMD, &val, NULL,
&argsize, 1) < 0)
return (-1);
return (0);
}
static int
wlan_add_mac_macinfo(struct wlan_iface *wif,
const struct ieee80211req_maclist *ml)
{
struct wlan_mac_mac *mmac;
if ((mmac = wlan_mac_new_mac(ml->ml_macaddr)) == NULL)
return (-1);
mmac->mac_status = RowStatus_active;
if (wlan_mac_add_mac(wif, mmac) < 0) {
wlan_mac_free_mac(mmac);
return (-1);
}
return (0);
}
int
wlan_get_mac_acl_macs(struct wlan_iface *wif)
{
int i, nacls, val = IEEE80211_MACCMD_LIST;
size_t argsize = 0;
uint8_t *data;
struct ieee80211req ireq;
const struct ieee80211req_maclist *acllist;
if (wif->mac_policy == wlanMACAccessControlPolicy_radius) {
wif->mac_nacls = 0;
return (0);
}
memset(&ireq, 0, sizeof(struct ieee80211req));
strlcpy(ireq.i_name, wif->wname, IFNAMSIZ);
ireq.i_type = IEEE80211_IOC_MACCMD;
ireq.i_val = IEEE80211_MACCMD_LIST;
if (ioctl(sock, SIOCG80211, &ireq) < 0) {
if (errno != EINVAL) {
syslog(LOG_ERR, "iface %s - get param: ioctl(%d) "
"failed: %s", wif->wname, ireq.i_type,
strerror(errno));
wif->macsupported = 0;
return (-1);
}
}
if (argsize == 0) {
wif->mac_nacls = 0;
return (0);
}
if ((data = (uint8_t *)malloc(argsize)) == NULL)
return (-1);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_MACCMD, &val, data,
&argsize, 0) < 0)
return (-1);
nacls = argsize / sizeof(*acllist);
acllist = (struct ieee80211req_maclist *) data;
for (i = 0; i < nacls; i++)
(void)wlan_add_mac_macinfo(wif, acllist + i);
wif->mac_nacls = nacls;
return (0);
}
int
wlan_add_mac_acl_mac(struct wlan_iface *wif, struct wlan_mac_mac *mmac)
{
int val = 0;
size_t argsize = IEEE80211_ADDR_LEN;
struct ieee80211req_mlme mlme;
if (wlan_ioctl(wif->wname, IEEE80211_IOC_ADDMAC, &val,
mmac->mac, &argsize, 1) < 0)
return (-1);
mmac->mac_status = RowStatus_active;
/* If policy is deny, try to kick the station just in case. */
if (wif->mac_policy != wlanMACAccessControlPolicy_deny)
return (0);
memset(&mlme, 0, sizeof(mlme));
mlme.im_op = IEEE80211_MLME_DEAUTH;
mlme.im_reason = IEEE80211_REASON_AUTH_EXPIRE;
memcpy(mlme.im_macaddr, mmac->mac, IEEE80211_ADDR_LEN);
argsize = sizeof(struct ieee80211req_mlme);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_MLME, &val, &mlme,
&argsize, 1) < 0 && errno != ENOENT)
return (-1);
return (0);
}
int
wlan_del_mac_acl_mac(struct wlan_iface *wif, struct wlan_mac_mac *mmac)
{
int val = 0;
size_t argsize = IEEE80211_ADDR_LEN;
struct ieee80211req_mlme mlme;
if (wlan_ioctl(wif->wname, IEEE80211_IOC_DELMAC, &val,
mmac->mac, &argsize, 1) < 0)
return (-1);
mmac->mac_status = RowStatus_active;
/* If policy is allow, try to kick the station just in case. */
if (wif->mac_policy != wlanMACAccessControlPolicy_allow)
return (0);
memset(&mlme, 0, sizeof(mlme));
mlme.im_op = IEEE80211_MLME_DEAUTH;
mlme.im_reason = IEEE80211_REASON_AUTH_EXPIRE;
memcpy(mlme.im_macaddr, mmac->mac, IEEE80211_ADDR_LEN);
argsize = sizeof(struct ieee80211req_mlme);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_MLME, &val, &mlme,
&argsize, 1) < 0 && errno != ENOENT)
return (-1);
return (0);
}
int
wlan_peer_set_vlan(struct wlan_iface *wif, struct wlan_peer *wip, int vlan)
{
int val = 0;
size_t argsize;
struct ieee80211req_sta_vlan vreq;
memcpy(vreq.sv_macaddr, wip->pmac, IEEE80211_ADDR_LEN);
vreq.sv_vlan = vlan;
argsize = sizeof(struct ieee80211req_sta_vlan);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_STA_VLAN,
&val, &vreq, &argsize, 1) < 0)
return (-1);
wip->vlan = vlan;
return (0);
}
/* XXX */
#ifndef IEEE80211_NODE_AUTH
#define IEEE80211_NODE_AUTH 0x000001 /* authorized for data */
#define IEEE80211_NODE_QOS 0x000002 /* QoS enabled */
#define IEEE80211_NODE_ERP 0x000004 /* ERP enabled */
#define IEEE80211_NODE_PWR_MGT 0x000010 /* power save mode enabled */
#define IEEE80211_NODE_AREF 0x000020 /* authentication ref held */
#define IEEE80211_NODE_HT 0x000040 /* HT enabled */
#define IEEE80211_NODE_HTCOMPAT 0x000080 /* HT setup w/ vendor OUI's */
#define IEEE80211_NODE_WPS 0x000100 /* WPS association */
#define IEEE80211_NODE_TSN 0x000200 /* TSN association */
#define IEEE80211_NODE_AMPDU_RX 0x000400 /* AMPDU rx enabled */
#define IEEE80211_NODE_AMPDU_TX 0x000800 /* AMPDU tx enabled */
#define IEEE80211_NODE_MIMO_PS 0x001000 /* MIMO power save enabled */
#define IEEE80211_NODE_MIMO_RTS 0x002000 /* send RTS in MIMO PS */
#define IEEE80211_NODE_RIFS 0x004000 /* RIFS enabled */
#define IEEE80211_NODE_SGI20 0x008000 /* Short GI in HT20 enabled */
#define IEEE80211_NODE_SGI40 0x010000 /* Short GI in HT40 enabled */
#define IEEE80211_NODE_ASSOCID 0x020000 /* xmit requires associd */
#define IEEE80211_NODE_AMSDU_RX 0x040000 /* AMSDU rx enabled */
#define IEEE80211_NODE_AMSDU_TX 0x080000 /* AMSDU tx enabled */
#endif
static uint32_t
wlan_peerstate_to_snmp(uint32_t pstate)
{
uint32_t sstate = 0;
if ((pstate & IEEE80211_NODE_AUTH) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_authorizedForData);
if ((pstate & IEEE80211_NODE_QOS) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_qosEnabled);
if ((pstate & IEEE80211_NODE_ERP) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_erpEnabled);
if ((pstate & IEEE80211_NODE_PWR_MGT) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_powerSaveMode);
if ((pstate & IEEE80211_NODE_AREF) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_authRefHeld);
if ((pstate & IEEE80211_NODE_HT) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_htEnabled);
if ((pstate & IEEE80211_NODE_HTCOMPAT) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_htCompat);
if ((pstate & IEEE80211_NODE_WPS) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_wpsAssoc);
if ((pstate & IEEE80211_NODE_TSN) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_tsnAssoc);
if ((pstate & IEEE80211_NODE_AMPDU_RX) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_ampduRx);
if ((pstate & IEEE80211_NODE_AMPDU_TX) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_ampduTx);
if ((pstate & IEEE80211_NODE_MIMO_PS) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_mimoPowerSave);
if ((pstate & IEEE80211_NODE_MIMO_RTS) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_sendRts);
if ((pstate & IEEE80211_NODE_RIFS) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_rifs);
if ((pstate & IEEE80211_NODE_SGI20) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_shortGiHT20);
if ((pstate & IEEE80211_NODE_SGI40) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_shortGiHT40);
if ((pstate & IEEE80211_NODE_AMSDU_RX) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_amsduRx);
if ((pstate & IEEE80211_NODE_AMSDU_TX) != 0)
sstate |= (0x1 << WlanIfacePeerFlagsType_amsduTx);
return (sstate);
}
static struct wlan_peer *
wlan_add_peerinfo(const struct ieee80211req_sta_info *si)
{
struct wlan_peer *wip;
if ((wip = wlan_new_peer(si->isi_macaddr))== NULL)
return (NULL);
wip->associd = IEEE80211_AID(si->isi_associd);
wip->vlan = si->isi_vlan;
wip->frequency = si->isi_freq;
wip->fflags = si->isi_flags;
wip->txrate = si->isi_txrate;
wip->rssi = si->isi_rssi;
wip->idle = si->isi_inact;
wip->txseqs = si->isi_txseqs[0]; /* XXX */
wip->rxseqs = si->isi_rxseqs[0]; /* XXX */
wip->txpower = si->isi_txpower;
wip->capinfo = wlan_peercaps_to_snmp(si->isi_capinfo);
wip->state = wlan_peerstate_to_snmp(si->isi_state);
wip->local_id = si->isi_localid;
wip->peer_id = si->isi_peerid;
return (wip);
}
int
wlan_get_peerinfo(struct wlan_iface *wif)
{
union {
struct ieee80211req_sta_req req;
uint8_t buf[24 * 1024];
} u;
const uint8_t *cp;
int val = 0;
size_t len;
struct ieee80211req_sta_info si;
struct wlan_peer *wip;
/* Get all stations - broadcast address */
(void) memset(u.req.is_u.macaddr, 0xff, IEEE80211_ADDR_LEN);
len = sizeof(u);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_STA_INFO,
& val, &u, &len, 0) < 0)
return (-1);
if (len < sizeof(struct ieee80211req_sta_info))
return (-1);
cp = (const uint8_t *) u.req.info;
do {
memcpy(&si, cp, sizeof(struct ieee80211req_sta_info));
if ((wip = wlan_add_peerinfo(&si)) != NULL &&
wlan_add_peer(wif, wip) < 0)
wlan_free_peer(wip);
cp += si.isi_len, len -= si.isi_len;
} while (len >= sizeof(struct ieee80211req_sta_info));
return (0);
}
/************************************************************************
* Wireless MESH & HWMP sysctl config.
*/
const char wlan_sysctl_name[] = "net.wlan.";
static const char *wlan_sysctl[] = {
"mesh.retrytimeout",
"mesh.holdingtimeout",
"mesh.confirmtimeout",
"mesh.maxretries",
"hwmp.targetonly",
"hwmp.replyforward",
"hwmp.pathlifetime",
"hwmp.roottimeout",
"hwmp.rootint",
"hwmp.rannint",
"hwmp.inact",
};
int32_t
wlan_do_sysctl(struct wlan_config *cfg, enum wlan_syscl which, int set)
{
char mib_name[100];
int val, sval;
size_t len, vlen;
if (set) {
vlen = sizeof(sval);
switch (which) {
case WLAN_MESH_RETRY_TO:
sval = cfg->mesh_retryto;
break;
case WLAN_MESH_HOLDING_TO:
sval = cfg->mesh_holdingto;
break;
case WLAN_MESH_CONFIRM_TO:
sval = cfg->mesh_confirmto;
break;
case WLAN_MESH_MAX_RETRIES:
sval = cfg->mesh_maxretries;
break;
case WLAN_HWMP_TARGET_ONLY:
sval = cfg->hwmp_targetonly;
break;
case WLAN_HWMP_REPLY_FORWARD:
sval = cfg->hwmp_replyforward;
break;
case WLAN_HWMP_PATH_LIFETIME:
sval = cfg->hwmp_pathlifetime;
break;
case WLAN_HWMP_ROOT_TO:
sval = cfg->hwmp_roottimeout;
break;
case WLAN_HWMP_ROOT_INT:
sval = cfg->hwmp_rootint;
break;
case WLAN_HWMP_RANN_INT:
sval = cfg->hwmp_rannint;
break;
case WLAN_HWMP_INACTIVITY_TO:
sval = cfg->hwmp_inact;
break;
default:
return (-1);
}
} else {
if (which >= WLAN_SYSCTL_MAX)
return (-1);
vlen = 0;
}
strlcpy(mib_name, wlan_sysctl_name, sizeof(mib_name));
strlcat(mib_name, wlan_sysctl[which], sizeof(mib_name));
len = sizeof (val);
if (sysctlbyname(mib_name, &val, &len, (set? &sval : NULL), vlen) < 0) {
syslog(LOG_ERR, "sysctl(%s) failed - %s", mib_name,
strerror(errno));
return (-1);
}
switch (which) {
case WLAN_MESH_RETRY_TO:
cfg->mesh_retryto = val;
break;
case WLAN_MESH_HOLDING_TO:
cfg->mesh_holdingto = val;
break;
case WLAN_MESH_CONFIRM_TO:
cfg->mesh_confirmto = val;
break;
case WLAN_MESH_MAX_RETRIES:
cfg->mesh_maxretries = val;
break;
case WLAN_HWMP_TARGET_ONLY:
cfg->hwmp_targetonly = val;
break;
case WLAN_HWMP_REPLY_FORWARD:
cfg->hwmp_replyforward = val;
break;
case WLAN_HWMP_PATH_LIFETIME:
cfg->hwmp_pathlifetime = val;
break;
case WLAN_HWMP_ROOT_TO:
cfg->hwmp_roottimeout = val;
break;
case WLAN_HWMP_ROOT_INT:
cfg->hwmp_rootint = val;
break;
case WLAN_HWMP_RANN_INT:
cfg->hwmp_rannint = val;
break;
case WLAN_HWMP_INACTIVITY_TO:
cfg->hwmp_inact = val;
break;
default:
/* NOTREACHED */
abort();
}
return (0);
}
int
wlan_mesh_config_get(struct wlan_iface *wif, int which)
{
int op, val = 0;
size_t argsize = 0;
uint8_t data[32], *pd = NULL;
switch (which) {
case LEAF_wlanMeshTTL:
op = IEEE80211_IOC_MESH_TTL;
break;
case LEAF_wlanMeshPeeringEnabled:
op = IEEE80211_IOC_MESH_AP;
break;
case LEAF_wlanMeshForwardingEnabled:
op = IEEE80211_IOC_MESH_FWRD;
break;
case LEAF_wlanMeshMetric:
op = IEEE80211_IOC_MESH_PR_METRIC;
pd = data;
argsize = sizeof(data);
break;
case LEAF_wlanMeshPath:
op = IEEE80211_IOC_MESH_PR_PATH;
pd = data;
argsize = sizeof(data);
break;
case LEAF_wlanMeshRoutesFlush:
return (0);
default:
return (-1);
}
if (wlan_ioctl(wif->wname, op, &val, pd, &argsize, 0) < 0)
return (-1);
switch (which) {
case LEAF_wlanMeshTTL:
wif->mesh_ttl = val;
break;
case LEAF_wlanMeshPeeringEnabled:
if (val)
wif->mesh_peering = wlanMeshPeeringEnabled_true;
else
wif->mesh_peering = wlanMeshPeeringEnabled_false;
break;
case LEAF_wlanMeshForwardingEnabled:
if (val)
wif->mesh_forwarding = wlanMeshForwardingEnabled_true;
else
wif->mesh_forwarding = wlanMeshForwardingEnabled_false;
break;
case LEAF_wlanMeshMetric:
data[argsize] = '\0';
if (strcmp(data, "AIRTIME") == 0)
wif->mesh_metric = wlanMeshMetric_airtime;
else
wif->mesh_metric = wlanMeshMetric_unknown;
break;
case LEAF_wlanMeshPath:
data[argsize] = '\0';
if (strcmp(data, "HWMP") == 0)
wif->mesh_path = wlanMeshPath_hwmp;
else
wif->mesh_path = wlanMeshPath_unknown;
}
return (0);
}
int
wlan_mesh_config_set(struct wlan_iface *wif, int which)
{
int op, val = 0;
size_t argsize = 0;
uint8_t data[32], *pd = NULL;
switch (which) {
case LEAF_wlanMeshTTL:
op = IEEE80211_IOC_MESH_TTL;
val = wif->mesh_ttl;
break;
case LEAF_wlanMeshPeeringEnabled:
op = IEEE80211_IOC_MESH_AP;
if (wif->mesh_peering == wlanMeshPeeringEnabled_true)
val = 1;
break;
case LEAF_wlanMeshForwardingEnabled:
if (wif->mesh_forwarding == wlanMeshForwardingEnabled_true)
val = 1;
op = IEEE80211_IOC_MESH_FWRD;
break;
case LEAF_wlanMeshMetric:
op = IEEE80211_IOC_MESH_PR_METRIC;
if (wif->mesh_metric == wlanMeshMetric_airtime)
strcpy(data, "AIRTIME");
else
return (-1);
pd = data;
argsize = sizeof(data);
break;
case LEAF_wlanMeshPath:
op = IEEE80211_IOC_MESH_PR_PATH;
if (wif->mesh_path == wlanMeshPath_hwmp)
strcpy(data, "HWMP");
else
return (-1);
pd = data;
argsize = sizeof(data);
break;
default:
return (-1);
}
if (wlan_ioctl(wif->wname, op, &val, pd, &argsize, 1) < 0)
return (-1);
return(0);
}
int
wlan_mesh_flush_routes(struct wlan_iface *wif)
{
int val = IEEE80211_MESH_RTCMD_FLUSH;
size_t argsize = 0;
if (wlan_ioctl(wif->wname, IEEE80211_IOC_MESH_RTCMD, &val, NULL,
&argsize, 1) < 0)
return (-1);
return (0);
}
int
wlan_mesh_add_route(struct wlan_iface *wif, struct wlan_mesh_route *wmr)
{
int val = IEEE80211_MESH_RTCMD_ADD;
size_t argsize = IEEE80211_ADDR_LEN;
if (wlan_ioctl(wif->wname, IEEE80211_IOC_MESH_RTCMD, &val,
wmr->imroute.imr_dest, &argsize, 1) < 0)
return (-1);
wmr->mroute_status = RowStatus_active;
return (0);
}
int
wlan_mesh_del_route(struct wlan_iface *wif, struct wlan_mesh_route *wmr)
{
int val = IEEE80211_MESH_RTCMD_DELETE;
size_t argsize = IEEE80211_ADDR_LEN;
if (wlan_ioctl(wif->wname, IEEE80211_IOC_MESH_RTCMD, &val,
wmr->imroute.imr_dest, &argsize, 1) < 0)
return (-1);
wmr->mroute_status = RowStatus_destroy;
return (0);
}
int
wlan_mesh_get_routelist(struct wlan_iface *wif)
{
int i, nroutes, val = IEEE80211_MESH_RTCMD_LIST;
size_t argsize;
struct ieee80211req_mesh_route routes[128];
struct ieee80211req_mesh_route *rt;
struct wlan_mesh_route *wmr;
argsize = sizeof(routes);
if (wlan_ioctl(wif->wname, IEEE80211_IOC_MESH_RTCMD, &val, routes,
&argsize, 0) < 0) /* XXX: ENOMEM? */
return (-1);
nroutes = argsize / sizeof(*rt);
for (i = 0; i < nroutes; i++) {
rt = routes + i;
if ((wmr = wlan_mesh_new_route(rt->imr_dest)) == NULL)
return (-1);
memcpy(&wmr->imroute, rt, sizeof(*rt));
wmr->mroute_status = RowStatus_active;
if (wlan_mesh_add_rtentry(wif, wmr) < 0)
wlan_mesh_free_route(wmr);
}
return (0);
}
int
wlan_hwmp_config_get(struct wlan_iface *wif, int which)
{
int op, val = 0;
size_t argsize = 0;
switch (which) {
case LEAF_wlanHWMPRootMode:
op = IEEE80211_IOC_HWMP_ROOTMODE;
break;
case LEAF_wlanHWMPMaxHops:
op = IEEE80211_IOC_HWMP_MAXHOPS;
break;
default:
return (-1);
}
if (wlan_ioctl(wif->wname, op, &val, NULL, &argsize, 0) < 0)
return (-1);
switch (which) {
case LEAF_wlanHWMPRootMode:
switch (val) {
case IEEE80211_HWMP_ROOTMODE_NORMAL:
wif->hwmp_root_mode = wlanHWMPRootMode_normal;
break;
case IEEE80211_HWMP_ROOTMODE_PROACTIVE:
wif->hwmp_root_mode = wlanHWMPRootMode_proactive;
break;
case IEEE80211_HWMP_ROOTMODE_RANN:
wif->hwmp_root_mode = wlanHWMPRootMode_rann;
break;
case IEEE80211_HWMP_ROOTMODE_DISABLED:
default:
wif->hwmp_root_mode = wlanHWMPRootMode_disabled;
break;
}
break;
case LEAF_wlanHWMPMaxHops:
wif->hwmp_max_hops = val;
break;
}
return (0);
}
int
wlan_hwmp_config_set(struct wlan_iface *wif, int which)
{
int op, val = 0;
size_t argsize = 0;
switch (which) {
case LEAF_wlanHWMPRootMode:
op = IEEE80211_IOC_HWMP_ROOTMODE;
switch (wif->hwmp_root_mode) {
case wlanHWMPRootMode_disabled:
val = IEEE80211_HWMP_ROOTMODE_DISABLED;
break;
case wlanHWMPRootMode_normal:
val = IEEE80211_HWMP_ROOTMODE_NORMAL;
break;
case wlanHWMPRootMode_proactive:
val = IEEE80211_HWMP_ROOTMODE_PROACTIVE;
break;
case wlanHWMPRootMode_rann:
val = IEEE80211_HWMP_ROOTMODE_RANN;
break;
default:
return (-1);
}
break;
case LEAF_wlanHWMPMaxHops:
op = IEEE80211_IOC_HWMP_MAXHOPS;
val = wif->hwmp_max_hops;
break;
default:
return (-1);
}
if (wlan_ioctl(wif->wname, op, &val, NULL, &argsize, 1) < 0)
return (-1);
return (0);
}