freebsd-dev/sys/powerpc/aim/mmu_radix.c
Conrad Meyer 4ae224c663 Revert r240317 to prevent leaking pmap entries
Subsequent to r240317, kmem_free() was replaced with kva_free() (r254025).
kva_free() releases the KVA allocation for the mapped region, but no longer
clears the pmap (pagetable) entries.

An affected pmap_unmapdev operation would leave the still-pmap'd VA space
free for allocation by other KVA consumers.  However, this bug easily
avoided notice for ~7 years because most devices (1) never call
pmap_unmapdev and (2) on amd64, mostly fit within the DMAP and do not need
KVA allocations.  Other affected arch are less popular: i386, MIPS, and
PowerPC.  Arm64, arm32, and riscv are not affected.

Reported by:	Don Morris <dgmorris AT earthlink.net>
Submitted by:	Don Morris (amd64 part)
Reviewed by:	kib, markj, Don (!amd64 parts)
MFC after:	I don't intend to, but you might want to
Sponsored by:	Dell Isilon
Differential Revision:	https://reviews.freebsd.org/D25689
2020-07-16 23:29:26 +00:00

6408 lines
168 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2018 Matthew Macy
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/bitstring.h>
#include <sys/queue.h>
#include <sys/cpuset.h>
#include <sys/endian.h>
#include <sys/kerneldump.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/syslog.h>
#include <sys/msgbuf.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vmem.h>
#include <sys/vmmeter.h>
#include <sys/smp.h>
#include <sys/kdb.h>
#include <dev/ofw/openfirm.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_phys.h>
#include <vm/vm_reserv.h>
#include <vm/uma.h>
#include <machine/_inttypes.h>
#include <machine/cpu.h>
#include <machine/platform.h>
#include <machine/frame.h>
#include <machine/md_var.h>
#include <machine/psl.h>
#include <machine/bat.h>
#include <machine/hid.h>
#include <machine/pte.h>
#include <machine/sr.h>
#include <machine/trap.h>
#include <machine/mmuvar.h>
#ifdef INVARIANTS
#include <vm/uma_dbg.h>
#endif
#define PPC_BITLSHIFT(bit) (sizeof(long)*NBBY - 1 - (bit))
#define PPC_BIT(bit) (1UL << PPC_BITLSHIFT(bit))
#define PPC_BITLSHIFT_VAL(val, bit) ((val) << PPC_BITLSHIFT(bit))
#include "opt_ddb.h"
#ifdef DDB
static void pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va);
#endif
#define PG_W RPTE_WIRED
#define PG_V RPTE_VALID
#define PG_MANAGED RPTE_MANAGED
#define PG_PROMOTED RPTE_PROMOTED
#define PG_M RPTE_C
#define PG_A RPTE_R
#define PG_X RPTE_EAA_X
#define PG_RW RPTE_EAA_W
#define PG_PTE_CACHE RPTE_ATTR_MASK
#define RPTE_SHIFT 9
#define NLS_MASK ((1UL<<5)-1)
#define RPTE_ENTRIES (1UL<<RPTE_SHIFT)
#define RPTE_MASK (RPTE_ENTRIES-1)
#define NLB_SHIFT 0
#define NLB_MASK (((1UL<<52)-1) << 8)
extern int nkpt;
extern caddr_t crashdumpmap;
#define RIC_FLUSH_TLB 0
#define RIC_FLUSH_PWC 1
#define RIC_FLUSH_ALL 2
#define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
#define PPC_INST_TLBIE 0x7c000264
#define PPC_INST_TLBIEL 0x7c000224
#define PPC_INST_SLBIA 0x7c0003e4
#define ___PPC_RA(a) (((a) & 0x1f) << 16)
#define ___PPC_RB(b) (((b) & 0x1f) << 11)
#define ___PPC_RS(s) (((s) & 0x1f) << 21)
#define ___PPC_RT(t) ___PPC_RS(t)
#define ___PPC_R(r) (((r) & 0x1) << 16)
#define ___PPC_PRS(prs) (((prs) & 0x1) << 17)
#define ___PPC_RIC(ric) (((ric) & 0x3) << 18)
#define PPC_SLBIA(IH) __XSTRING(.long PPC_INST_SLBIA | \
((IH & 0x7) << 21))
#define PPC_TLBIE_5(rb,rs,ric,prs,r) \
__XSTRING(.long PPC_INST_TLBIE | \
___PPC_RB(rb) | ___PPC_RS(rs) | \
___PPC_RIC(ric) | ___PPC_PRS(prs) | \
___PPC_R(r))
#define PPC_TLBIEL(rb,rs,ric,prs,r) \
__XSTRING(.long PPC_INST_TLBIEL | \
___PPC_RB(rb) | ___PPC_RS(rs) | \
___PPC_RIC(ric) | ___PPC_PRS(prs) | \
___PPC_R(r))
#define PPC_INVALIDATE_ERAT PPC_SLBIA(7)
static __inline void
ttusync(void)
{
__asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
}
#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
#define TLBIEL_INVAL_SET_PID 0x400 /* invalidate a set for the current PID */
#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
#define TLBIE_ACTUAL_PAGE_MASK 0xe0
#define TLBIE_ACTUAL_PAGE_4K 0x00
#define TLBIE_ACTUAL_PAGE_64K 0xa0
#define TLBIE_ACTUAL_PAGE_2M 0x20
#define TLBIE_ACTUAL_PAGE_1G 0x40
#define TLBIE_PRS_PARTITION_SCOPE 0x0
#define TLBIE_PRS_PROCESS_SCOPE 0x1
#define TLBIE_RIC_INVALIDATE_TLB 0x0 /* Invalidate just TLB */
#define TLBIE_RIC_INVALIDATE_PWC 0x1 /* Invalidate just PWC */
#define TLBIE_RIC_INVALIDATE_ALL 0x2 /* Invalidate TLB, PWC,
* cached {proc, part}tab entries
*/
#define TLBIE_RIC_INVALIDATE_SEQ 0x3 /* HPT - only:
* Invalidate a range of translations
*/
static __inline void
radix_tlbie(uint8_t ric, uint8_t prs, uint16_t is, uint32_t pid, uint32_t lpid,
vm_offset_t va, uint16_t ap)
{
uint64_t rb, rs;
MPASS((va & PAGE_MASK) == 0);
rs = ((uint64_t)pid << 32) | lpid;
rb = va | is | ap;
__asm __volatile(PPC_TLBIE_5(%0, %1, %2, %3, 1) : :
"r" (rb), "r" (rs), "i" (ric), "i" (prs));
}
static __inline void
radix_tlbie_invlpg_user_4k(uint32_t pid, vm_offset_t va)
{
radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_4K);
}
static __inline void
radix_tlbie_invlpg_user_2m(uint32_t pid, vm_offset_t va)
{
radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_2M);
}
static __inline void
radix_tlbie_invlpwc_user(uint32_t pid)
{
radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
}
static __inline void
radix_tlbie_flush_user(uint32_t pid)
{
radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
}
static __inline void
radix_tlbie_invlpg_kernel_4k(vm_offset_t va)
{
radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_4K);
}
static __inline void
radix_tlbie_invlpg_kernel_2m(vm_offset_t va)
{
radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_2M);
}
/* 1GB pages aren't currently supported. */
static __inline __unused void
radix_tlbie_invlpg_kernel_1g(vm_offset_t va)
{
radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_1G);
}
static __inline void
radix_tlbie_invlpwc_kernel(void)
{
radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
}
static __inline void
radix_tlbie_flush_kernel(void)
{
radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
}
static __inline vm_pindex_t
pmap_l3e_pindex(vm_offset_t va)
{
return ((va & PG_FRAME) >> L3_PAGE_SIZE_SHIFT);
}
static __inline vm_pindex_t
pmap_pml3e_index(vm_offset_t va)
{
return ((va >> L3_PAGE_SIZE_SHIFT) & RPTE_MASK);
}
static __inline vm_pindex_t
pmap_pml2e_index(vm_offset_t va)
{
return ((va >> L2_PAGE_SIZE_SHIFT) & RPTE_MASK);
}
static __inline vm_pindex_t
pmap_pml1e_index(vm_offset_t va)
{
return ((va & PG_FRAME) >> L1_PAGE_SIZE_SHIFT);
}
/* Return various clipped indexes for a given VA */
static __inline vm_pindex_t
pmap_pte_index(vm_offset_t va)
{
return ((va >> PAGE_SHIFT) & RPTE_MASK);
}
/* Return a pointer to the PT slot that corresponds to a VA */
static __inline pt_entry_t *
pmap_l3e_to_pte(pt_entry_t *l3e, vm_offset_t va)
{
pt_entry_t *pte;
vm_paddr_t ptepa;
ptepa = (*l3e & NLB_MASK);
pte = (pt_entry_t *)PHYS_TO_DMAP(ptepa);
return (&pte[pmap_pte_index(va)]);
}
/* Return a pointer to the PD slot that corresponds to a VA */
static __inline pt_entry_t *
pmap_l2e_to_l3e(pt_entry_t *l2e, vm_offset_t va)
{
pt_entry_t *l3e;
vm_paddr_t l3pa;
l3pa = (*l2e & NLB_MASK);
l3e = (pml3_entry_t *)PHYS_TO_DMAP(l3pa);
return (&l3e[pmap_pml3e_index(va)]);
}
/* Return a pointer to the PD slot that corresponds to a VA */
static __inline pt_entry_t *
pmap_l1e_to_l2e(pt_entry_t *l1e, vm_offset_t va)
{
pt_entry_t *l2e;
vm_paddr_t l2pa;
l2pa = (*l1e & NLB_MASK);
l2e = (pml2_entry_t *)PHYS_TO_DMAP(l2pa);
return (&l2e[pmap_pml2e_index(va)]);
}
static __inline pml1_entry_t *
pmap_pml1e(pmap_t pmap, vm_offset_t va)
{
return (&pmap->pm_pml1[pmap_pml1e_index(va)]);
}
static pt_entry_t *
pmap_pml2e(pmap_t pmap, vm_offset_t va)
{
pt_entry_t *l1e;
l1e = pmap_pml1e(pmap, va);
if (l1e == NULL || (*l1e & RPTE_VALID) == 0)
return (NULL);
return (pmap_l1e_to_l2e(l1e, va));
}
static __inline pt_entry_t *
pmap_pml3e(pmap_t pmap, vm_offset_t va)
{
pt_entry_t *l2e;
l2e = pmap_pml2e(pmap, va);
if (l2e == NULL || (*l2e & RPTE_VALID) == 0)
return (NULL);
return (pmap_l2e_to_l3e(l2e, va));
}
static __inline pt_entry_t *
pmap_pte(pmap_t pmap, vm_offset_t va)
{
pt_entry_t *l3e;
l3e = pmap_pml3e(pmap, va);
if (l3e == NULL || (*l3e & RPTE_VALID) == 0)
return (NULL);
return (pmap_l3e_to_pte(l3e, va));
}
int nkpt = 64;
SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
"Number of kernel page table pages allocated on bootup");
vm_paddr_t dmaplimit;
SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
static int pg_ps_enabled = 1;
SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
&pg_ps_enabled, 0, "Are large page mappings enabled?");
#ifdef INVARIANTS
#define VERBOSE_PMAP 0
#define VERBOSE_PROTECT 0
static int pmap_logging;
SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_logging, CTLFLAG_RWTUN,
&pmap_logging, 0, "verbose debug logging");
#endif
static u_int64_t KPTphys; /* phys addr of kernel level 1 */
//static vm_paddr_t KERNend; /* phys addr of end of bootstrap data */
static vm_offset_t qframe = 0;
static struct mtx qframe_mtx;
void mmu_radix_activate(struct thread *);
void mmu_radix_advise(pmap_t, vm_offset_t, vm_offset_t, int);
void mmu_radix_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *,
vm_size_t);
void mmu_radix_clear_modify(vm_page_t);
void mmu_radix_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t);
int mmu_radix_decode_kernel_ptr(vm_offset_t, int *, vm_offset_t *);
int mmu_radix_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t);
void mmu_radix_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
vm_prot_t);
void mmu_radix_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
vm_paddr_t mmu_radix_extract(pmap_t pmap, vm_offset_t va);
vm_page_t mmu_radix_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
void mmu_radix_kenter(vm_offset_t, vm_paddr_t);
vm_paddr_t mmu_radix_kextract(vm_offset_t);
void mmu_radix_kremove(vm_offset_t);
boolean_t mmu_radix_is_modified(vm_page_t);
boolean_t mmu_radix_is_prefaultable(pmap_t, vm_offset_t);
boolean_t mmu_radix_is_referenced(vm_page_t);
void mmu_radix_object_init_pt(pmap_t, vm_offset_t, vm_object_t,
vm_pindex_t, vm_size_t);
boolean_t mmu_radix_page_exists_quick(pmap_t, vm_page_t);
void mmu_radix_page_init(vm_page_t);
boolean_t mmu_radix_page_is_mapped(vm_page_t m);
void mmu_radix_page_set_memattr(vm_page_t, vm_memattr_t);
int mmu_radix_page_wired_mappings(vm_page_t);
int mmu_radix_pinit(pmap_t);
void mmu_radix_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
bool mmu_radix_ps_enabled(pmap_t);
void mmu_radix_qenter(vm_offset_t, vm_page_t *, int);
void mmu_radix_qremove(vm_offset_t, int);
vm_offset_t mmu_radix_quick_enter_page(vm_page_t);
void mmu_radix_quick_remove_page(vm_offset_t);
boolean_t mmu_radix_ts_referenced(vm_page_t);
void mmu_radix_release(pmap_t);
void mmu_radix_remove(pmap_t, vm_offset_t, vm_offset_t);
void mmu_radix_remove_all(vm_page_t);
void mmu_radix_remove_pages(pmap_t);
void mmu_radix_remove_write(vm_page_t);
void mmu_radix_unwire(pmap_t, vm_offset_t, vm_offset_t);
void mmu_radix_zero_page(vm_page_t);
void mmu_radix_zero_page_area(vm_page_t, int, int);
int mmu_radix_change_attr(vm_offset_t, vm_size_t, vm_memattr_t);
void mmu_radix_page_array_startup(long pages);
#include "mmu_oea64.h"
/*
* Kernel MMU interface
*/
static void mmu_radix_bootstrap(vm_offset_t, vm_offset_t);
static void mmu_radix_copy_page(vm_page_t, vm_page_t);
static void mmu_radix_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
vm_page_t *mb, vm_offset_t b_offset, int xfersize);
static void mmu_radix_growkernel(vm_offset_t);
static void mmu_radix_init(void);
static int mmu_radix_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
static vm_offset_t mmu_radix_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
static void mmu_radix_pinit0(pmap_t);
static void *mmu_radix_mapdev(vm_paddr_t, vm_size_t);
static void *mmu_radix_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
static void mmu_radix_unmapdev(vm_offset_t, vm_size_t);
static void mmu_radix_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
static boolean_t mmu_radix_dev_direct_mapped(vm_paddr_t, vm_size_t);
static void mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
static void mmu_radix_scan_init(void);
static void mmu_radix_cpu_bootstrap(int ap);
static void mmu_radix_tlbie_all(void);
static struct pmap_funcs mmu_radix_methods = {
.bootstrap = mmu_radix_bootstrap,
.copy_page = mmu_radix_copy_page,
.copy_pages = mmu_radix_copy_pages,
.cpu_bootstrap = mmu_radix_cpu_bootstrap,
.growkernel = mmu_radix_growkernel,
.init = mmu_radix_init,
.map = mmu_radix_map,
.mincore = mmu_radix_mincore,
.pinit = mmu_radix_pinit,
.pinit0 = mmu_radix_pinit0,
.mapdev = mmu_radix_mapdev,
.mapdev_attr = mmu_radix_mapdev_attr,
.unmapdev = mmu_radix_unmapdev,
.kenter_attr = mmu_radix_kenter_attr,
.dev_direct_mapped = mmu_radix_dev_direct_mapped,
.dumpsys_pa_init = mmu_radix_scan_init,
.dumpsys_map_chunk = mmu_radix_dumpsys_map,
.page_is_mapped = mmu_radix_page_is_mapped,
.ps_enabled = mmu_radix_ps_enabled,
.object_init_pt = mmu_radix_object_init_pt,
.protect = mmu_radix_protect,
/* pmap dispatcher interface */
.clear_modify = mmu_radix_clear_modify,
.copy = mmu_radix_copy,
.enter = mmu_radix_enter,
.enter_object = mmu_radix_enter_object,
.enter_quick = mmu_radix_enter_quick,
.extract = mmu_radix_extract,
.extract_and_hold = mmu_radix_extract_and_hold,
.is_modified = mmu_radix_is_modified,
.is_prefaultable = mmu_radix_is_prefaultable,
.is_referenced = mmu_radix_is_referenced,
.ts_referenced = mmu_radix_ts_referenced,
.page_exists_quick = mmu_radix_page_exists_quick,
.page_init = mmu_radix_page_init,
.page_wired_mappings = mmu_radix_page_wired_mappings,
.qenter = mmu_radix_qenter,
.qremove = mmu_radix_qremove,
.release = mmu_radix_release,
.remove = mmu_radix_remove,
.remove_all = mmu_radix_remove_all,
.remove_write = mmu_radix_remove_write,
.unwire = mmu_radix_unwire,
.zero_page = mmu_radix_zero_page,
.zero_page_area = mmu_radix_zero_page_area,
.activate = mmu_radix_activate,
.quick_enter_page = mmu_radix_quick_enter_page,
.quick_remove_page = mmu_radix_quick_remove_page,
.page_set_memattr = mmu_radix_page_set_memattr,
.page_array_startup = mmu_radix_page_array_startup,
/* Internal interfaces */
.kenter = mmu_radix_kenter,
.kextract = mmu_radix_kextract,
.kremove = mmu_radix_kremove,
.change_attr = mmu_radix_change_attr,
.decode_kernel_ptr = mmu_radix_decode_kernel_ptr,
.tlbie_all = mmu_radix_tlbie_all,
};
MMU_DEF(mmu_radix, MMU_TYPE_RADIX, mmu_radix_methods);
static boolean_t pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
struct rwlock **lockp);
static boolean_t pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va);
static int pmap_unuse_pt(pmap_t, vm_offset_t, pml3_entry_t, struct spglist *);
static int pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
struct spglist *free, struct rwlock **lockp);
static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
static bool pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *pde,
struct spglist *free);
static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp);
static bool pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e,
u_int flags, struct rwlock **lockp);
#if VM_NRESERVLEVEL > 0
static void pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
struct rwlock **lockp);
#endif
static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
static vm_page_t mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate);
static bool pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, struct rwlock **lockp);
static int pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde,
u_int flags, vm_page_t m, struct rwlock **lockp);
static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
static void free_pv_chunk(struct pv_chunk *pc);
static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp);
static vm_page_t pmap_allocl3e(pmap_t pmap, vm_offset_t va,
struct rwlock **lockp);
static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
struct rwlock **lockp);
static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
struct spglist *free);
static boolean_t pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free);
static void pmap_invalidate_page(pmap_t pmap, vm_offset_t start);
static void pmap_invalidate_all(pmap_t pmap);
static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush);
/*
* Internal flags for pmap_enter()'s helper functions.
*/
#define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
#define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
#define UNIMPLEMENTED() panic("%s not implemented", __func__)
#define UNTESTED() panic("%s not yet tested", __func__)
/* Number of supported PID bits */
static unsigned int isa3_pid_bits;
/* PID to start allocating from */
static unsigned int isa3_base_pid;
#define PROCTAB_SIZE_SHIFT (isa3_pid_bits + 4)
#define PROCTAB_ENTRIES (1ul << isa3_pid_bits)
/*
* Map of physical memory regions.
*/
static struct mem_region *regions, *pregions;
static struct numa_mem_region *numa_pregions;
static u_int phys_avail_count;
static int regions_sz, pregions_sz, numa_pregions_sz;
static struct pate *isa3_parttab;
static struct prte *isa3_proctab;
static vmem_t *asid_arena;
extern void bs_remap_earlyboot(void);
#define RADIX_PGD_SIZE_SHIFT 16
#define RADIX_PGD_SIZE (1UL << RADIX_PGD_SIZE_SHIFT)
#define RADIX_PGD_INDEX_SHIFT (RADIX_PGD_SIZE_SHIFT-3)
#define NL2EPG (PAGE_SIZE/sizeof(pml2_entry_t))
#define NL3EPG (PAGE_SIZE/sizeof(pml3_entry_t))
#define NUPML1E (RADIX_PGD_SIZE/sizeof(uint64_t)) /* number of userland PML1 pages */
#define NUPDPE (NUPML1E * NL2EPG)/* number of userland PDP pages */
#define NUPDE (NUPDPE * NL3EPG) /* number of userland PD entries */
/* POWER9 only permits a 64k partition table size. */
#define PARTTAB_SIZE_SHIFT 16
#define PARTTAB_SIZE (1UL << PARTTAB_SIZE_SHIFT)
#define PARTTAB_HR (1UL << 63) /* host uses radix */
#define PARTTAB_GR (1UL << 63) /* guest uses radix must match host */
/* TLB flush actions. Used as argument to tlbiel_all() */
enum {
TLB_INVAL_SCOPE_LPID = 0, /* invalidate TLBs for current LPID */
TLB_INVAL_SCOPE_GLOBAL = 1, /* invalidate all TLBs */
};
#define NPV_LIST_LOCKS MAXCPU
static int pmap_initialized;
static vm_paddr_t proctab0pa;
static vm_paddr_t parttab_phys;
CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
/*
* Data for the pv entry allocation mechanism.
* Updates to pv_invl_gen are protected by the pv_list_locks[]
* elements, but reads are not.
*/
static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
static struct mtx __exclusive_cache_line pv_chunks_mutex;
static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
static struct md_page *pv_table;
static struct md_page pv_dummy;
#ifdef PV_STATS
#define PV_STAT(x) do { x ; } while (0)
#else
#define PV_STAT(x) do { } while (0)
#endif
#define pa_radix_index(pa) ((pa) >> L3_PAGE_SIZE_SHIFT)
#define pa_to_pvh(pa) (&pv_table[pa_radix_index(pa)])
#define PHYS_TO_PV_LIST_LOCK(pa) \
(&pv_list_locks[pa_radix_index(pa) % NPV_LIST_LOCKS])
#define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \
struct rwlock **_lockp = (lockp); \
struct rwlock *_new_lock; \
\
_new_lock = PHYS_TO_PV_LIST_LOCK(pa); \
if (_new_lock != *_lockp) { \
if (*_lockp != NULL) \
rw_wunlock(*_lockp); \
*_lockp = _new_lock; \
rw_wlock(*_lockp); \
} \
} while (0)
#define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
#define RELEASE_PV_LIST_LOCK(lockp) do { \
struct rwlock **_lockp = (lockp); \
\
if (*_lockp != NULL) { \
rw_wunlock(*_lockp); \
*_lockp = NULL; \
} \
} while (0)
#define VM_PAGE_TO_PV_LIST_LOCK(m) \
PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
/*
* We support 52 bits, hence:
* bits 52 - 31 = 21, 0b10101
* RTS encoding details
* bits 0 - 3 of rts -> bits 6 - 8 unsigned long
* bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
*/
#define RTS_SIZE ((0x2UL << 61) | (0x5UL << 5))
static int powernv_enabled = 1;
static inline void
tlbiel_radix_set_isa300(uint32_t set, uint32_t is,
uint32_t pid, uint32_t ric, uint32_t prs)
{
uint64_t rb;
uint64_t rs;
rb = PPC_BITLSHIFT_VAL(set, 51) | PPC_BITLSHIFT_VAL(is, 53);
rs = PPC_BITLSHIFT_VAL((uint64_t)pid, 31);
__asm __volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
: : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
: "memory");
}
static void
tlbiel_flush_isa3(uint32_t num_sets, uint32_t is)
{
uint32_t set;
__asm __volatile("ptesync": : :"memory");
/*
* Flush the first set of the TLB, and the entire Page Walk Cache
* and partition table entries. Then flush the remaining sets of the
* TLB.
*/
tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
for (set = 1; set < num_sets; set++)
tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
/* Do the same for process scoped entries. */
tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
for (set = 1; set < num_sets; set++)
tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
__asm __volatile("ptesync": : :"memory");
}
static void
mmu_radix_tlbiel_flush(int scope)
{
int is;
MPASS(scope == TLB_INVAL_SCOPE_LPID ||
scope == TLB_INVAL_SCOPE_GLOBAL);
is = scope + 2;
tlbiel_flush_isa3(POWER9_TLB_SETS_RADIX, is);
__asm __volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
}
static void
mmu_radix_tlbie_all()
{
/* TODO: LPID invalidate */
mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
}
static void
mmu_radix_init_amor(void)
{
/*
* In HV mode, we init AMOR (Authority Mask Override Register) so that
* the hypervisor and guest can setup IAMR (Instruction Authority Mask
* Register), enable key 0 and set it to 1.
*
* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
*/
mtspr(SPR_AMOR, (3ul << 62));
}
static void
mmu_radix_init_iamr(void)
{
/*
* Radix always uses key0 of the IAMR to determine if an access is
* allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
* fetch.
*/
mtspr(SPR_IAMR, (1ul << 62));
}
static void
mmu_radix_pid_set(pmap_t pmap)
{
mtspr(SPR_PID, pmap->pm_pid);
isync();
}
/* Quick sort callout for comparing physical addresses. */
static int
pa_cmp(const void *a, const void *b)
{
const vm_paddr_t *pa = a, *pb = b;
if (*pa < *pb)
return (-1);
else if (*pa > *pb)
return (1);
else
return (0);
}
#define pte_load_store(ptep, pte) atomic_swap_long(ptep, pte)
#define pte_load_clear(ptep) atomic_swap_long(ptep, 0)
#define pte_store(ptep, pte) do { \
MPASS((pte) & (RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_X)); \
*(u_long *)(ptep) = (u_long)((pte) | PG_V | RPTE_LEAF); \
} while (0)
/*
* NB: should only be used for adding directories - not for direct mappings
*/
#define pde_store(ptep, pa) do { \
*(u_long *)(ptep) = (u_long)(pa|RPTE_VALID|RPTE_SHIFT); \
} while (0)
#define pte_clear(ptep) do { \
*(u_long *)(ptep) = (u_long)(0); \
} while (0)
#define PMAP_PDE_SUPERPAGE (1 << 8) /* supports 2MB superpages */
/*
* Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
* (PTE) page mappings have identical settings for the following fields:
*/
#define PG_PTE_PROMOTE (PG_X | PG_MANAGED | PG_W | PG_PTE_CACHE | \
PG_M | PG_A | RPTE_EAA_MASK | PG_V)
static __inline void
pmap_resident_count_inc(pmap_t pmap, int count)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
pmap->pm_stats.resident_count += count;
}
static __inline void
pmap_resident_count_dec(pmap_t pmap, int count)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT(pmap->pm_stats.resident_count >= count,
("pmap %p resident count underflow %ld %d", pmap,
pmap->pm_stats.resident_count, count));
pmap->pm_stats.resident_count -= count;
}
static void
pagezero(vm_offset_t va)
{
va = trunc_page(va);
bzero((void *)va, PAGE_SIZE);
}
static uint64_t
allocpages(int n)
{
u_int64_t ret;
ret = moea64_bootstrap_alloc(n * PAGE_SIZE, PAGE_SIZE);
for (int i = 0; i < n; i++)
pagezero(PHYS_TO_DMAP(ret + i * PAGE_SIZE));
return (ret);
}
static pt_entry_t *
kvtopte(vm_offset_t va)
{
pt_entry_t *l3e;
l3e = pmap_pml3e(kernel_pmap, va);
if ((*l3e & RPTE_VALID) == 0)
return (NULL);
return (pmap_l3e_to_pte(l3e, va));
}
void
mmu_radix_kenter(vm_offset_t va, vm_paddr_t pa)
{
pt_entry_t *pte;
pte = kvtopte(va);
MPASS(pte != NULL);
*pte = pa | RPTE_VALID | RPTE_LEAF | RPTE_EAA_R | RPTE_EAA_W | \
RPTE_EAA_P | PG_M | PG_A;
}
bool
mmu_radix_ps_enabled(pmap_t pmap)
{
return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
}
static pt_entry_t *
pmap_nofault_pte(pmap_t pmap, vm_offset_t va, int *is_l3e)
{
pml3_entry_t *l3e;
pt_entry_t *pte;
va &= PG_PS_FRAME;
l3e = pmap_pml3e(pmap, va);
if (l3e == NULL || (*l3e & PG_V) == 0)
return (NULL);
if (*l3e & RPTE_LEAF) {
*is_l3e = 1;
return (l3e);
}
*is_l3e = 0;
va &= PG_FRAME;
pte = pmap_l3e_to_pte(l3e, va);
if (pte == NULL || (*pte & PG_V) == 0)
return (NULL);
return (pte);
}
int
pmap_nofault(pmap_t pmap, vm_offset_t va, vm_prot_t flags)
{
pt_entry_t *pte;
pt_entry_t startpte, origpte, newpte;
vm_page_t m;
int is_l3e;
startpte = 0;
retry:
if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL)
return (KERN_INVALID_ADDRESS);
origpte = newpte = *pte;
if (startpte == 0) {
startpte = origpte;
if (((flags & VM_PROT_WRITE) && (startpte & PG_M)) ||
((flags & VM_PROT_READ) && (startpte & PG_A))) {
pmap_invalidate_all(pmap);
#ifdef INVARIANTS
if (VERBOSE_PMAP || pmap_logging)
printf("%s(%p, %#lx, %#x) (%#lx) -- invalidate all\n",
__func__, pmap, va, flags, origpte);
#endif
return (KERN_FAILURE);
}
}
#ifdef INVARIANTS
if (VERBOSE_PMAP || pmap_logging)
printf("%s(%p, %#lx, %#x) (%#lx)\n", __func__, pmap, va,
flags, origpte);
#endif
PMAP_LOCK(pmap);
if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL ||
*pte != origpte) {
PMAP_UNLOCK(pmap);
return (KERN_FAILURE);
}
m = PHYS_TO_VM_PAGE(newpte & PG_FRAME);
MPASS(m != NULL);
switch (flags) {
case VM_PROT_READ:
if ((newpte & (RPTE_EAA_R|RPTE_EAA_X)) == 0)
goto protfail;
newpte |= PG_A;
vm_page_aflag_set(m, PGA_REFERENCED);
break;
case VM_PROT_WRITE:
if ((newpte & RPTE_EAA_W) == 0)
goto protfail;
if (is_l3e)
goto protfail;
newpte |= PG_M;
vm_page_dirty(m);
break;
case VM_PROT_EXECUTE:
if ((newpte & RPTE_EAA_X) == 0)
goto protfail;
newpte |= PG_A;
vm_page_aflag_set(m, PGA_REFERENCED);
break;
}
if (!atomic_cmpset_long(pte, origpte, newpte))
goto retry;
ptesync();
PMAP_UNLOCK(pmap);
if (startpte == newpte)
return (KERN_FAILURE);
return (0);
protfail:
PMAP_UNLOCK(pmap);
return (KERN_PROTECTION_FAILURE);
}
/*
* Returns TRUE if the given page is mapped individually or as part of
* a 2mpage. Otherwise, returns FALSE.
*/
boolean_t
mmu_radix_page_is_mapped(vm_page_t m)
{
struct rwlock *lock;
boolean_t rv;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (FALSE);
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_rlock(lock);
rv = !TAILQ_EMPTY(&m->md.pv_list) ||
((m->flags & PG_FICTITIOUS) == 0 &&
!TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
rw_runlock(lock);
return (rv);
}
/*
* Determine the appropriate bits to set in a PTE or PDE for a specified
* caching mode.
*/
static int
pmap_cache_bits(vm_memattr_t ma)
{
if (ma != VM_MEMATTR_DEFAULT) {
switch (ma) {
case VM_MEMATTR_UNCACHEABLE:
return (RPTE_ATTR_GUARDEDIO);
case VM_MEMATTR_CACHEABLE:
return (RPTE_ATTR_MEM);
case VM_MEMATTR_WRITE_BACK:
case VM_MEMATTR_PREFETCHABLE:
case VM_MEMATTR_WRITE_COMBINING:
return (RPTE_ATTR_UNGUARDEDIO);
}
}
return (0);
}
static void
pmap_invalidate_page(pmap_t pmap, vm_offset_t start)
{
ptesync();
if (pmap == kernel_pmap)
radix_tlbie_invlpg_kernel_4k(start);
else
radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
ttusync();
}
static void
pmap_invalidate_page_2m(pmap_t pmap, vm_offset_t start)
{
ptesync();
if (pmap == kernel_pmap)
radix_tlbie_invlpg_kernel_2m(start);
else
radix_tlbie_invlpg_user_2m(pmap->pm_pid, start);
ttusync();
}
static void
pmap_invalidate_pwc(pmap_t pmap)
{
ptesync();
if (pmap == kernel_pmap)
radix_tlbie_invlpwc_kernel();
else
radix_tlbie_invlpwc_user(pmap->pm_pid);
ttusync();
}
static void
pmap_invalidate_range(pmap_t pmap, vm_offset_t start, vm_offset_t end)
{
if (((start - end) >> PAGE_SHIFT) > 8) {
pmap_invalidate_all(pmap);
return;
}
ptesync();
if (pmap == kernel_pmap) {
while (start < end) {
radix_tlbie_invlpg_kernel_4k(start);
start += PAGE_SIZE;
}
} else {
while (start < end) {
radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
start += PAGE_SIZE;
}
}
ttusync();
}
static void
pmap_invalidate_all(pmap_t pmap)
{
ptesync();
if (pmap == kernel_pmap)
radix_tlbie_flush_kernel();
else
radix_tlbie_flush_user(pmap->pm_pid);
ttusync();
}
static void
pmap_invalidate_l3e_page(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e)
{
/*
* When the PDE has PG_PROMOTED set, the 2MB page mapping was created
* by a promotion that did not invalidate the 512 4KB page mappings
* that might exist in the TLB. Consequently, at this point, the TLB
* may hold both 4KB and 2MB page mappings for the address range [va,
* va + L3_PAGE_SIZE). Therefore, the entire range must be invalidated here.
* In contrast, when PG_PROMOTED is clear, the TLB will not hold any
* 4KB page mappings for the address range [va, va + L3_PAGE_SIZE), and so a
* single INVLPG suffices to invalidate the 2MB page mapping from the
* TLB.
*/
ptesync();
if ((l3e & PG_PROMOTED) != 0)
pmap_invalidate_range(pmap, va, va + L3_PAGE_SIZE - 1);
else
pmap_invalidate_page_2m(pmap, va);
pmap_invalidate_pwc(pmap);
}
static __inline struct pv_chunk *
pv_to_chunk(pv_entry_t pv)
{
return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
}
#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
#define PC_FREE0 0xfffffffffffffffful
#define PC_FREE1 0x3ffffffffffffffful
static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1 };
/*
* Ensure that the number of spare PV entries in the specified pmap meets or
* exceeds the given count, "needed".
*
* The given PV list lock may be released.
*/
static void
reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
{
struct pch new_tail;
struct pv_chunk *pc;
vm_page_t m;
int avail, free;
bool reclaimed;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
/*
* Newly allocated PV chunks must be stored in a private list until
* the required number of PV chunks have been allocated. Otherwise,
* reclaim_pv_chunk() could recycle one of these chunks. In
* contrast, these chunks must be added to the pmap upon allocation.
*/
TAILQ_INIT(&new_tail);
retry:
avail = 0;
TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
// if ((cpu_feature2 & CPUID2_POPCNT) == 0)
bit_count((bitstr_t *)pc->pc_map, 0,
sizeof(pc->pc_map) * NBBY, &free);
#if 0
free = popcnt_pc_map_pq(pc->pc_map);
#endif
if (free == 0)
break;
avail += free;
if (avail >= needed)
break;
}
for (reclaimed = false; avail < needed; avail += _NPCPV) {
m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED);
if (m == NULL) {
m = reclaim_pv_chunk(pmap, lockp);
if (m == NULL)
goto retry;
reclaimed = true;
}
PV_STAT(atomic_add_int(&pc_chunk_count, 1));
PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
pc = (void *)PHYS_TO_DMAP(m->phys_addr);
pc->pc_pmap = pmap;
pc->pc_map[0] = PC_FREE0;
pc->pc_map[1] = PC_FREE1;
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
/*
* The reclaim might have freed a chunk from the current pmap.
* If that chunk contained available entries, we need to
* re-count the number of available entries.
*/
if (reclaimed)
goto retry;
}
if (!TAILQ_EMPTY(&new_tail)) {
mtx_lock(&pv_chunks_mutex);
TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
mtx_unlock(&pv_chunks_mutex);
}
}
/*
* First find and then remove the pv entry for the specified pmap and virtual
* address from the specified pv list. Returns the pv entry if found and NULL
* otherwise. This operation can be performed on pv lists for either 4KB or
* 2MB page mappings.
*/
static __inline pv_entry_t
pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
{
pv_entry_t pv;
TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
#ifdef INVARIANTS
if (PV_PMAP(pv) == NULL) {
printf("corrupted pv_chunk/pv %p\n", pv);
printf("pv_chunk: %64D\n", pv_to_chunk(pv), ":");
}
MPASS(PV_PMAP(pv) != NULL);
MPASS(pv->pv_va != 0);
#endif
if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
pvh->pv_gen++;
break;
}
}
return (pv);
}
/*
* After demotion from a 2MB page mapping to 512 4KB page mappings,
* destroy the pv entry for the 2MB page mapping and reinstantiate the pv
* entries for each of the 4KB page mappings.
*/
static void
pmap_pv_demote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
struct rwlock **lockp)
{
struct md_page *pvh;
struct pv_chunk *pc;
pv_entry_t pv;
vm_offset_t va_last;
vm_page_t m;
int bit, field;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT((pa & L3_PAGE_MASK) == 0,
("pmap_pv_demote_pde: pa is not 2mpage aligned"));
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
/*
* Transfer the 2mpage's pv entry for this mapping to the first
* page's pv list. Once this transfer begins, the pv list lock
* must not be released until the last pv entry is reinstantiated.
*/
pvh = pa_to_pvh(pa);
va = trunc_2mpage(va);
pv = pmap_pvh_remove(pvh, pmap, va);
KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
m = PHYS_TO_VM_PAGE(pa);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
m->md.pv_gen++;
/* Instantiate the remaining NPTEPG - 1 pv entries. */
PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
for (;;) {
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0
, ("pmap_pv_demote_pde: missing spare"));
for (field = 0; field < _NPCM; field++) {
while (pc->pc_map[field]) {
bit = cnttzd(pc->pc_map[field]);
pc->pc_map[field] &= ~(1ul << bit);
pv = &pc->pc_pventry[field * 64 + bit];
va += PAGE_SIZE;
pv->pv_va = va;
m++;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_pv_demote_pde: page %p is not managed", m));
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
m->md.pv_gen++;
if (va == va_last)
goto out;
}
}
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
}
out:
if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
}
PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
}
static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap)
{
if (pmap == NULL)
return;
pmap_invalidate_all(pmap);
if (pmap != locked_pmap)
PMAP_UNLOCK(pmap);
}
/*
* We are in a serious low memory condition. Resort to
* drastic measures to free some pages so we can allocate
* another pv entry chunk.
*
* Returns NULL if PV entries were reclaimed from the specified pmap.
*
* We do not, however, unmap 2mpages because subsequent accesses will
* allocate per-page pv entries until repromotion occurs, thereby
* exacerbating the shortage of free pv entries.
*/
static int active_reclaims = 0;
static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
{
struct pv_chunk *pc, *pc_marker, *pc_marker_end;
struct pv_chunk_header pc_marker_b, pc_marker_end_b;
struct md_page *pvh;
pml3_entry_t *l3e;
pmap_t next_pmap, pmap;
pt_entry_t *pte, tpte;
pv_entry_t pv;
vm_offset_t va;
vm_page_t m, m_pc;
struct spglist free;
uint64_t inuse;
int bit, field, freed;
PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
pmap = NULL;
m_pc = NULL;
SLIST_INIT(&free);
bzero(&pc_marker_b, sizeof(pc_marker_b));
bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
pc_marker = (struct pv_chunk *)&pc_marker_b;
pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
mtx_lock(&pv_chunks_mutex);
active_reclaims++;
TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
SLIST_EMPTY(&free)) {
next_pmap = pc->pc_pmap;
if (next_pmap == NULL) {
/*
* The next chunk is a marker. However, it is
* not our marker, so active_reclaims must be
* > 1. Consequently, the next_chunk code
* will not rotate the pv_chunks list.
*/
goto next_chunk;
}
mtx_unlock(&pv_chunks_mutex);
/*
* A pv_chunk can only be removed from the pc_lru list
* when both pc_chunks_mutex is owned and the
* corresponding pmap is locked.
*/
if (pmap != next_pmap) {
reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
pmap = next_pmap;
/* Avoid deadlock and lock recursion. */
if (pmap > locked_pmap) {
RELEASE_PV_LIST_LOCK(lockp);
PMAP_LOCK(pmap);
mtx_lock(&pv_chunks_mutex);
continue;
} else if (pmap != locked_pmap) {
if (PMAP_TRYLOCK(pmap)) {
mtx_lock(&pv_chunks_mutex);
continue;
} else {
pmap = NULL; /* pmap is not locked */
mtx_lock(&pv_chunks_mutex);
pc = TAILQ_NEXT(pc_marker, pc_lru);
if (pc == NULL ||
pc->pc_pmap != next_pmap)
continue;
goto next_chunk;
}
}
}
/*
* Destroy every non-wired, 4 KB page mapping in the chunk.
*/
freed = 0;
for (field = 0; field < _NPCM; field++) {
for (inuse = ~pc->pc_map[field] & pc_freemask[field];
inuse != 0; inuse &= ~(1UL << bit)) {
bit = cnttzd(inuse);
pv = &pc->pc_pventry[field * 64 + bit];
va = pv->pv_va;
l3e = pmap_pml3e(pmap, va);
if ((*l3e & RPTE_LEAF) != 0)
continue;
pte = pmap_l3e_to_pte(l3e, va);
if ((*pte & PG_W) != 0)
continue;
tpte = pte_load_clear(pte);
m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
vm_page_dirty(m);
if ((tpte & PG_A) != 0)
vm_page_aflag_set(m, PGA_REFERENCED);
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
m->md.pv_gen++;
if (TAILQ_EMPTY(&m->md.pv_list) &&
(m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
if (TAILQ_EMPTY(&pvh->pv_list)) {
vm_page_aflag_clear(m,
PGA_WRITEABLE);
}
}
pc->pc_map[field] |= 1UL << bit;
pmap_unuse_pt(pmap, va, *l3e, &free);
freed++;
}
}
if (freed == 0) {
mtx_lock(&pv_chunks_mutex);
goto next_chunk;
}
/* Every freed mapping is for a 4 KB page. */
pmap_resident_count_dec(pmap, freed);
PV_STAT(atomic_add_long(&pv_entry_frees, freed));
PV_STAT(atomic_add_int(&pv_entry_spare, freed));
PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1) {
PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
/* Entire chunk is free; return it. */
m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
mtx_lock(&pv_chunks_mutex);
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
break;
}
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
mtx_lock(&pv_chunks_mutex);
/* One freed pv entry in locked_pmap is sufficient. */
if (pmap == locked_pmap)
break;
next_chunk:
TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
if (active_reclaims == 1 && pmap != NULL) {
/*
* Rotate the pv chunks list so that we do not
* scan the same pv chunks that could not be
* freed (because they contained a wired
* and/or superpage mapping) on every
* invocation of reclaim_pv_chunk().
*/
while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
MPASS(pc->pc_pmap != NULL);
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
}
}
}
TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
active_reclaims--;
mtx_unlock(&pv_chunks_mutex);
reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
if (m_pc == NULL && !SLIST_EMPTY(&free)) {
m_pc = SLIST_FIRST(&free);
SLIST_REMOVE_HEAD(&free, plinks.s.ss);
/* Recycle a freed page table page. */
m_pc->ref_count = 1;
}
vm_page_free_pages_toq(&free, true);
return (m_pc);
}
/*
* free the pv_entry back to the free list
*/
static void
free_pv_entry(pmap_t pmap, pv_entry_t pv)
{
struct pv_chunk *pc;
int idx, field, bit;
#ifdef VERBOSE_PV
if (pmap != kernel_pmap)
printf("%s(%p, %p)\n", __func__, pmap, pv);
#endif
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
PV_STAT(atomic_add_long(&pv_entry_frees, 1));
PV_STAT(atomic_add_int(&pv_entry_spare, 1));
PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
pc = pv_to_chunk(pv);
idx = pv - &pc->pc_pventry[0];
field = idx / 64;
bit = idx % 64;
pc->pc_map[field] |= 1ul << bit;
if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1) {
/* 98% of the time, pc is already at the head of the list. */
if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
}
return;
}
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
free_pv_chunk(pc);
}
static void
free_pv_chunk(struct pv_chunk *pc)
{
vm_page_t m;
mtx_lock(&pv_chunks_mutex);
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
mtx_unlock(&pv_chunks_mutex);
PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
/* entire chunk is free, return it */
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
vm_page_unwire_noq(m);
vm_page_free(m);
}
/*
* Returns a new PV entry, allocating a new PV chunk from the system when
* needed. If this PV chunk allocation fails and a PV list lock pointer was
* given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is
* returned.
*
* The given PV list lock may be released.
*/
static pv_entry_t
get_pv_entry(pmap_t pmap, struct rwlock **lockp)
{
int bit, field;
pv_entry_t pv;
struct pv_chunk *pc;
vm_page_t m;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
retry:
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
if (pc != NULL) {
for (field = 0; field < _NPCM; field++) {
if (pc->pc_map[field]) {
bit = cnttzd(pc->pc_map[field]);
break;
}
}
if (field < _NPCM) {
pv = &pc->pc_pventry[field * 64 + bit];
pc->pc_map[field] &= ~(1ul << bit);
/* If this was the last item, move it to tail */
if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
pc_list);
}
PV_STAT(atomic_add_long(&pv_entry_count, 1));
PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
MPASS(PV_PMAP(pv) != NULL);
return (pv);
}
}
/* No free items, allocate another chunk */
m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED);
if (m == NULL) {
if (lockp == NULL) {
PV_STAT(pc_chunk_tryfail++);
return (NULL);
}
m = reclaim_pv_chunk(pmap, lockp);
if (m == NULL)
goto retry;
}
PV_STAT(atomic_add_int(&pc_chunk_count, 1));
PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
pc = (void *)PHYS_TO_DMAP(m->phys_addr);
pc->pc_pmap = pmap;
pc->pc_map[0] = PC_FREE0 & ~1ul; /* preallocated bit 0 */
pc->pc_map[1] = PC_FREE1;
mtx_lock(&pv_chunks_mutex);
TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
mtx_unlock(&pv_chunks_mutex);
pv = &pc->pc_pventry[0];
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
PV_STAT(atomic_add_long(&pv_entry_count, 1));
PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
MPASS(PV_PMAP(pv) != NULL);
return (pv);
}
#if VM_NRESERVLEVEL > 0
/*
* After promotion from 512 4KB page mappings to a single 2MB page mapping,
* replace the many pv entries for the 4KB page mappings by a single pv entry
* for the 2MB page mapping.
*/
static void
pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
struct rwlock **lockp)
{
struct md_page *pvh;
pv_entry_t pv;
vm_offset_t va_last;
vm_page_t m;
KASSERT((pa & L3_PAGE_MASK) == 0,
("pmap_pv_promote_pde: pa is not 2mpage aligned"));
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
/*
* Transfer the first page's pv entry for this mapping to the 2mpage's
* pv list. Aside from avoiding the cost of a call to get_pv_entry(),
* a transfer avoids the possibility that get_pv_entry() calls
* reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
* mappings that is being promoted.
*/
m = PHYS_TO_VM_PAGE(pa);
va = trunc_2mpage(va);
pv = pmap_pvh_remove(&m->md, pmap, va);
KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
pvh = pa_to_pvh(pa);
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
pvh->pv_gen++;
/* Free the remaining NPTEPG - 1 pv entries. */
va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
do {
m++;
va += PAGE_SIZE;
pmap_pvh_free(&m->md, pmap, va);
} while (va < va_last);
}
#endif /* VM_NRESERVLEVEL > 0 */
/*
* First find and then destroy the pv entry for the specified pmap and virtual
* address. This operation can be performed on pv lists for either 4KB or 2MB
* page mappings.
*/
static void
pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
{
pv_entry_t pv;
pv = pmap_pvh_remove(pvh, pmap, va);
KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
free_pv_entry(pmap, pv);
}
/*
* Conditionally create the PV entry for a 4KB page mapping if the required
* memory can be allocated without resorting to reclamation.
*/
static boolean_t
pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
struct rwlock **lockp)
{
pv_entry_t pv;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/* Pass NULL instead of the lock pointer to disable reclamation. */
if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
pv->pv_va = va;
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
m->md.pv_gen++;
return (TRUE);
} else
return (FALSE);
}
vm_paddr_t phys_avail_debug[2 * VM_PHYSSEG_MAX];
#ifdef INVARIANTS
static void
validate_addr(vm_paddr_t addr, vm_size_t size)
{
vm_paddr_t end = addr + size;
bool found = false;
for (int i = 0; i < 2 * phys_avail_count; i += 2) {
if (addr >= phys_avail_debug[i] &&
end <= phys_avail_debug[i + 1]) {
found = true;
break;
}
}
KASSERT(found, ("%#lx-%#lx outside of initial phys_avail array",
addr, end));
}
#else
static void validate_addr(vm_paddr_t addr, vm_size_t size) {}
#endif
#define DMAP_PAGE_BITS (RPTE_VALID | RPTE_LEAF | RPTE_EAA_MASK | PG_M | PG_A)
static vm_paddr_t
alloc_pt_page(void)
{
vm_paddr_t page;
page = allocpages(1);
pagezero(PHYS_TO_DMAP(page));
return (page);
}
static void
mmu_radix_dmap_range(vm_paddr_t start, vm_paddr_t end)
{
pt_entry_t *pte, pteval;
vm_paddr_t page;
if (bootverbose)
printf("%s %lx -> %lx\n", __func__, start, end);
while (start < end) {
pteval = start | DMAP_PAGE_BITS;
pte = pmap_pml1e(kernel_pmap, PHYS_TO_DMAP(start));
if ((*pte & RPTE_VALID) == 0) {
page = alloc_pt_page();
pde_store(pte, page);
}
pte = pmap_l1e_to_l2e(pte, PHYS_TO_DMAP(start));
if ((start & L2_PAGE_MASK) == 0 &&
end - start >= L2_PAGE_SIZE) {
start += L2_PAGE_SIZE;
goto done;
} else if ((*pte & RPTE_VALID) == 0) {
page = alloc_pt_page();
pde_store(pte, page);
}
pte = pmap_l2e_to_l3e(pte, PHYS_TO_DMAP(start));
if ((start & L3_PAGE_MASK) == 0 &&
end - start >= L3_PAGE_SIZE) {
start += L3_PAGE_SIZE;
goto done;
} else if ((*pte & RPTE_VALID) == 0) {
page = alloc_pt_page();
pde_store(pte, page);
}
pte = pmap_l3e_to_pte(pte, PHYS_TO_DMAP(start));
start += PAGE_SIZE;
done:
pte_store(pte, pteval);
}
}
static void
mmu_radix_dmap_populate(vm_size_t hwphyssz)
{
vm_paddr_t start, end;
for (int i = 0; i < pregions_sz; i++) {
start = pregions[i].mr_start;
end = start + pregions[i].mr_size;
if (hwphyssz && start >= hwphyssz)
break;
if (hwphyssz && hwphyssz < end)
end = hwphyssz;
mmu_radix_dmap_range(start, end);
}
}
static void
mmu_radix_setup_pagetables(vm_size_t hwphyssz)
{
vm_paddr_t ptpages, pages;
pt_entry_t *pte;
vm_paddr_t l1phys;
bzero(kernel_pmap, sizeof(struct pmap));
PMAP_LOCK_INIT(kernel_pmap);
ptpages = allocpages(2);
l1phys = moea64_bootstrap_alloc(RADIX_PGD_SIZE, RADIX_PGD_SIZE);
validate_addr(l1phys, RADIX_PGD_SIZE);
if (bootverbose)
printf("l1phys=%lx\n", l1phys);
MPASS((l1phys & (RADIX_PGD_SIZE-1)) == 0);
for (int i = 0; i < RADIX_PGD_SIZE/PAGE_SIZE; i++)
pagezero(PHYS_TO_DMAP(l1phys + i * PAGE_SIZE));
kernel_pmap->pm_pml1 = (pml1_entry_t *)PHYS_TO_DMAP(l1phys);
mmu_radix_dmap_populate(hwphyssz);
/*
* Create page tables for first 128MB of KVA
*/
pages = ptpages;
pte = pmap_pml1e(kernel_pmap, VM_MIN_KERNEL_ADDRESS);
*pte = (pages | RPTE_VALID | RPTE_SHIFT);
pages += PAGE_SIZE;
pte = pmap_l1e_to_l2e(pte, VM_MIN_KERNEL_ADDRESS);
*pte = (pages | RPTE_VALID | RPTE_SHIFT);
pages += PAGE_SIZE;
pte = pmap_l2e_to_l3e(pte, VM_MIN_KERNEL_ADDRESS);
/*
* the kernel page table pages need to be preserved in
* phys_avail and not overlap with previous allocations
*/
pages = allocpages(nkpt);
if (bootverbose) {
printf("phys_avail after dmap populate and nkpt allocation\n");
for (int j = 0; j < 2 * phys_avail_count; j+=2)
printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
j, phys_avail[j], j + 1, phys_avail[j + 1]);
}
KPTphys = pages;
for (int i = 0; i < nkpt; i++, pte++, pages += PAGE_SIZE)
*pte = (pages | RPTE_VALID | RPTE_SHIFT);
kernel_vm_end = VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE;
if (bootverbose)
printf("kernel_pmap pml1 %p\n", kernel_pmap->pm_pml1);
/*
* Add a physical memory segment (vm_phys_seg) corresponding to the
* preallocated kernel page table pages so that vm_page structures
* representing these pages will be created. The vm_page structures
* are required for promotion of the corresponding kernel virtual
* addresses to superpage mappings.
*/
vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
}
static void
mmu_radix_early_bootstrap(vm_offset_t start, vm_offset_t end)
{
vm_paddr_t kpstart, kpend;
vm_size_t physsz, hwphyssz;
//uint64_t l2virt;
int rm_pavail, proctab_size;
int i, j;
kpstart = start & ~DMAP_BASE_ADDRESS;
kpend = end & ~DMAP_BASE_ADDRESS;
/* Get physical memory regions from firmware */
mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
CTR0(KTR_PMAP, "mmu_radix_early_bootstrap: physical memory");
if (2 * VM_PHYSSEG_MAX < regions_sz)
panic("mmu_radix_early_bootstrap: phys_avail too small");
if (bootverbose)
for (int i = 0; i < regions_sz; i++)
printf("regions[%d].mr_start=%lx regions[%d].mr_size=%lx\n",
i, regions[i].mr_start, i, regions[i].mr_size);
/*
* XXX workaround a simulator bug
*/
for (int i = 0; i < regions_sz; i++)
if (regions[i].mr_start & PAGE_MASK) {
regions[i].mr_start += PAGE_MASK;
regions[i].mr_start &= ~PAGE_MASK;
regions[i].mr_size &= ~PAGE_MASK;
}
if (bootverbose)
for (int i = 0; i < pregions_sz; i++)
printf("pregions[%d].mr_start=%lx pregions[%d].mr_size=%lx\n",
i, pregions[i].mr_start, i, pregions[i].mr_size);
phys_avail_count = 0;
physsz = 0;
hwphyssz = 0;
TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
for (i = 0, j = 0; i < regions_sz; i++) {
if (bootverbose)
printf("regions[%d].mr_start=%016lx regions[%d].mr_size=%016lx\n",
i, regions[i].mr_start, i, regions[i].mr_size);
if (regions[i].mr_size < PAGE_SIZE)
continue;
if (hwphyssz != 0 &&
(physsz + regions[i].mr_size) >= hwphyssz) {
if (physsz < hwphyssz) {
phys_avail[j] = regions[i].mr_start;
phys_avail[j + 1] = regions[i].mr_start +
(hwphyssz - physsz);
physsz = hwphyssz;
phys_avail_count++;
dump_avail[j] = phys_avail[j];
dump_avail[j + 1] = phys_avail[j + 1];
}
break;
}
phys_avail[j] = regions[i].mr_start;
phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
dump_avail[j] = phys_avail[j];
dump_avail[j + 1] = phys_avail[j + 1];
phys_avail_count++;
physsz += regions[i].mr_size;
j += 2;
}
/* Check for overlap with the kernel and exception vectors */
rm_pavail = 0;
for (j = 0; j < 2 * phys_avail_count; j+=2) {
if (phys_avail[j] < EXC_LAST)
phys_avail[j] += EXC_LAST;
if (phys_avail[j] >= kpstart &&
phys_avail[j + 1] <= kpend) {
phys_avail[j] = phys_avail[j + 1] = ~0;
rm_pavail++;
continue;
}
if (kpstart >= phys_avail[j] &&
kpstart < phys_avail[j + 1]) {
if (kpend < phys_avail[j + 1]) {
phys_avail[2 * phys_avail_count] =
(kpend & ~PAGE_MASK) + PAGE_SIZE;
phys_avail[2 * phys_avail_count + 1] =
phys_avail[j + 1];
phys_avail_count++;
}
phys_avail[j + 1] = kpstart & ~PAGE_MASK;
}
if (kpend >= phys_avail[j] &&
kpend < phys_avail[j + 1]) {
if (kpstart > phys_avail[j]) {
phys_avail[2 * phys_avail_count] = phys_avail[j];
phys_avail[2 * phys_avail_count + 1] =
kpstart & ~PAGE_MASK;
phys_avail_count++;
}
phys_avail[j] = (kpend & ~PAGE_MASK) +
PAGE_SIZE;
}
}
qsort(phys_avail, 2 * phys_avail_count, sizeof(phys_avail[0]), pa_cmp);
for (i = 0; i < 2 * phys_avail_count; i++)
phys_avail_debug[i] = phys_avail[i];
/* Remove physical available regions marked for removal (~0) */
if (rm_pavail) {
phys_avail_count -= rm_pavail;
for (i = 2 * phys_avail_count;
i < 2*(phys_avail_count + rm_pavail); i+=2)
phys_avail[i] = phys_avail[i + 1] = 0;
}
if (bootverbose) {
printf("phys_avail ranges after filtering:\n");
for (j = 0; j < 2 * phys_avail_count; j+=2)
printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
j, phys_avail[j], j + 1, phys_avail[j + 1]);
}
physmem = btoc(physsz);
/* XXX assume we're running non-virtualized and
* we don't support BHYVE
*/
if (isa3_pid_bits == 0)
isa3_pid_bits = 20;
parttab_phys = moea64_bootstrap_alloc(PARTTAB_SIZE, PARTTAB_SIZE);
validate_addr(parttab_phys, PARTTAB_SIZE);
for (int i = 0; i < PARTTAB_SIZE/PAGE_SIZE; i++)
pagezero(PHYS_TO_DMAP(parttab_phys + i * PAGE_SIZE));
proctab_size = 1UL << PROCTAB_SIZE_SHIFT;
proctab0pa = moea64_bootstrap_alloc(proctab_size, proctab_size);
validate_addr(proctab0pa, proctab_size);
for (int i = 0; i < proctab_size/PAGE_SIZE; i++)
pagezero(PHYS_TO_DMAP(proctab0pa + i * PAGE_SIZE));
mmu_radix_setup_pagetables(hwphyssz);
}
static void
mmu_radix_late_bootstrap(vm_offset_t start, vm_offset_t end)
{
int i;
vm_paddr_t pa;
void *dpcpu;
vm_offset_t va;
/*
* Set up the Open Firmware pmap and add its mappings if not in real
* mode.
*/
if (bootverbose)
printf("%s enter\n", __func__);
/*
* Calculate the last available physical address, and reserve the
* vm_page_array (upper bound).
*/
Maxmem = 0;
for (i = 0; phys_avail[i + 2] != 0; i += 2)
Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
/*
* Set the start and end of kva.
*/
virtual_avail = VM_MIN_KERNEL_ADDRESS;
virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
/*
* Remap any early IO mappings (console framebuffer, etc.)
*/
bs_remap_earlyboot();
/*
* Allocate a kernel stack with a guard page for thread0 and map it
* into the kernel page map.
*/
pa = allocpages(kstack_pages);
va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
virtual_avail = va + kstack_pages * PAGE_SIZE;
CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
thread0.td_kstack = va;
for (i = 0; i < kstack_pages; i++) {
mmu_radix_kenter(va, pa);
pa += PAGE_SIZE;
va += PAGE_SIZE;
}
thread0.td_kstack_pages = kstack_pages;
/*
* Allocate virtual address space for the message buffer.
*/
pa = msgbuf_phys = allocpages((msgbufsize + PAGE_MASK) >> PAGE_SHIFT);
msgbufp = (struct msgbuf *)PHYS_TO_DMAP(pa);
/*
* Allocate virtual address space for the dynamic percpu area.
*/
pa = allocpages(DPCPU_SIZE >> PAGE_SHIFT);
dpcpu = (void *)PHYS_TO_DMAP(pa);
dpcpu_init(dpcpu, curcpu);
/*
* Reserve some special page table entries/VA space for temporary
* mapping of pages.
*/
}
static void
mmu_parttab_init(void)
{
uint64_t ptcr;
isa3_parttab = (struct pate *)PHYS_TO_DMAP(parttab_phys);
if (bootverbose)
printf("%s parttab: %p\n", __func__, isa3_parttab);
ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
if (bootverbose)
printf("setting ptcr %lx\n", ptcr);
mtspr(SPR_PTCR, ptcr);
}
static void
mmu_parttab_update(uint64_t lpid, uint64_t pagetab, uint64_t proctab)
{
uint64_t prev;
if (bootverbose)
printf("%s isa3_parttab %p lpid %lx pagetab %lx proctab %lx\n", __func__, isa3_parttab,
lpid, pagetab, proctab);
prev = be64toh(isa3_parttab[lpid].pagetab);
isa3_parttab[lpid].pagetab = htobe64(pagetab);
isa3_parttab[lpid].proctab = htobe64(proctab);
if (prev & PARTTAB_HR) {
__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
"r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
"r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
} else {
__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
"r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
}
ttusync();
}
static void
mmu_radix_parttab_init(void)
{
uint64_t pagetab;
mmu_parttab_init();
pagetab = RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) | \
RADIX_PGD_INDEX_SHIFT | PARTTAB_HR;
mmu_parttab_update(0, pagetab, 0);
}
static void
mmu_radix_proctab_register(vm_paddr_t proctabpa, uint64_t table_size)
{
uint64_t pagetab, proctab;
pagetab = be64toh(isa3_parttab[0].pagetab);
proctab = proctabpa | table_size | PARTTAB_GR;
mmu_parttab_update(0, pagetab, proctab);
}
static void
mmu_radix_proctab_init(void)
{
isa3_base_pid = 1;
isa3_proctab = (void*)PHYS_TO_DMAP(proctab0pa);
isa3_proctab->proctab0 =
htobe64(RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) |
RADIX_PGD_INDEX_SHIFT);
mmu_radix_proctab_register(proctab0pa, PROCTAB_SIZE_SHIFT - 12);
__asm __volatile("ptesync" : : : "memory");
__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
"r" (TLBIEL_INVAL_SET_LPID), "r" (0));
__asm __volatile("eieio; tlbsync; ptesync" : : : "memory");
if (bootverbose)
printf("process table %p and kernel radix PDE: %p\n",
isa3_proctab, kernel_pmap->pm_pml1);
mtmsr(mfmsr() | PSL_DR );
mtmsr(mfmsr() & ~PSL_DR);
kernel_pmap->pm_pid = isa3_base_pid;
isa3_base_pid++;
}
void
mmu_radix_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
int advice)
{
struct rwlock *lock;
pml1_entry_t *l1e;
pml2_entry_t *l2e;
pml3_entry_t oldl3e, *l3e;
pt_entry_t *pte;
vm_offset_t va, va_next;
vm_page_t m;
boolean_t anychanged;
if (advice != MADV_DONTNEED && advice != MADV_FREE)
return;
anychanged = FALSE;
PMAP_LOCK(pmap);
for (; sva < eva; sva = va_next) {
l1e = pmap_pml1e(pmap, sva);
if ((*l1e & PG_V) == 0) {
va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
if (va_next < sva)
va_next = eva;
continue;
}
l2e = pmap_l1e_to_l2e(l1e, sva);
if ((*l2e & PG_V) == 0) {
va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
if (va_next < sva)
va_next = eva;
continue;
}
va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
if (va_next < sva)
va_next = eva;
l3e = pmap_l2e_to_l3e(l2e, sva);
oldl3e = *l3e;
if ((oldl3e & PG_V) == 0)
continue;
else if ((oldl3e & RPTE_LEAF) != 0) {
if ((oldl3e & PG_MANAGED) == 0)
continue;
lock = NULL;
if (!pmap_demote_l3e_locked(pmap, l3e, sva, &lock)) {
if (lock != NULL)
rw_wunlock(lock);
/*
* The large page mapping was destroyed.
*/
continue;
}
/*
* Unless the page mappings are wired, remove the
* mapping to a single page so that a subsequent
* access may repromote. Since the underlying page
* table page is fully populated, this removal never
* frees a page table page.
*/
if ((oldl3e & PG_W) == 0) {
pte = pmap_l3e_to_pte(l3e, sva);
KASSERT((*pte & PG_V) != 0,
("pmap_advise: invalid PTE"));
pmap_remove_pte(pmap, pte, sva, *l3e, NULL,
&lock);
anychanged = TRUE;
}
if (lock != NULL)
rw_wunlock(lock);
}
if (va_next > eva)
va_next = eva;
va = va_next;
for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next;
pte++, sva += PAGE_SIZE) {
MPASS(pte == pmap_pte(pmap, sva));
if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
goto maybe_invlrng;
else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
if (advice == MADV_DONTNEED) {
/*
* Future calls to pmap_is_modified()
* can be avoided by making the page
* dirty now.
*/
m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
vm_page_dirty(m);
}
atomic_clear_long(pte, PG_M | PG_A);
} else if ((*pte & PG_A) != 0)
atomic_clear_long(pte, PG_A);
else
goto maybe_invlrng;
anychanged = TRUE;
continue;
maybe_invlrng:
if (va != va_next) {
anychanged = true;
va = va_next;
}
}
if (va != va_next)
anychanged = true;
}
if (anychanged)
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
}
/*
* Routines used in machine-dependent code
*/
static void
mmu_radix_bootstrap(vm_offset_t start, vm_offset_t end)
{
uint64_t lpcr;
if (bootverbose)
printf("%s\n", __func__);
hw_direct_map = 1;
mmu_radix_early_bootstrap(start, end);
if (bootverbose)
printf("early bootstrap complete\n");
if (powernv_enabled) {
lpcr = mfspr(SPR_LPCR);
mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
mmu_radix_parttab_init();
mmu_radix_init_amor();
if (bootverbose)
printf("powernv init complete\n");
}
mmu_radix_init_iamr();
mmu_radix_proctab_init();
mmu_radix_pid_set(kernel_pmap);
/* XXX assume CPU_FTR_HVMODE */
mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
mmu_radix_late_bootstrap(start, end);
numa_mem_regions(&numa_pregions, &numa_pregions_sz);
if (bootverbose)
printf("%s done\n", __func__);
pmap_bootstrapped = 1;
dmaplimit = roundup2(powerpc_ptob(Maxmem), L2_PAGE_SIZE);
PCPU_SET(flags, PCPU_GET(flags) | PC_FLAG_NOSRS);
}
static void
mmu_radix_cpu_bootstrap(int ap)
{
uint64_t lpcr;
uint64_t ptcr;
if (powernv_enabled) {
lpcr = mfspr(SPR_LPCR);
mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
mtspr(SPR_PTCR, ptcr);
mmu_radix_init_amor();
}
mmu_radix_init_iamr();
mmu_radix_pid_set(kernel_pmap);
mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
}
static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3e, CTLFLAG_RD, 0,
"2MB page mapping counters");
static u_long pmap_l3e_demotions;
SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, demotions, CTLFLAG_RD,
&pmap_l3e_demotions, 0, "2MB page demotions");
static u_long pmap_l3e_mappings;
SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, mappings, CTLFLAG_RD,
&pmap_l3e_mappings, 0, "2MB page mappings");
static u_long pmap_l3e_p_failures;
SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, p_failures, CTLFLAG_RD,
&pmap_l3e_p_failures, 0, "2MB page promotion failures");
static u_long pmap_l3e_promotions;
SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, promotions, CTLFLAG_RD,
&pmap_l3e_promotions, 0, "2MB page promotions");
static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2e, CTLFLAG_RD, 0,
"1GB page mapping counters");
static u_long pmap_l2e_demotions;
SYSCTL_ULONG(_vm_pmap_l2e, OID_AUTO, demotions, CTLFLAG_RD,
&pmap_l2e_demotions, 0, "1GB page demotions");
void
mmu_radix_clear_modify(vm_page_t m)
{
struct md_page *pvh;
pmap_t pmap;
pv_entry_t next_pv, pv;
pml3_entry_t oldl3e, *l3e;
pt_entry_t oldpte, *pte;
struct rwlock *lock;
vm_offset_t va;
int md_gen, pvh_gen;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_clear_modify: page %p is not managed", m));
vm_page_assert_busied(m);
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
/*
* If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
* If the object containing the page is locked and the page is not
* exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
*/
if ((m->a.flags & PGA_WRITEABLE) == 0)
return;
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
pa_to_pvh(VM_PAGE_TO_PHYS(m));
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_wlock(lock);
restart:
TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
va = pv->pv_va;
l3e = pmap_pml3e(pmap, va);
oldl3e = *l3e;
if ((oldl3e & PG_RW) != 0) {
if (pmap_demote_l3e_locked(pmap, l3e, va, &lock)) {
if ((oldl3e & PG_W) == 0) {
/*
* Write protect the mapping to a
* single page so that a subsequent
* write access may repromote.
*/
va += VM_PAGE_TO_PHYS(m) - (oldl3e &
PG_PS_FRAME);
pte = pmap_l3e_to_pte(l3e, va);
oldpte = *pte;
if ((oldpte & PG_V) != 0) {
while (!atomic_cmpset_long(pte,
oldpte,
(oldpte | RPTE_EAA_R) & ~(PG_M | PG_RW)))
oldpte = *pte;
vm_page_dirty(m);
pmap_invalidate_page(pmap, va);
}
}
}
}
PMAP_UNLOCK(pmap);
}
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
pvh_gen = pvh->pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
l3e = pmap_pml3e(pmap, pv->pv_va);
KASSERT((*l3e & RPTE_LEAF) == 0, ("pmap_clear_modify: found"
" a 2mpage in page %p's pv list", m));
pte = pmap_l3e_to_pte(l3e, pv->pv_va);
if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
atomic_clear_long(pte, PG_M);
pmap_invalidate_page(pmap, pv->pv_va);
}
PMAP_UNLOCK(pmap);
}
rw_wunlock(lock);
}
void
mmu_radix_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
vm_size_t len, vm_offset_t src_addr)
{
struct rwlock *lock;
struct spglist free;
vm_offset_t addr;
vm_offset_t end_addr = src_addr + len;
vm_offset_t va_next;
vm_page_t dst_pdpg, dstmpte, srcmpte;
bool invalidate_all;
CTR6(KTR_PMAP,
"%s(dst_pmap=%p, src_pmap=%p, dst_addr=%lx, len=%lu, src_addr=%lx)\n",
__func__, dst_pmap, src_pmap, dst_addr, len, src_addr);
if (dst_addr != src_addr)
return;
lock = NULL;
invalidate_all = false;
if (dst_pmap < src_pmap) {
PMAP_LOCK(dst_pmap);
PMAP_LOCK(src_pmap);
} else {
PMAP_LOCK(src_pmap);
PMAP_LOCK(dst_pmap);
}
for (addr = src_addr; addr < end_addr; addr = va_next) {
pml1_entry_t *l1e;
pml2_entry_t *l2e;
pml3_entry_t srcptepaddr, *l3e;
pt_entry_t *src_pte, *dst_pte;
l1e = pmap_pml1e(src_pmap, addr);
if ((*l1e & PG_V) == 0) {
va_next = (addr + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
if (va_next < addr)
va_next = end_addr;
continue;
}
l2e = pmap_l1e_to_l2e(l1e, addr);
if ((*l2e & PG_V) == 0) {
va_next = (addr + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
if (va_next < addr)
va_next = end_addr;
continue;
}
va_next = (addr + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
if (va_next < addr)
va_next = end_addr;
l3e = pmap_l2e_to_l3e(l2e, addr);
srcptepaddr = *l3e;
if (srcptepaddr == 0)
continue;
if (srcptepaddr & RPTE_LEAF) {
if ((addr & L3_PAGE_MASK) != 0 ||
addr + L3_PAGE_SIZE > end_addr)
continue;
dst_pdpg = pmap_allocl3e(dst_pmap, addr, NULL);
if (dst_pdpg == NULL)
break;
l3e = (pml3_entry_t *)
PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_pdpg));
l3e = &l3e[pmap_pml3e_index(addr)];
if (*l3e == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
pmap_pv_insert_l3e(dst_pmap, addr, srcptepaddr,
PMAP_ENTER_NORECLAIM, &lock))) {
*l3e = srcptepaddr & ~PG_W;
pmap_resident_count_inc(dst_pmap,
L3_PAGE_SIZE / PAGE_SIZE);
atomic_add_long(&pmap_l3e_mappings, 1);
} else
dst_pdpg->ref_count--;
continue;
}
srcptepaddr &= PG_FRAME;
srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
KASSERT(srcmpte->ref_count > 0,
("pmap_copy: source page table page is unused"));
if (va_next > end_addr)
va_next = end_addr;
src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
src_pte = &src_pte[pmap_pte_index(addr)];
dstmpte = NULL;
while (addr < va_next) {
pt_entry_t ptetemp;
ptetemp = *src_pte;
/*
* we only virtual copy managed pages
*/
if ((ptetemp & PG_MANAGED) != 0) {
if (dstmpte != NULL &&
dstmpte->pindex == pmap_l3e_pindex(addr))
dstmpte->ref_count++;
else if ((dstmpte = pmap_allocpte(dst_pmap,
addr, NULL)) == NULL)
goto out;
dst_pte = (pt_entry_t *)
PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
dst_pte = &dst_pte[pmap_pte_index(addr)];
if (*dst_pte == 0 &&
pmap_try_insert_pv_entry(dst_pmap, addr,
PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
&lock)) {
/*
* Clear the wired, modified, and
* accessed (referenced) bits
* during the copy.
*/
*dst_pte = ptetemp & ~(PG_W | PG_M |
PG_A);
pmap_resident_count_inc(dst_pmap, 1);
} else {
SLIST_INIT(&free);
if (pmap_unwire_ptp(dst_pmap, addr,
dstmpte, &free)) {
/*
* Although "addr" is not
* mapped, paging-structure
* caches could nonetheless
* have entries that refer to
* the freed page table pages.
* Invalidate those entries.
*/
invalidate_all = true;
vm_page_free_pages_toq(&free,
true);
}
goto out;
}
if (dstmpte->ref_count >= srcmpte->ref_count)
break;
}
addr += PAGE_SIZE;
if (__predict_false((addr & L3_PAGE_MASK) == 0))
src_pte = pmap_pte(src_pmap, addr);
else
src_pte++;
}
}
out:
if (invalidate_all)
pmap_invalidate_all(dst_pmap);
if (lock != NULL)
rw_wunlock(lock);
PMAP_UNLOCK(src_pmap);
PMAP_UNLOCK(dst_pmap);
}
static void
mmu_radix_copy_page(vm_page_t msrc, vm_page_t mdst)
{
vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
CTR3(KTR_PMAP, "%s(%p, %p)", __func__, src, dst);
/*
* XXX slow
*/
bcopy((void *)src, (void *)dst, PAGE_SIZE);
}
static void
mmu_radix_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
vm_offset_t b_offset, int xfersize)
{
CTR6(KTR_PMAP, "%s(%p, %#x, %p, %#x, %#x)", __func__, ma,
a_offset, mb, b_offset, xfersize);
UNIMPLEMENTED();
}
#if VM_NRESERVLEVEL > 0
/*
* Tries to promote the 512, contiguous 4KB page mappings that are within a
* single page table page (PTP) to a single 2MB page mapping. For promotion
* to occur, two conditions must be met: (1) the 4KB page mappings must map
* aligned, contiguous physical memory and (2) the 4KB page mappings must have
* identical characteristics.
*/
static int
pmap_promote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va,
struct rwlock **lockp)
{
pml3_entry_t newpde;
pt_entry_t *firstpte, oldpte, pa, *pte;
vm_page_t mpte;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* Examine the first PTE in the specified PTP. Abort if this PTE is
* either invalid, unused, or does not map the first 4KB physical page
* within a 2MB page.
*/
firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
setpde:
newpde = *firstpte;
if ((newpde & ((PG_FRAME & L3_PAGE_MASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
" in pmap %p", va, pmap);
goto fail;
}
if ((newpde & (PG_M | PG_RW)) == PG_RW) {
/*
* When PG_M is already clear, PG_RW can be cleared without
* a TLB invalidation.
*/
if (!atomic_cmpset_long(firstpte, newpde, (newpde | RPTE_EAA_R) & ~RPTE_EAA_W))
goto setpde;
newpde &= ~RPTE_EAA_W;
}
/*
* Examine each of the other PTEs in the specified PTP. Abort if this
* PTE maps an unexpected 4KB physical page or does not have identical
* characteristics to the first PTE.
*/
pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + L3_PAGE_SIZE - PAGE_SIZE;
for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
setpte:
oldpte = *pte;
if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
" in pmap %p", va, pmap);
goto fail;
}
if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
/*
* When PG_M is already clear, PG_RW can be cleared
* without a TLB invalidation.
*/
if (!atomic_cmpset_long(pte, oldpte, (oldpte | RPTE_EAA_R) & ~RPTE_EAA_W))
goto setpte;
oldpte &= ~RPTE_EAA_W;
CTR2(KTR_PMAP, "pmap_promote_l3e: protect for va %#lx"
" in pmap %p", (oldpte & PG_FRAME & L3_PAGE_MASK) |
(va & ~L3_PAGE_MASK), pmap);
}
if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
" in pmap %p", va, pmap);
goto fail;
}
pa -= PAGE_SIZE;
}
/*
* Save the page table page in its current state until the PDE
* mapping the superpage is demoted by pmap_demote_pde() or
* destroyed by pmap_remove_pde().
*/
mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
KASSERT(mpte >= vm_page_array &&
mpte < &vm_page_array[vm_page_array_size],
("pmap_promote_l3e: page table page is out of range"));
KASSERT(mpte->pindex == pmap_l3e_pindex(va),
("pmap_promote_l3e: page table page's pindex is wrong"));
if (pmap_insert_pt_page(pmap, mpte)) {
CTR2(KTR_PMAP,
"pmap_promote_l3e: failure for va %#lx in pmap %p", va,
pmap);
goto fail;
}
/*
* Promote the pv entries.
*/
if ((newpde & PG_MANAGED) != 0)
pmap_pv_promote_l3e(pmap, va, newpde & PG_PS_FRAME, lockp);
pte_store(pde, PG_PROMOTED | newpde);
atomic_add_long(&pmap_l3e_promotions, 1);
CTR2(KTR_PMAP, "pmap_promote_l3e: success for va %#lx"
" in pmap %p", va, pmap);
return (0);
fail:
atomic_add_long(&pmap_l3e_p_failures, 1);
return (KERN_FAILURE);
}
#endif /* VM_NRESERVLEVEL > 0 */
int
mmu_radix_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, u_int flags, int8_t psind)
{
struct rwlock *lock;
pml3_entry_t *l3e;
pt_entry_t *pte;
pt_entry_t newpte, origpte;
pv_entry_t pv;
vm_paddr_t opa, pa;
vm_page_t mpte, om;
int rv, retrycount;
boolean_t nosleep, invalidate_all, invalidate_page;
va = trunc_page(va);
retrycount = 0;
invalidate_page = invalidate_all = false;
CTR6(KTR_PMAP, "pmap_enter(%p, %#lx, %p, %#x, %#x, %d)", pmap, va,
m, prot, flags, psind);
KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
va >= kmi.clean_eva,
("pmap_enter: managed mapping within the clean submap"));
if ((m->oflags & VPO_UNMANAGED) == 0)
VM_PAGE_OBJECT_BUSY_ASSERT(m);
KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
("pmap_enter: flags %u has reserved bits set", flags));
pa = VM_PAGE_TO_PHYS(m);
newpte = (pt_entry_t)(pa | PG_A | PG_V | RPTE_LEAF);
if ((flags & VM_PROT_WRITE) != 0)
newpte |= PG_M;
if ((flags & VM_PROT_READ) != 0)
newpte |= PG_A;
if (prot & VM_PROT_READ)
newpte |= RPTE_EAA_R;
if ((prot & VM_PROT_WRITE) != 0)
newpte |= RPTE_EAA_W;
KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
if (prot & VM_PROT_EXECUTE)
newpte |= PG_X;
if ((flags & PMAP_ENTER_WIRED) != 0)
newpte |= PG_W;
if (va >= DMAP_MIN_ADDRESS)
newpte |= RPTE_EAA_P;
newpte |= pmap_cache_bits(m->md.mdpg_cache_attrs);
/*
* Set modified bit gratuitously for writeable mappings if
* the page is unmanaged. We do not want to take a fault
* to do the dirty bit accounting for these mappings.
*/
if ((m->oflags & VPO_UNMANAGED) != 0) {
if ((newpte & PG_RW) != 0)
newpte |= PG_M;
} else
newpte |= PG_MANAGED;
lock = NULL;
PMAP_LOCK(pmap);
if (psind == 1) {
/* Assert the required virtual and physical alignment. */
KASSERT((va & L3_PAGE_MASK) == 0, ("pmap_enter: va unaligned"));
KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
rv = pmap_enter_l3e(pmap, va, newpte | RPTE_LEAF, flags, m, &lock);
goto out;
}
mpte = NULL;
/*
* In the case that a page table page is not
* resident, we are creating it here.
*/
retry:
l3e = pmap_pml3e(pmap, va);
if (l3e != NULL && (*l3e & PG_V) != 0 && ((*l3e & RPTE_LEAF) == 0 ||
pmap_demote_l3e_locked(pmap, l3e, va, &lock))) {
pte = pmap_l3e_to_pte(l3e, va);
if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
mpte = PHYS_TO_VM_PAGE(*l3e & PG_FRAME);
mpte->ref_count++;
}
} else if (va < VM_MAXUSER_ADDRESS) {
/*
* Here if the pte page isn't mapped, or if it has been
* deallocated.
*/
nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
mpte = _pmap_allocpte(pmap, pmap_l3e_pindex(va),
nosleep ? NULL : &lock);
if (mpte == NULL && nosleep) {
rv = KERN_RESOURCE_SHORTAGE;
goto out;
}
if (__predict_false(retrycount++ == 6))
panic("too many retries");
invalidate_all = true;
goto retry;
} else
panic("pmap_enter: invalid page directory va=%#lx", va);
origpte = *pte;
pv = NULL;
/*
* Is the specified virtual address already mapped?
*/
if ((origpte & PG_V) != 0) {
#ifdef INVARIANTS
if (VERBOSE_PMAP || pmap_logging) {
printf("cow fault pmap_enter(%p, %#lx, %p, %#x, %x, %d) --"
" asid=%lu curpid=%d name=%s origpte0x%lx\n",
pmap, va, m, prot, flags, psind, pmap->pm_pid,
curproc->p_pid, curproc->p_comm, origpte);
pmap_pte_walk(pmap->pm_pml1, va);
}
#endif
/*
* Wiring change, just update stats. We don't worry about
* wiring PT pages as they remain resident as long as there
* are valid mappings in them. Hence, if a user page is wired,
* the PT page will be also.
*/
if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
pmap->pm_stats.wired_count++;
else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
pmap->pm_stats.wired_count--;
/*
* Remove the extra PT page reference.
*/
if (mpte != NULL) {
mpte->ref_count--;
KASSERT(mpte->ref_count > 0,
("pmap_enter: missing reference to page table page,"
" va: 0x%lx", va));
}
/*
* Has the physical page changed?
*/
opa = origpte & PG_FRAME;
if (opa == pa) {
/*
* No, might be a protection or wiring change.
*/
if ((origpte & PG_MANAGED) != 0 &&
(newpte & PG_RW) != 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0) {
if ((newpte & (PG_A|PG_M)) != (origpte & (PG_A|PG_M))) {
if (!atomic_cmpset_long(pte, origpte, newpte))
goto retry;
if ((newpte & PG_M) != (origpte & PG_M))
vm_page_dirty(m);
if ((newpte & PG_A) != (origpte & PG_A))
vm_page_aflag_set(m, PGA_REFERENCED);
ptesync();
} else
invalidate_all = true;
if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
goto unchanged;
}
goto validate;
}
/*
* The physical page has changed. Temporarily invalidate
* the mapping. This ensures that all threads sharing the
* pmap keep a consistent view of the mapping, which is
* necessary for the correct handling of COW faults. It
* also permits reuse of the old mapping's PV entry,
* avoiding an allocation.
*
* For consistency, handle unmanaged mappings the same way.
*/
origpte = pte_load_clear(pte);
KASSERT((origpte & PG_FRAME) == opa,
("pmap_enter: unexpected pa update for %#lx", va));
if ((origpte & PG_MANAGED) != 0) {
om = PHYS_TO_VM_PAGE(opa);
/*
* The pmap lock is sufficient to synchronize with
* concurrent calls to pmap_page_test_mappings() and
* pmap_ts_referenced().
*/
if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
vm_page_dirty(om);
if ((origpte & PG_A) != 0)
vm_page_aflag_set(om, PGA_REFERENCED);
CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
pv = pmap_pvh_remove(&om->md, pmap, va);
if ((newpte & PG_MANAGED) == 0)
free_pv_entry(pmap, pv);
#ifdef INVARIANTS
else if (origpte & PG_MANAGED) {
if (pv == NULL) {
pmap_page_print_mappings(om);
MPASS(pv != NULL);
}
}
#endif
if ((om->a.flags & PGA_WRITEABLE) != 0 &&
TAILQ_EMPTY(&om->md.pv_list) &&
((om->flags & PG_FICTITIOUS) != 0 ||
TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
vm_page_aflag_clear(om, PGA_WRITEABLE);
}
if ((origpte & PG_A) != 0)
invalidate_page = true;
origpte = 0;
} else {
if (pmap != kernel_pmap) {
#ifdef INVARIANTS
if (VERBOSE_PMAP || pmap_logging)
printf("pmap_enter(%p, %#lx, %p, %#x, %x, %d) -- asid=%lu curpid=%d name=%s\n",
pmap, va, m, prot, flags, psind,
pmap->pm_pid, curproc->p_pid,
curproc->p_comm);
#endif
}
/*
* Increment the counters.
*/
if ((newpte & PG_W) != 0)
pmap->pm_stats.wired_count++;
pmap_resident_count_inc(pmap, 1);
}
/*
* Enter on the PV list if part of our managed memory.
*/
if ((newpte & PG_MANAGED) != 0) {
if (pv == NULL) {
pv = get_pv_entry(pmap, &lock);
pv->pv_va = va;
}
#ifdef VERBOSE_PV
else
printf("reassigning pv: %p to pmap: %p\n",
pv, pmap);
#endif
CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
m->md.pv_gen++;
if ((newpte & PG_RW) != 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
}
/*
* Update the PTE.
*/
if ((origpte & PG_V) != 0) {
validate:
origpte = pte_load_store(pte, newpte);
KASSERT((origpte & PG_FRAME) == pa,
("pmap_enter: unexpected pa update for %#lx", va));
if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
(PG_M | PG_RW)) {
if ((origpte & PG_MANAGED) != 0)
vm_page_dirty(m);
invalidate_page = true;
/*
* Although the PTE may still have PG_RW set, TLB
* invalidation may nonetheless be required because
* the PTE no longer has PG_M set.
*/
} else if ((origpte & PG_X) != 0 || (newpte & PG_X) == 0) {
/*
* Removing capabilities requires invalidation on POWER
*/
invalidate_page = true;
goto unchanged;
}
if ((origpte & PG_A) != 0)
invalidate_page = true;
} else {
pte_store(pte, newpte);
ptesync();
}
unchanged:
#if VM_NRESERVLEVEL > 0
/*
* If both the page table page and the reservation are fully
* populated, then attempt promotion.
*/
if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
mmu_radix_ps_enabled(pmap) &&
(m->flags & PG_FICTITIOUS) == 0 &&
vm_reserv_level_iffullpop(m) == 0 &&
pmap_promote_l3e(pmap, l3e, va, &lock) == 0)
invalidate_all = true;
#endif
if (invalidate_all)
pmap_invalidate_all(pmap);
else if (invalidate_page)
pmap_invalidate_page(pmap, va);
rv = KERN_SUCCESS;
out:
if (lock != NULL)
rw_wunlock(lock);
PMAP_UNLOCK(pmap);
return (rv);
}
/*
* Tries to create a read- and/or execute-only 2MB page mapping. Returns true
* if successful. Returns false if (1) a page table page cannot be allocated
* without sleeping, (2) a mapping already exists at the specified virtual
* address, or (3) a PV entry cannot be allocated without reclaiming another
* PV entry.
*/
static bool
pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
struct rwlock **lockp)
{
pml3_entry_t newpde;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs) |
RPTE_LEAF | PG_V;
if ((m->oflags & VPO_UNMANAGED) == 0)
newpde |= PG_MANAGED;
if (prot & VM_PROT_EXECUTE)
newpde |= PG_X;
if (prot & VM_PROT_READ)
newpde |= RPTE_EAA_R;
if (va >= DMAP_MIN_ADDRESS)
newpde |= RPTE_EAA_P;
return (pmap_enter_l3e(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
KERN_SUCCESS);
}
/*
* Tries to create the specified 2MB page mapping. Returns KERN_SUCCESS if
* the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
* otherwise. Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
* a mapping already exists at the specified virtual address. Returns
* KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
* page allocation failed. Returns KERN_RESOURCE_SHORTAGE if
* PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
*
* The parameter "m" is only used when creating a managed, writeable mapping.
*/
static int
pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde, u_int flags,
vm_page_t m, struct rwlock **lockp)
{
struct spglist free;
pml3_entry_t oldl3e, *l3e;
vm_page_t mt, pdpg;
KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
("pmap_enter_pde: newpde is missing PG_M"));
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
if ((pdpg = pmap_allocl3e(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
NULL : lockp)) == NULL) {
CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
" in pmap %p", va, pmap);
return (KERN_RESOURCE_SHORTAGE);
}
l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
l3e = &l3e[pmap_pml3e_index(va)];
oldl3e = *l3e;
if ((oldl3e & PG_V) != 0) {
KASSERT(pdpg->ref_count > 1,
("pmap_enter_pde: pdpg's wire count is too low"));
if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
pdpg->ref_count--;
CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
" in pmap %p", va, pmap);
return (KERN_FAILURE);
}
/* Break the existing mapping(s). */
SLIST_INIT(&free);
if ((oldl3e & RPTE_LEAF) != 0) {
/*
* The reference to the PD page that was acquired by
* pmap_allocl3e() ensures that it won't be freed.
* However, if the PDE resulted from a promotion, then
* a reserved PT page could be freed.
*/
(void)pmap_remove_l3e(pmap, l3e, va, &free, lockp);
} else {
if (pmap_remove_ptes(pmap, va, va + L3_PAGE_SIZE, l3e,
&free, lockp))
pmap_invalidate_all(pmap);
}
vm_page_free_pages_toq(&free, true);
if (va >= VM_MAXUSER_ADDRESS) {
mt = PHYS_TO_VM_PAGE(*l3e & PG_FRAME);
if (pmap_insert_pt_page(pmap, mt)) {
/*
* XXX Currently, this can't happen because
* we do not perform pmap_enter(psind == 1)
* on the kernel pmap.
*/
panic("pmap_enter_pde: trie insert failed");
}
} else
KASSERT(*l3e == 0, ("pmap_enter_pde: non-zero pde %p",
l3e));
}
if ((newpde & PG_MANAGED) != 0) {
/*
* Abort this mapping if its PV entry could not be created.
*/
if (!pmap_pv_insert_l3e(pmap, va, newpde, flags, lockp)) {
SLIST_INIT(&free);
if (pmap_unwire_ptp(pmap, va, pdpg, &free)) {
/*
* Although "va" is not mapped, paging-
* structure caches could nonetheless have
* entries that refer to the freed page table
* pages. Invalidate those entries.
*/
pmap_invalidate_page(pmap, va);
vm_page_free_pages_toq(&free, true);
}
CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
" in pmap %p", va, pmap);
return (KERN_RESOURCE_SHORTAGE);
}
if ((newpde & PG_RW) != 0) {
for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
vm_page_aflag_set(mt, PGA_WRITEABLE);
}
}
/*
* Increment counters.
*/
if ((newpde & PG_W) != 0)
pmap->pm_stats.wired_count += L3_PAGE_SIZE / PAGE_SIZE;
pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
/*
* Map the superpage. (This is not a promoted mapping; there will not
* be any lingering 4KB page mappings in the TLB.)
*/
pte_store(l3e, newpde);
atomic_add_long(&pmap_l3e_mappings, 1);
CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
" in pmap %p", va, pmap);
return (KERN_SUCCESS);
}
void
mmu_radix_enter_object(pmap_t pmap, vm_offset_t start,
vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
{
struct rwlock *lock;
vm_offset_t va;
vm_page_t m, mpte;
vm_pindex_t diff, psize;
bool invalidate;
VM_OBJECT_ASSERT_LOCKED(m_start->object);
CTR6(KTR_PMAP, "%s(%p, %#x, %#x, %p, %#x)", __func__, pmap, start,
end, m_start, prot);
invalidate = false;
psize = atop(end - start);
mpte = NULL;
m = m_start;
lock = NULL;
PMAP_LOCK(pmap);
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
va = start + ptoa(diff);
if ((va & L3_PAGE_MASK) == 0 && va + L3_PAGE_SIZE <= end &&
m->psind == 1 && mmu_radix_ps_enabled(pmap) &&
pmap_enter_2mpage(pmap, va, m, prot, &lock))
m = &m[L3_PAGE_SIZE / PAGE_SIZE - 1];
else
mpte = mmu_radix_enter_quick_locked(pmap, va, m, prot,
mpte, &lock, &invalidate);
m = TAILQ_NEXT(m, listq);
}
ptesync();
if (lock != NULL)
rw_wunlock(lock);
if (invalidate)
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
}
static vm_page_t
mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate)
{
struct spglist free;
pt_entry_t *pte;
vm_paddr_t pa;
KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
(m->oflags & VPO_UNMANAGED) != 0,
("mmu_radix_enter_quick_locked: managed mapping within the clean submap"));
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* In the case that a page table page is not
* resident, we are creating it here.
*/
if (va < VM_MAXUSER_ADDRESS) {
vm_pindex_t ptepindex;
pml3_entry_t *ptepa;
/*
* Calculate pagetable page index
*/
ptepindex = pmap_l3e_pindex(va);
if (mpte && (mpte->pindex == ptepindex)) {
mpte->ref_count++;
} else {
/*
* Get the page directory entry
*/
ptepa = pmap_pml3e(pmap, va);
/*
* If the page table page is mapped, we just increment
* the hold count, and activate it. Otherwise, we
* attempt to allocate a page table page. If this
* attempt fails, we don't retry. Instead, we give up.
*/
if (ptepa && (*ptepa & PG_V) != 0) {
if (*ptepa & RPTE_LEAF)
return (NULL);
mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
mpte->ref_count++;
} else {
/*
* Pass NULL instead of the PV list lock
* pointer, because we don't intend to sleep.
*/
mpte = _pmap_allocpte(pmap, ptepindex, NULL);
if (mpte == NULL)
return (mpte);
}
}
pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
pte = &pte[pmap_pte_index(va)];
} else {
mpte = NULL;
pte = pmap_pte(pmap, va);
}
if (*pte) {
if (mpte != NULL) {
mpte->ref_count--;
mpte = NULL;
}
return (mpte);
}
/*
* Enter on the PV list if part of our managed memory.
*/
if ((m->oflags & VPO_UNMANAGED) == 0 &&
!pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
if (mpte != NULL) {
SLIST_INIT(&free);
if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
/*
* Although "va" is not mapped, paging-
* structure caches could nonetheless have
* entries that refer to the freed page table
* pages. Invalidate those entries.
*/
*invalidate = true;
vm_page_free_pages_toq(&free, true);
}
mpte = NULL;
}
return (mpte);
}
/*
* Increment counters
*/
pmap_resident_count_inc(pmap, 1);
pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs);
if (prot & VM_PROT_EXECUTE)
pa |= PG_X;
else
pa |= RPTE_EAA_R;
if ((m->oflags & VPO_UNMANAGED) == 0)
pa |= PG_MANAGED;
pte_store(pte, pa);
return (mpte);
}
void
mmu_radix_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot)
{
struct rwlock *lock;
bool invalidate;
lock = NULL;
invalidate = false;
PMAP_LOCK(pmap);
mmu_radix_enter_quick_locked(pmap, va, m, prot, NULL, &lock,
&invalidate);
ptesync();
if (lock != NULL)
rw_wunlock(lock);
if (invalidate)
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
}
vm_paddr_t
mmu_radix_extract(pmap_t pmap, vm_offset_t va)
{
pml3_entry_t *l3e;
pt_entry_t *pte;
vm_paddr_t pa;
l3e = pmap_pml3e(pmap, va);
if (__predict_false(l3e == NULL))
return (0);
if (*l3e & RPTE_LEAF) {
pa = (*l3e & PG_PS_FRAME) | (va & L3_PAGE_MASK);
pa |= (va & L3_PAGE_MASK);
} else {
/*
* Beware of a concurrent promotion that changes the
* PDE at this point! For example, vtopte() must not
* be used to access the PTE because it would use the
* new PDE. It is, however, safe to use the old PDE
* because the page table page is preserved by the
* promotion.
*/
pte = pmap_l3e_to_pte(l3e, va);
if (__predict_false(pte == NULL))
return (0);
pa = *pte;
pa = (pa & PG_FRAME) | (va & PAGE_MASK);
pa |= (va & PAGE_MASK);
}
return (pa);
}
vm_page_t
mmu_radix_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
pml3_entry_t l3e, *l3ep;
pt_entry_t pte;
vm_paddr_t pa;
vm_page_t m;
pa = 0;
m = NULL;
CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, va, prot);
PMAP_LOCK(pmap);
l3ep = pmap_pml3e(pmap, va);
if (l3ep != NULL && (l3e = *l3ep)) {
if (l3e & RPTE_LEAF) {
if ((l3e & PG_RW) || (prot & VM_PROT_WRITE) == 0)
m = PHYS_TO_VM_PAGE((l3e & PG_PS_FRAME) |
(va & L3_PAGE_MASK));
} else {
pte = *pmap_l3e_to_pte(l3ep, va);
if ((pte & PG_V) &&
((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
}
if (m != NULL && !vm_page_wire_mapped(m))
m = NULL;
}
PMAP_UNLOCK(pmap);
return (m);
}
static void
mmu_radix_growkernel(vm_offset_t addr)
{
vm_paddr_t paddr;
vm_page_t nkpg;
pml3_entry_t *l3e;
pml2_entry_t *l2e;
CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
if (VM_MIN_KERNEL_ADDRESS < addr &&
addr < (VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE))
return;
addr = roundup2(addr, L3_PAGE_SIZE);
if (addr - 1 >= vm_map_max(kernel_map))
addr = vm_map_max(kernel_map);
while (kernel_vm_end < addr) {
l2e = pmap_pml2e(kernel_pmap, kernel_vm_end);
if ((*l2e & PG_V) == 0) {
/* We need a new PDP entry */
nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_PAGE_SIZE_SHIFT,
VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED | VM_ALLOC_ZERO);
if (nkpg == NULL)
panic("pmap_growkernel: no memory to grow kernel");
if ((nkpg->flags & PG_ZERO) == 0)
mmu_radix_zero_page(nkpg);
paddr = VM_PAGE_TO_PHYS(nkpg);
pde_store(l2e, paddr);
continue; /* try again */
}
l3e = pmap_l2e_to_l3e(l2e, kernel_vm_end);
if ((*l3e & PG_V) != 0) {
kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
kernel_vm_end = vm_map_max(kernel_map);
break;
}
continue;
}
nkpg = vm_page_alloc(NULL, pmap_l3e_pindex(kernel_vm_end),
VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
VM_ALLOC_ZERO);
if (nkpg == NULL)
panic("pmap_growkernel: no memory to grow kernel");
if ((nkpg->flags & PG_ZERO) == 0)
mmu_radix_zero_page(nkpg);
paddr = VM_PAGE_TO_PHYS(nkpg);
pde_store(l3e, paddr);
kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
kernel_vm_end = vm_map_max(kernel_map);
break;
}
}
ptesync();
}
static MALLOC_DEFINE(M_RADIX_PGD, "radix_pgd", "radix page table root directory");
static uma_zone_t zone_radix_pgd;
static int
radix_pgd_import(void *arg __unused, void **store, int count, int domain __unused,
int flags)
{
for (int i = 0; i < count; i++) {
vm_page_t m = vm_page_alloc_contig(NULL, 0,
VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
VM_ALLOC_ZERO | VM_ALLOC_WAITOK, RADIX_PGD_SIZE/PAGE_SIZE,
0, (vm_paddr_t)-1, RADIX_PGD_SIZE, L1_PAGE_SIZE,
VM_MEMATTR_DEFAULT);
/* XXX zero on alloc here so we don't have to later */
store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
}
return (count);
}
static void
radix_pgd_release(void *arg __unused, void **store, int count)
{
vm_page_t m;
struct spglist free;
int page_count;
SLIST_INIT(&free);
page_count = RADIX_PGD_SIZE/PAGE_SIZE;
for (int i = 0; i < count; i++) {
/*
* XXX selectively remove dmap and KVA entries so we don't
* need to bzero
*/
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
for (int j = page_count-1; j >= 0; j--) {
vm_page_unwire_noq(&m[j]);
SLIST_INSERT_HEAD(&free, &m[j], plinks.s.ss);
}
vm_page_free_pages_toq(&free, false);
}
}
static void
mmu_radix_init()
{
vm_page_t mpte;
vm_size_t s;
int error, i, pv_npg;
/* L1TF, reserve page @0 unconditionally */
vm_page_blacklist_add(0, bootverbose);
zone_radix_pgd = uma_zcache_create("radix_pgd_cache",
RADIX_PGD_SIZE, NULL, NULL,
#ifdef INVARIANTS
trash_init, trash_fini,
#else
NULL, NULL,
#endif
radix_pgd_import, radix_pgd_release,
NULL, UMA_ZONE_NOBUCKET);
/*
* Initialize the vm page array entries for the kernel pmap's
* page table pages.
*/
PMAP_LOCK(kernel_pmap);
for (i = 0; i < nkpt; i++) {
mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
KASSERT(mpte >= vm_page_array &&
mpte < &vm_page_array[vm_page_array_size],
("pmap_init: page table page is out of range size: %lu",
vm_page_array_size));
mpte->pindex = pmap_l3e_pindex(VM_MIN_KERNEL_ADDRESS) + i;
mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
MPASS(PHYS_TO_VM_PAGE(mpte->phys_addr) == mpte);
//pmap_insert_pt_page(kernel_pmap, mpte);
mpte->ref_count = 1;
}
PMAP_UNLOCK(kernel_pmap);
vm_wire_add(nkpt);
CTR1(KTR_PMAP, "%s()", __func__);
TAILQ_INIT(&pv_dummy.pv_list);
/*
* Are large page mappings enabled?
*/
TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
if (pg_ps_enabled) {
KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
("pmap_init: can't assign to pagesizes[1]"));
pagesizes[1] = L3_PAGE_SIZE;
}
/*
* Initialize the pv chunk list mutex.
*/
mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
/*
* Initialize the pool of pv list locks.
*/
for (i = 0; i < NPV_LIST_LOCKS; i++)
rw_init(&pv_list_locks[i], "pmap pv list");
/*
* Calculate the size of the pv head table for superpages.
*/
pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L3_PAGE_SIZE);
/*
* Allocate memory for the pv head table for superpages.
*/
s = (vm_size_t)(pv_npg * sizeof(struct md_page));
s = round_page(s);
pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
for (i = 0; i < pv_npg; i++)
TAILQ_INIT(&pv_table[i].pv_list);
TAILQ_INIT(&pv_dummy.pv_list);
pmap_initialized = 1;
mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
(vmem_addr_t *)&qframe);
if (error != 0)
panic("qframe allocation failed");
asid_arena = vmem_create("ASID", isa3_base_pid + 1, (1<<isa3_pid_bits),
1, 1, M_WAITOK);
}
static boolean_t
pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
{
struct rwlock *lock;
pv_entry_t pv;
struct md_page *pvh;
pt_entry_t *pte, mask;
pmap_t pmap;
int md_gen, pvh_gen;
boolean_t rv;
rv = FALSE;
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_rlock(lock);
restart:
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
rw_runlock(lock);
PMAP_LOCK(pmap);
rw_rlock(lock);
if (md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
pte = pmap_pte(pmap, pv->pv_va);
mask = 0;
if (modified)
mask |= PG_RW | PG_M;
if (accessed)
mask |= PG_V | PG_A;
rv = (*pte & mask) == mask;
PMAP_UNLOCK(pmap);
if (rv)
goto out;
}
if ((m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
pvh_gen = pvh->pv_gen;
rw_runlock(lock);
PMAP_LOCK(pmap);
rw_rlock(lock);
if (md_gen != m->md.pv_gen ||
pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
pte = pmap_pml3e(pmap, pv->pv_va);
mask = 0;
if (modified)
mask |= PG_RW | PG_M;
if (accessed)
mask |= PG_V | PG_A;
rv = (*pte & mask) == mask;
PMAP_UNLOCK(pmap);
if (rv)
goto out;
}
}
out:
rw_runlock(lock);
return (rv);
}
/*
* pmap_is_modified:
*
* Return whether or not the specified physical page was modified
* in any physical maps.
*/
boolean_t
mmu_radix_is_modified(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_is_modified: page %p is not managed", m));
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
/*
* If the page is not busied then this check is racy.
*/
if (!pmap_page_is_write_mapped(m))
return (FALSE);
return (pmap_page_test_mappings(m, FALSE, TRUE));
}
boolean_t
mmu_radix_is_prefaultable(pmap_t pmap, vm_offset_t addr)
{
pml3_entry_t *l3e;
pt_entry_t *pte;
boolean_t rv;
CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
rv = FALSE;
PMAP_LOCK(pmap);
l3e = pmap_pml3e(pmap, addr);
if (l3e != NULL && (*l3e & (RPTE_LEAF | PG_V)) == PG_V) {
pte = pmap_l3e_to_pte(l3e, addr);
rv = (*pte & PG_V) == 0;
}
PMAP_UNLOCK(pmap);
return (rv);
}
boolean_t
mmu_radix_is_referenced(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_is_referenced: page %p is not managed", m));
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
return (pmap_page_test_mappings(m, TRUE, FALSE));
}
/*
* pmap_ts_referenced:
*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* As an optimization, update the page's dirty field if a modified bit is
* found while counting reference bits. This opportunistic update can be
* performed at low cost and can eliminate the need for some future calls
* to pmap_is_modified(). However, since this function stops after
* finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
* dirty pages. Those dirty pages will only be detected by a future call
* to pmap_is_modified().
*
* A DI block is not needed within this function, because
* invalidations are performed before the PV list lock is
* released.
*/
boolean_t
mmu_radix_ts_referenced(vm_page_t m)
{
struct md_page *pvh;
pv_entry_t pv, pvf;
pmap_t pmap;
struct rwlock *lock;
pml3_entry_t oldl3e, *l3e;
pt_entry_t *pte;
vm_paddr_t pa;
int cleared, md_gen, not_cleared, pvh_gen;
struct spglist free;
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_ts_referenced: page %p is not managed", m));
SLIST_INIT(&free);
cleared = 0;
pa = VM_PAGE_TO_PHYS(m);
lock = PHYS_TO_PV_LIST_LOCK(pa);
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
rw_wlock(lock);
retry:
not_cleared = 0;
if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
goto small_mappings;
pv = pvf;
do {
if (pvf == NULL)
pvf = pv;
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
goto retry;
}
}
l3e = pmap_pml3e(pmap, pv->pv_va);
oldl3e = *l3e;
if ((oldl3e & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
/*
* Although "oldpde" is mapping a 2MB page, because
* this function is called at a 4KB page granularity,
* we only update the 4KB page under test.
*/
vm_page_dirty(m);
}
if ((oldl3e & PG_A) != 0) {
/*
* Since this reference bit is shared by 512 4KB
* pages, it should not be cleared every time it is
* tested. Apply a simple "hash" function on the
* physical page number, the virtual superpage number,
* and the pmap address to select one 4KB page out of
* the 512 on which testing the reference bit will
* result in clearing that reference bit. This
* function is designed to avoid the selection of the
* same 4KB page for every 2MB page mapping.
*
* On demotion, a mapping that hasn't been referenced
* is simply destroyed. To avoid the possibility of a
* subsequent page fault on a demoted wired mapping,
* always leave its reference bit set. Moreover,
* since the superpage is wired, the current state of
* its reference bit won't affect page replacement.
*/
if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L3_PAGE_SIZE_SHIFT) ^
(uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
(oldl3e & PG_W) == 0) {
atomic_clear_long(l3e, PG_A);
pmap_invalidate_page(pmap, pv->pv_va);
cleared++;
KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
("inconsistent pv lock %p %p for page %p",
lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
} else
not_cleared++;
}
PMAP_UNLOCK(pmap);
/* Rotate the PV list if it has more than one entry. */
if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
pvh->pv_gen++;
}
if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
goto out;
} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
small_mappings:
if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
goto out;
pv = pvf;
do {
if (pvf == NULL)
pvf = pv;
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
md_gen = m->md.pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
goto retry;
}
}
l3e = pmap_pml3e(pmap, pv->pv_va);
KASSERT((*l3e & RPTE_LEAF) == 0,
("pmap_ts_referenced: found a 2mpage in page %p's pv list",
m));
pte = pmap_l3e_to_pte(l3e, pv->pv_va);
if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
vm_page_dirty(m);
if ((*pte & PG_A) != 0) {
atomic_clear_long(pte, PG_A);
pmap_invalidate_page(pmap, pv->pv_va);
cleared++;
}
PMAP_UNLOCK(pmap);
/* Rotate the PV list if it has more than one entry. */
if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
m->md.pv_gen++;
}
} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
not_cleared < PMAP_TS_REFERENCED_MAX);
out:
rw_wunlock(lock);
vm_page_free_pages_toq(&free, true);
return (cleared + not_cleared);
}
static vm_offset_t
mmu_radix_map(vm_offset_t *virt __unused, vm_paddr_t start,
vm_paddr_t end, int prot __unused)
{
CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, virt, start, end,
prot);
return (PHYS_TO_DMAP(start));
}
void
mmu_radix_object_init_pt(pmap_t pmap, vm_offset_t addr,
vm_object_t object, vm_pindex_t pindex, vm_size_t size)
{
pml3_entry_t *l3e;
vm_paddr_t pa, ptepa;
vm_page_t p, pdpg;
vm_memattr_t ma;
CTR6(KTR_PMAP, "%s(%p, %#x, %p, %u, %#x)", __func__, pmap, addr,
object, pindex, size);
VM_OBJECT_ASSERT_WLOCKED(object);
KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
("pmap_object_init_pt: non-device object"));
/* NB: size can be logically ored with addr here */
if ((addr & L3_PAGE_MASK) == 0 && (size & L3_PAGE_MASK) == 0) {
if (!mmu_radix_ps_enabled(pmap))
return;
if (!vm_object_populate(object, pindex, pindex + atop(size)))
return;
p = vm_page_lookup(object, pindex);
KASSERT(p->valid == VM_PAGE_BITS_ALL,
("pmap_object_init_pt: invalid page %p", p));
ma = p->md.mdpg_cache_attrs;
/*
* Abort the mapping if the first page is not physically
* aligned to a 2MB page boundary.
*/
ptepa = VM_PAGE_TO_PHYS(p);
if (ptepa & L3_PAGE_MASK)
return;
/*
* Skip the first page. Abort the mapping if the rest of
* the pages are not physically contiguous or have differing
* memory attributes.
*/
p = TAILQ_NEXT(p, listq);
for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
pa += PAGE_SIZE) {
KASSERT(p->valid == VM_PAGE_BITS_ALL,
("pmap_object_init_pt: invalid page %p", p));
if (pa != VM_PAGE_TO_PHYS(p) ||
ma != p->md.mdpg_cache_attrs)
return;
p = TAILQ_NEXT(p, listq);
}
PMAP_LOCK(pmap);
for (pa = ptepa | pmap_cache_bits(ma);
pa < ptepa + size; pa += L3_PAGE_SIZE) {
pdpg = pmap_allocl3e(pmap, addr, NULL);
if (pdpg == NULL) {
/*
* The creation of mappings below is only an
* optimization. If a page directory page
* cannot be allocated without blocking,
* continue on to the next mapping rather than
* blocking.
*/
addr += L3_PAGE_SIZE;
continue;
}
l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
l3e = &l3e[pmap_pml3e_index(addr)];
if ((*l3e & PG_V) == 0) {
pa |= PG_M | PG_A | PG_RW;
pte_store(l3e, pa);
pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
atomic_add_long(&pmap_l3e_mappings, 1);
} else {
/* Continue on if the PDE is already valid. */
pdpg->ref_count--;
KASSERT(pdpg->ref_count > 0,
("pmap_object_init_pt: missing reference "
"to page directory page, va: 0x%lx", addr));
}
addr += L3_PAGE_SIZE;
}
ptesync();
PMAP_UNLOCK(pmap);
}
}
boolean_t
mmu_radix_page_exists_quick(pmap_t pmap, vm_page_t m)
{
struct md_page *pvh;
struct rwlock *lock;
pv_entry_t pv;
int loops = 0;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_page_exists_quick: page %p is not managed", m));
CTR3(KTR_PMAP, "%s(%p, %p)", __func__, pmap, m);
rv = FALSE;
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_rlock(lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
if (PV_PMAP(pv) == pmap) {
rv = TRUE;
break;
}
loops++;
if (loops >= 16)
break;
}
if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
if (PV_PMAP(pv) == pmap) {
rv = TRUE;
break;
}
loops++;
if (loops >= 16)
break;
}
}
rw_runlock(lock);
return (rv);
}
void
mmu_radix_page_init(vm_page_t m)
{
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
TAILQ_INIT(&m->md.pv_list);
m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
}
int
mmu_radix_page_wired_mappings(vm_page_t m)
{
struct rwlock *lock;
struct md_page *pvh;
pmap_t pmap;
pt_entry_t *pte;
pv_entry_t pv;
int count, md_gen, pvh_gen;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (0);
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_rlock(lock);
restart:
count = 0;
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
rw_runlock(lock);
PMAP_LOCK(pmap);
rw_rlock(lock);
if (md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
pte = pmap_pte(pmap, pv->pv_va);
if ((*pte & PG_W) != 0)
count++;
PMAP_UNLOCK(pmap);
}
if ((m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
pvh_gen = pvh->pv_gen;
rw_runlock(lock);
PMAP_LOCK(pmap);
rw_rlock(lock);
if (md_gen != m->md.pv_gen ||
pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
pte = pmap_pml3e(pmap, pv->pv_va);
if ((*pte & PG_W) != 0)
count++;
PMAP_UNLOCK(pmap);
}
}
rw_runlock(lock);
return (count);
}
static void
mmu_radix_update_proctab(int pid, pml1_entry_t l1pa)
{
isa3_proctab[pid].proctab0 = htobe64(RTS_SIZE | l1pa | RADIX_PGD_INDEX_SHIFT);
}
int
mmu_radix_pinit(pmap_t pmap)
{
vmem_addr_t pid;
vm_paddr_t l1pa;
CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
/*
* allocate the page directory page
*/
pmap->pm_pml1 = uma_zalloc(zone_radix_pgd, M_WAITOK);
for (int j = 0; j < RADIX_PGD_SIZE_SHIFT; j++)
pagezero((vm_offset_t)pmap->pm_pml1 + j * PAGE_SIZE);
pmap->pm_radix.rt_root = 0;
TAILQ_INIT(&pmap->pm_pvchunk);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
pmap->pm_flags = PMAP_PDE_SUPERPAGE;
vmem_alloc(asid_arena, 1, M_FIRSTFIT|M_WAITOK, &pid);
pmap->pm_pid = pid;
l1pa = DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml1);
mmu_radix_update_proctab(pid, l1pa);
__asm __volatile("ptesync;isync" : : : "memory");
return (1);
}
/*
* This routine is called if the desired page table page does not exist.
*
* If page table page allocation fails, this routine may sleep before
* returning NULL. It sleeps only if a lock pointer was given.
*
* Note: If a page allocation fails at page table level two or three,
* one or two pages may be held during the wait, only to be released
* afterwards. This conservative approach is easily argued to avoid
* race conditions.
*/
static vm_page_t
_pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
{
vm_page_t m, pdppg, pdpg;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* Allocate a page table page.
*/
if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
if (lockp != NULL) {
RELEASE_PV_LIST_LOCK(lockp);
PMAP_UNLOCK(pmap);
vm_wait(NULL);
PMAP_LOCK(pmap);
}
/*
* Indicate the need to retry. While waiting, the page table
* page may have been allocated.
*/
return (NULL);
}
if ((m->flags & PG_ZERO) == 0)
mmu_radix_zero_page(m);
/*
* Map the pagetable page into the process address space, if
* it isn't already there.
*/
if (ptepindex >= (NUPDE + NUPDPE)) {
pml1_entry_t *l1e;
vm_pindex_t pml1index;
/* Wire up a new PDPE page */
pml1index = ptepindex - (NUPDE + NUPDPE);
l1e = &pmap->pm_pml1[pml1index];
pde_store(l1e, VM_PAGE_TO_PHYS(m));
} else if (ptepindex >= NUPDE) {
vm_pindex_t pml1index;
vm_pindex_t pdpindex;
pml1_entry_t *l1e;
pml2_entry_t *l2e;
/* Wire up a new l2e page */
pdpindex = ptepindex - NUPDE;
pml1index = pdpindex >> RPTE_SHIFT;
l1e = &pmap->pm_pml1[pml1index];
if ((*l1e & PG_V) == 0) {
/* Have to allocate a new pdp, recurse */
if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml1index,
lockp) == NULL) {
vm_page_unwire_noq(m);
vm_page_free_zero(m);
return (NULL);
}
} else {
/* Add reference to l2e page */
pdppg = PHYS_TO_VM_PAGE(*l1e & PG_FRAME);
pdppg->ref_count++;
}
l2e = (pml2_entry_t *)PHYS_TO_DMAP(*l1e & PG_FRAME);
/* Now find the pdp page */
l2e = &l2e[pdpindex & RPTE_MASK];
pde_store(l2e, VM_PAGE_TO_PHYS(m));
} else {
vm_pindex_t pml1index;
vm_pindex_t pdpindex;
pml1_entry_t *l1e;
pml2_entry_t *l2e;
pml3_entry_t *l3e;
/* Wire up a new PTE page */
pdpindex = ptepindex >> RPTE_SHIFT;
pml1index = pdpindex >> RPTE_SHIFT;
/* First, find the pdp and check that its valid. */
l1e = &pmap->pm_pml1[pml1index];
if ((*l1e & PG_V) == 0) {
/* Have to allocate a new pd, recurse */
if (_pmap_allocpte(pmap, NUPDE + pdpindex,
lockp) == NULL) {
vm_page_unwire_noq(m);
vm_page_free_zero(m);
return (NULL);
}
l2e = (pml2_entry_t *)PHYS_TO_DMAP(*l1e & PG_FRAME);
l2e = &l2e[pdpindex & RPTE_MASK];
} else {
l2e = (pml2_entry_t *)PHYS_TO_DMAP(*l1e & PG_FRAME);
l2e = &l2e[pdpindex & RPTE_MASK];
if ((*l2e & PG_V) == 0) {
/* Have to allocate a new pd, recurse */
if (_pmap_allocpte(pmap, NUPDE + pdpindex,
lockp) == NULL) {
vm_page_unwire_noq(m);
vm_page_free_zero(m);
return (NULL);
}
} else {
/* Add reference to the pd page */
pdpg = PHYS_TO_VM_PAGE(*l2e & PG_FRAME);
pdpg->ref_count++;
}
}
l3e = (pml3_entry_t *)PHYS_TO_DMAP(*l2e & PG_FRAME);
/* Now we know where the page directory page is */
l3e = &l3e[ptepindex & RPTE_MASK];
pde_store(l3e, VM_PAGE_TO_PHYS(m));
}
pmap_resident_count_inc(pmap, 1);
return (m);
}
static vm_page_t
pmap_allocl3e(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
{
vm_pindex_t pdpindex, ptepindex;
pml2_entry_t *pdpe;
vm_page_t pdpg;
retry:
pdpe = pmap_pml2e(pmap, va);
if (pdpe != NULL && (*pdpe & PG_V) != 0) {
/* Add a reference to the pd page. */
pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
pdpg->ref_count++;
} else {
/* Allocate a pd page. */
ptepindex = pmap_l3e_pindex(va);
pdpindex = ptepindex >> RPTE_SHIFT;
pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
if (pdpg == NULL && lockp != NULL)
goto retry;
}
return (pdpg);
}
static vm_page_t
pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
{
vm_pindex_t ptepindex;
pml3_entry_t *pd;
vm_page_t m;
/*
* Calculate pagetable page index
*/
ptepindex = pmap_l3e_pindex(va);
retry:
/*
* Get the page directory entry
*/
pd = pmap_pml3e(pmap, va);
/*
* This supports switching from a 2MB page to a
* normal 4K page.
*/
if (pd != NULL && (*pd & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V)) {
if (!pmap_demote_l3e_locked(pmap, pd, va, lockp)) {
/*
* Invalidation of the 2MB page mapping may have caused
* the deallocation of the underlying PD page.
*/
pd = NULL;
}
}
/*
* If the page table page is mapped, we just increment the
* hold count, and activate it.
*/
if (pd != NULL && (*pd & PG_V) != 0) {
m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
m->ref_count++;
} else {
/*
* Here if the pte page isn't mapped, or if it has been
* deallocated.
*/
m = _pmap_allocpte(pmap, ptepindex, lockp);
if (m == NULL && lockp != NULL)
goto retry;
}
return (m);
}
static void
mmu_radix_pinit0(pmap_t pmap)
{
CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
PMAP_LOCK_INIT(pmap);
pmap->pm_pml1 = kernel_pmap->pm_pml1;
pmap->pm_pid = kernel_pmap->pm_pid;
pmap->pm_radix.rt_root = 0;
TAILQ_INIT(&pmap->pm_pvchunk);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
kernel_pmap->pm_flags =
pmap->pm_flags = PMAP_PDE_SUPERPAGE;
}
/*
* pmap_protect_l3e: do the things to protect a 2mpage in a process
*/
static boolean_t
pmap_protect_l3e(pmap_t pmap, pt_entry_t *l3e, vm_offset_t sva, vm_prot_t prot)
{
pt_entry_t newpde, oldpde;
vm_offset_t eva, va;
vm_page_t m;
boolean_t anychanged;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT((sva & L3_PAGE_MASK) == 0,
("pmap_protect_l3e: sva is not 2mpage aligned"));
anychanged = FALSE;
retry:
oldpde = newpde = *l3e;
if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
(PG_MANAGED | PG_M | PG_RW)) {
eva = sva + L3_PAGE_SIZE;
for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
va < eva; va += PAGE_SIZE, m++)
vm_page_dirty(m);
}
if ((prot & VM_PROT_WRITE) == 0) {
newpde &= ~(PG_RW | PG_M);
newpde |= RPTE_EAA_R;
}
if (prot & VM_PROT_EXECUTE)
newpde |= PG_X;
if (newpde != oldpde) {
/*
* As an optimization to future operations on this PDE, clear
* PG_PROMOTED. The impending invalidation will remove any
* lingering 4KB page mappings from the TLB.
*/
if (!atomic_cmpset_long(l3e, oldpde, newpde & ~PG_PROMOTED))
goto retry;
anychanged = TRUE;
}
return (anychanged);
}
void
mmu_radix_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
vm_prot_t prot)
{
vm_offset_t va_next;
pml1_entry_t *l1e;
pml2_entry_t *l2e;
pml3_entry_t ptpaddr, *l3e;
pt_entry_t *pte;
boolean_t anychanged;
CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, pmap, sva, eva,
prot);
KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
if (prot == VM_PROT_NONE) {
mmu_radix_remove(pmap, sva, eva);
return;
}
if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
(VM_PROT_WRITE|VM_PROT_EXECUTE))
return;
#ifdef INVARIANTS
if (VERBOSE_PROTECT || pmap_logging)
printf("pmap_protect(%p, %#lx, %#lx, %x) - asid: %lu\n",
pmap, sva, eva, prot, pmap->pm_pid);
#endif
anychanged = FALSE;
PMAP_LOCK(pmap);
for (; sva < eva; sva = va_next) {
l1e = pmap_pml1e(pmap, sva);
if ((*l1e & PG_V) == 0) {
va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
if (va_next < sva)
va_next = eva;
continue;
}
l2e = pmap_l1e_to_l2e(l1e, sva);
if ((*l2e & PG_V) == 0) {
va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
if (va_next < sva)
va_next = eva;
continue;
}
va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
if (va_next < sva)
va_next = eva;
l3e = pmap_l2e_to_l3e(l2e, sva);
ptpaddr = *l3e;
/*
* Weed out invalid mappings.
*/
if (ptpaddr == 0)
continue;
/*
* Check for large page.
*/
if ((ptpaddr & RPTE_LEAF) != 0) {
/*
* Are we protecting the entire large page? If not,
* demote the mapping and fall through.
*/
if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
if (pmap_protect_l3e(pmap, l3e, sva, prot))
anychanged = TRUE;
continue;
} else if (!pmap_demote_l3e(pmap, l3e, sva)) {
/*
* The large page mapping was destroyed.
*/
continue;
}
}
if (va_next > eva)
va_next = eva;
for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
sva += PAGE_SIZE) {
pt_entry_t obits, pbits;
vm_page_t m;
retry:
MPASS(pte == pmap_pte(pmap, sva));
obits = pbits = *pte;
if ((pbits & PG_V) == 0)
continue;
if ((prot & VM_PROT_WRITE) == 0) {
if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
(PG_MANAGED | PG_M | PG_RW)) {
m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
vm_page_dirty(m);
}
pbits &= ~(PG_RW | PG_M);
pbits |= RPTE_EAA_R;
}
if (prot & VM_PROT_EXECUTE)
pbits |= PG_X;
if (pbits != obits) {
if (!atomic_cmpset_long(pte, obits, pbits))
goto retry;
if (obits & (PG_A|PG_M)) {
anychanged = TRUE;
#ifdef INVARIANTS
if (VERBOSE_PROTECT || pmap_logging)
printf("%#lx %#lx -> %#lx\n",
sva, obits, pbits);
#endif
}
}
}
}
if (anychanged)
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
}
void
mmu_radix_qenter(vm_offset_t sva, vm_page_t *ma, int count)
{
CTR4(KTR_PMAP, "%s(%#x, %p, %d)", __func__, sva, ma, count);
pt_entry_t oldpte, pa, *pte;
vm_page_t m;
uint64_t cache_bits, attr_bits;
vm_offset_t va;
oldpte = 0;
attr_bits = RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
va = sva;
pte = kvtopte(va);
while (va < sva + PAGE_SIZE * count) {
if (__predict_false((va & L3_PAGE_MASK) == 0))
pte = kvtopte(va);
MPASS(pte == pmap_pte(kernel_pmap, va));
/*
* XXX there has to be a more efficient way than traversing
* the page table every time - but go for correctness for
* today
*/
m = *ma++;
cache_bits = pmap_cache_bits(m->md.mdpg_cache_attrs);
pa = VM_PAGE_TO_PHYS(m) | cache_bits | attr_bits;
if (*pte != pa) {
oldpte |= *pte;
pte_store(pte, pa);
}
va += PAGE_SIZE;
pte++;
}
if (__predict_false((oldpte & RPTE_VALID) != 0))
pmap_invalidate_range(kernel_pmap, sva, sva + count *
PAGE_SIZE);
else
ptesync();
}
void
mmu_radix_qremove(vm_offset_t sva, int count)
{
vm_offset_t va;
pt_entry_t *pte;
CTR3(KTR_PMAP, "%s(%#x, %d)", __func__, sva, count);
KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode or dmap va %lx", sva));
va = sva;
pte = kvtopte(va);
while (va < sva + PAGE_SIZE * count) {
if (__predict_false((va & L3_PAGE_MASK) == 0))
pte = kvtopte(va);
pte_clear(pte);
pte++;
va += PAGE_SIZE;
}
pmap_invalidate_range(kernel_pmap, sva, va);
}
/***************************************************
* Page table page management routines.....
***************************************************/
/*
* Schedule the specified unused page table page to be freed. Specifically,
* add the page to the specified list of pages that will be released to the
* physical memory manager after the TLB has been updated.
*/
static __inline void
pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
boolean_t set_PG_ZERO)
{
if (set_PG_ZERO)
m->flags |= PG_ZERO;
else
m->flags &= ~PG_ZERO;
SLIST_INSERT_HEAD(free, m, plinks.s.ss);
}
/*
* Inserts the specified page table page into the specified pmap's collection
* of idle page table pages. Each of a pmap's page table pages is responsible
* for mapping a distinct range of virtual addresses. The pmap's collection is
* ordered by this virtual address range.
*/
static __inline int
pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
return (vm_radix_insert(&pmap->pm_radix, mpte));
}
/*
* Removes the page table page mapping the specified virtual address from the
* specified pmap's collection of idle page table pages, and returns it.
* Otherwise, returns NULL if there is no page table page corresponding to the
* specified virtual address.
*/
static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
return (vm_radix_remove(&pmap->pm_radix, pmap_l3e_pindex(va)));
}
/*
* Decrements a page table page's wire count, which is used to record the
* number of valid page table entries within the page. If the wire count
* drops to zero, then the page table page is unmapped. Returns TRUE if the
* page table page was unmapped and FALSE otherwise.
*/
static inline boolean_t
pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
{
--m->ref_count;
if (m->ref_count == 0) {
_pmap_unwire_ptp(pmap, va, m, free);
return (TRUE);
} else
return (FALSE);
}
static void
_pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* unmap the page table page
*/
if (m->pindex >= (NUPDE + NUPDPE)) {
/* PDP page */
pml1_entry_t *pml1;
pml1 = pmap_pml1e(pmap, va);
*pml1 = 0;
} else if (m->pindex >= NUPDE) {
/* PD page */
pml2_entry_t *l2e;
l2e = pmap_pml2e(pmap, va);
*l2e = 0;
} else {
/* PTE page */
pml3_entry_t *l3e;
l3e = pmap_pml3e(pmap, va);
*l3e = 0;
}
pmap_resident_count_dec(pmap, 1);
if (m->pindex < NUPDE) {
/* We just released a PT, unhold the matching PD */
vm_page_t pdpg;
pdpg = PHYS_TO_VM_PAGE(*pmap_pml2e(pmap, va) & PG_FRAME);
pmap_unwire_ptp(pmap, va, pdpg, free);
}
if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
/* We just released a PD, unhold the matching PDP */
vm_page_t pdppg;
pdppg = PHYS_TO_VM_PAGE(*pmap_pml1e(pmap, va) & PG_FRAME);
pmap_unwire_ptp(pmap, va, pdppg, free);
}
/*
* Put page on a list so that it is released after
* *ALL* TLB shootdown is done
*/
pmap_add_delayed_free_list(m, free, TRUE);
}
/*
* After removing a page table entry, this routine is used to
* conditionally free the page, and manage the hold/wire counts.
*/
static int
pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pml3_entry_t ptepde,
struct spglist *free)
{
vm_page_t mpte;
if (va >= VM_MAXUSER_ADDRESS)
return (0);
KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
return (pmap_unwire_ptp(pmap, va, mpte, free));
}
void
mmu_radix_release(pmap_t pmap)
{
CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
KASSERT(pmap->pm_stats.resident_count == 0,
("pmap_release: pmap resident count %ld != 0",
pmap->pm_stats.resident_count));
KASSERT(vm_radix_is_empty(&pmap->pm_radix),
("pmap_release: pmap has reserved page table page(s)"));
pmap_invalidate_all(pmap);
isa3_proctab[pmap->pm_pid].proctab0 = 0;
uma_zfree(zone_radix_pgd, pmap->pm_pml1);
vmem_free(asid_arena, pmap->pm_pid, 1);
}
/*
* Create the PV entry for a 2MB page mapping. Always returns true unless the
* flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns
* false if the PV entry cannot be allocated without resorting to reclamation.
*/
static bool
pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t pde, u_int flags,
struct rwlock **lockp)
{
struct md_page *pvh;
pv_entry_t pv;
vm_paddr_t pa;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/* Pass NULL instead of the lock pointer to disable reclamation. */
if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
NULL : lockp)) == NULL)
return (false);
pv->pv_va = va;
pa = pde & PG_PS_FRAME;
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
pvh = pa_to_pvh(pa);
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
pvh->pv_gen++;
return (true);
}
/*
* Fills a page table page with mappings to consecutive physical pages.
*/
static void
pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
{
pt_entry_t *pte;
for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
*pte = newpte;
newpte += PAGE_SIZE;
}
}
static boolean_t
pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va)
{
struct rwlock *lock;
boolean_t rv;
lock = NULL;
rv = pmap_demote_l3e_locked(pmap, pde, va, &lock);
if (lock != NULL)
rw_wunlock(lock);
return (rv);
}
static boolean_t
pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
struct rwlock **lockp)
{
pml3_entry_t oldpde;
pt_entry_t *firstpte;
vm_paddr_t mptepa;
vm_page_t mpte;
struct spglist free;
vm_offset_t sva;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
oldpde = *l3e;
KASSERT((oldpde & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
("pmap_demote_l3e: oldpde is missing RPTE_LEAF and/or PG_V %lx",
oldpde));
if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
NULL) {
KASSERT((oldpde & PG_W) == 0,
("pmap_demote_l3e: page table page for a wired mapping"
" is missing"));
/*
* Invalidate the 2MB page mapping and return "failure" if the
* mapping was never accessed or the allocation of the new
* page table page fails. If the 2MB page mapping belongs to
* the direct map region of the kernel's address space, then
* the page allocation request specifies the highest possible
* priority (VM_ALLOC_INTERRUPT). Otherwise, the priority is
* normal. Page table pages are preallocated for every other
* part of the kernel address space, so the direct map region
* is the only part of the kernel address space that must be
* handled here.
*/
if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
pmap_l3e_pindex(va), (va >= DMAP_MIN_ADDRESS && va <
DMAP_MAX_ADDRESS ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
SLIST_INIT(&free);
sva = trunc_2mpage(va);
pmap_remove_l3e(pmap, l3e, sva, &free, lockp);
pmap_invalidate_l3e_page(pmap, sva, oldpde);
vm_page_free_pages_toq(&free, true);
CTR2(KTR_PMAP, "pmap_demote_l3e: failure for va %#lx"
" in pmap %p", va, pmap);
return (FALSE);
}
if (va < VM_MAXUSER_ADDRESS)
pmap_resident_count_inc(pmap, 1);
}
mptepa = VM_PAGE_TO_PHYS(mpte);
firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
KASSERT((oldpde & PG_A) != 0,
("pmap_demote_l3e: oldpde is missing PG_A"));
KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
("pmap_demote_l3e: oldpde is missing PG_M"));
/*
* If the page table page is new, initialize it.
*/
if (mpte->ref_count == 1) {
mpte->ref_count = NPTEPG;
pmap_fill_ptp(firstpte, oldpde);
}
KASSERT((*firstpte & PG_FRAME) == (oldpde & PG_FRAME),
("pmap_demote_l3e: firstpte and newpte map different physical"
" addresses"));
/*
* If the mapping has changed attributes, update the page table
* entries.
*/
if ((*firstpte & PG_PTE_PROMOTE) != (oldpde & PG_PTE_PROMOTE))
pmap_fill_ptp(firstpte, oldpde);
/*
* The spare PV entries must be reserved prior to demoting the
* mapping, that is, prior to changing the PDE. Otherwise, the state
* of the PDE and the PV lists will be inconsistent, which can result
* in reclaim_pv_chunk() attempting to remove a PV entry from the
* wrong PV list and pmap_pv_demote_l3e() failing to find the expected
* PV entry for the 2MB page mapping that is being demoted.
*/
if ((oldpde & PG_MANAGED) != 0)
reserve_pv_entries(pmap, NPTEPG - 1, lockp);
/*
* Demote the mapping. This pmap is locked. The old PDE has
* PG_A set. If the old PDE has PG_RW set, it also has PG_M
* set. Thus, there is no danger of a race with another
* processor changing the setting of PG_A and/or PG_M between
* the read above and the store below.
*/
pde_store(l3e, mptepa);
ptesync();
/*
* Demote the PV entry.
*/
if ((oldpde & PG_MANAGED) != 0)
pmap_pv_demote_l3e(pmap, va, oldpde & PG_PS_FRAME, lockp);
atomic_add_long(&pmap_l3e_demotions, 1);
CTR2(KTR_PMAP, "pmap_demote_l3e: success for va %#lx"
" in pmap %p", va, pmap);
return (TRUE);
}
/*
* pmap_remove_kernel_pde: Remove a kernel superpage mapping.
*/
static void
pmap_remove_kernel_l3e(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va)
{
vm_paddr_t mptepa;
vm_page_t mpte;
KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
mpte = pmap_remove_pt_page(pmap, va);
if (mpte == NULL)
panic("pmap_remove_kernel_pde: Missing pt page.");
mptepa = VM_PAGE_TO_PHYS(mpte);
/*
* Initialize the page table page.
*/
pagezero(PHYS_TO_DMAP(mptepa));
/*
* Demote the mapping.
*/
pde_store(l3e, mptepa);
ptesync();
}
/*
* pmap_remove_l3e: do the things to unmap a superpage in a process
*/
static int
pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
struct spglist *free, struct rwlock **lockp)
{
struct md_page *pvh;
pml3_entry_t oldpde;
vm_offset_t eva, va;
vm_page_t m, mpte;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT((sva & L3_PAGE_MASK) == 0,
("pmap_remove_l3e: sva is not 2mpage aligned"));
oldpde = pte_load_clear(pdq);
if (oldpde & PG_W)
pmap->pm_stats.wired_count -= (L3_PAGE_SIZE / PAGE_SIZE);
pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
if (oldpde & PG_MANAGED) {
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
pmap_pvh_free(pvh, pmap, sva);
eva = sva + L3_PAGE_SIZE;
for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
va < eva; va += PAGE_SIZE, m++) {
if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
vm_page_dirty(m);
if (oldpde & PG_A)
vm_page_aflag_set(m, PGA_REFERENCED);
if (TAILQ_EMPTY(&m->md.pv_list) &&
TAILQ_EMPTY(&pvh->pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
}
}
if (pmap == kernel_pmap) {
pmap_remove_kernel_l3e(pmap, pdq, sva);
} else {
mpte = pmap_remove_pt_page(pmap, sva);
if (mpte != NULL) {
pmap_resident_count_dec(pmap, 1);
KASSERT(mpte->ref_count == NPTEPG,
("pmap_remove_l3e: pte page wire count error"));
mpte->ref_count = 0;
pmap_add_delayed_free_list(mpte, free, FALSE);
}
}
return (pmap_unuse_pt(pmap, sva, *pmap_pml2e(pmap, sva), free));
}
/*
* pmap_remove_pte: do the things to unmap a page in a process
*/
static int
pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
{
struct md_page *pvh;
pt_entry_t oldpte;
vm_page_t m;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
oldpte = pte_load_clear(ptq);
if (oldpte & RPTE_WIRED)
pmap->pm_stats.wired_count -= 1;
pmap_resident_count_dec(pmap, 1);
if (oldpte & RPTE_MANAGED) {
m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
vm_page_dirty(m);
if (oldpte & PG_A)
vm_page_aflag_set(m, PGA_REFERENCED);
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
pmap_pvh_free(&m->md, pmap, va);
if (TAILQ_EMPTY(&m->md.pv_list) &&
(m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
if (TAILQ_EMPTY(&pvh->pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
}
}
return (pmap_unuse_pt(pmap, va, ptepde, free));
}
/*
* Remove a single page from a process address space
*/
static bool
pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *l3e,
struct spglist *free)
{
struct rwlock *lock;
pt_entry_t *pte;
bool invalidate_all;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
if ((*l3e & RPTE_VALID) == 0) {
return (false);
}
pte = pmap_l3e_to_pte(l3e, va);
if ((*pte & RPTE_VALID) == 0) {
return (false);
}
lock = NULL;
invalidate_all = pmap_remove_pte(pmap, pte, va, *l3e, free, &lock);
if (lock != NULL)
rw_wunlock(lock);
if (!invalidate_all)
pmap_invalidate_page(pmap, va);
return (invalidate_all);
}
/*
* Removes the specified range of addresses from the page table page.
*/
static bool
pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp)
{
pt_entry_t *pte;
vm_offset_t va;
bool anyvalid;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
anyvalid = false;
va = eva;
for (pte = pmap_l3e_to_pte(l3e, sva); sva != eva; pte++,
sva += PAGE_SIZE) {
MPASS(pte == pmap_pte(pmap, sva));
if (*pte == 0) {
if (va != eva) {
anyvalid = true;
va = eva;
}
continue;
}
if (va == eva)
va = sva;
if (pmap_remove_pte(pmap, pte, sva, *l3e, free, lockp)) {
anyvalid = true;
sva += PAGE_SIZE;
break;
}
}
if (anyvalid)
pmap_invalidate_all(pmap);
else if (va != eva)
pmap_invalidate_range(pmap, va, sva);
return (anyvalid);
}
void
mmu_radix_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
struct rwlock *lock;
vm_offset_t va_next;
pml1_entry_t *l1e;
pml2_entry_t *l2e;
pml3_entry_t ptpaddr, *l3e;
struct spglist free;
bool anyvalid;
CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
/*
* Perform an unsynchronized read. This is, however, safe.
*/
if (pmap->pm_stats.resident_count == 0)
return;
anyvalid = false;
SLIST_INIT(&free);
/* XXX something fishy here */
sva = (sva + PAGE_MASK) & ~PAGE_MASK;
eva = (eva + PAGE_MASK) & ~PAGE_MASK;
PMAP_LOCK(pmap);
/*
* special handling of removing one page. a very
* common operation and easy to short circuit some
* code.
*/
if (sva + PAGE_SIZE == eva) {
l3e = pmap_pml3e(pmap, sva);
if (l3e && (*l3e & RPTE_LEAF) == 0) {
anyvalid = pmap_remove_page(pmap, sva, l3e, &free);
goto out;
}
}
lock = NULL;
for (; sva < eva; sva = va_next) {
if (pmap->pm_stats.resident_count == 0)
break;
l1e = pmap_pml1e(pmap, sva);
if (l1e == NULL || (*l1e & PG_V) == 0) {
va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
if (va_next < sva)
va_next = eva;
continue;
}
l2e = pmap_l1e_to_l2e(l1e, sva);
if (l2e == NULL || (*l2e & PG_V) == 0) {
va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
if (va_next < sva)
va_next = eva;
continue;
}
/*
* Calculate index for next page table.
*/
va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
if (va_next < sva)
va_next = eva;
l3e = pmap_l2e_to_l3e(l2e, sva);
ptpaddr = *l3e;
/*
* Weed out invalid mappings.
*/
if (ptpaddr == 0)
continue;
/*
* Check for large page.
*/
if ((ptpaddr & RPTE_LEAF) != 0) {
/*
* Are we removing the entire large page? If not,
* demote the mapping and fall through.
*/
if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
pmap_remove_l3e(pmap, l3e, sva, &free, &lock);
continue;
} else if (!pmap_demote_l3e_locked(pmap, l3e, sva,
&lock)) {
/* The large page mapping was destroyed. */
continue;
} else
ptpaddr = *l3e;
}
/*
* Limit our scan to either the end of the va represented
* by the current page table page, or to the end of the
* range being removed.
*/
if (va_next > eva)
va_next = eva;
if (pmap_remove_ptes(pmap, sva, va_next, l3e, &free, &lock))
anyvalid = true;
}
if (lock != NULL)
rw_wunlock(lock);
out:
if (anyvalid)
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
vm_page_free_pages_toq(&free, true);
}
void
mmu_radix_remove_all(vm_page_t m)
{
struct md_page *pvh;
pv_entry_t pv;
pmap_t pmap;
struct rwlock *lock;
pt_entry_t *pte, tpte;
pml3_entry_t *l3e;
vm_offset_t va;
struct spglist free;
int pvh_gen, md_gen;
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_remove_all: page %p is not managed", m));
SLIST_INIT(&free);
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
pa_to_pvh(VM_PAGE_TO_PHYS(m));
retry:
rw_wlock(lock);
while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen) {
rw_wunlock(lock);
PMAP_UNLOCK(pmap);
goto retry;
}
}
va = pv->pv_va;
l3e = pmap_pml3e(pmap, va);
(void)pmap_demote_l3e_locked(pmap, l3e, va, &lock);
PMAP_UNLOCK(pmap);
}
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
md_gen = m->md.pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
rw_wunlock(lock);
PMAP_UNLOCK(pmap);
goto retry;
}
}
pmap_resident_count_dec(pmap, 1);
l3e = pmap_pml3e(pmap, pv->pv_va);
KASSERT((*l3e & RPTE_LEAF) == 0, ("pmap_remove_all: found"
" a 2mpage in page %p's pv list", m));
pte = pmap_l3e_to_pte(l3e, pv->pv_va);
tpte = pte_load_clear(pte);
if (tpte & PG_W)
pmap->pm_stats.wired_count--;
if (tpte & PG_A)
vm_page_aflag_set(m, PGA_REFERENCED);
/*
* Update the vm_page_t clean and reference bits.
*/
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
vm_page_dirty(m);
pmap_unuse_pt(pmap, pv->pv_va, *l3e, &free);
pmap_invalidate_page(pmap, pv->pv_va);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
m->md.pv_gen++;
free_pv_entry(pmap, pv);
PMAP_UNLOCK(pmap);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
rw_wunlock(lock);
vm_page_free_pages_toq(&free, true);
}
/*
* Destroy all managed, non-wired mappings in the given user-space
* pmap. This pmap cannot be active on any processor besides the
* caller.
*
* This function cannot be applied to the kernel pmap. Moreover, it
* is not intended for general use. It is only to be used during
* process termination. Consequently, it can be implemented in ways
* that make it faster than pmap_remove(). First, it can more quickly
* destroy mappings by iterating over the pmap's collection of PV
* entries, rather than searching the page table. Second, it doesn't
* have to test and clear the page table entries atomically, because
* no processor is currently accessing the user address space. In
* particular, a page table entry's dirty bit won't change state once
* this function starts.
*
* Although this function destroys all of the pmap's managed,
* non-wired mappings, it can delay and batch the invalidation of TLB
* entries without calling pmap_delayed_invl_started() and
* pmap_delayed_invl_finished(). Because the pmap is not active on
* any other processor, none of these TLB entries will ever be used
* before their eventual invalidation. Consequently, there is no need
* for either pmap_remove_all() or pmap_remove_write() to wait for
* that eventual TLB invalidation.
*/
void
mmu_radix_remove_pages(pmap_t pmap)
{
CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
pml3_entry_t ptel3e;
pt_entry_t *pte, tpte;
struct spglist free;
vm_page_t m, mpte, mt;
pv_entry_t pv;
struct md_page *pvh;
struct pv_chunk *pc, *npc;
struct rwlock *lock;
int64_t bit;
uint64_t inuse, bitmask;
int allfree, field, freed, idx;
boolean_t superpage;
vm_paddr_t pa;
/*
* Assert that the given pmap is only active on the current
* CPU. Unfortunately, we cannot block another CPU from
* activating the pmap while this function is executing.
*/
KASSERT(pmap->pm_pid == mfspr(SPR_PID),
("non-current asid %lu - expected %lu", pmap->pm_pid,
mfspr(SPR_PID)));
lock = NULL;
SLIST_INIT(&free);
PMAP_LOCK(pmap);
TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
allfree = 1;
freed = 0;
for (field = 0; field < _NPCM; field++) {
inuse = ~pc->pc_map[field] & pc_freemask[field];
while (inuse != 0) {
bit = cnttzd(inuse);
bitmask = 1UL << bit;
idx = field * 64 + bit;
pv = &pc->pc_pventry[idx];
inuse &= ~bitmask;
pte = pmap_pml2e(pmap, pv->pv_va);
ptel3e = *pte;
pte = pmap_l2e_to_l3e(pte, pv->pv_va);
tpte = *pte;
if ((tpte & (RPTE_LEAF | PG_V)) == PG_V) {
superpage = FALSE;
ptel3e = tpte;
pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
PG_FRAME);
pte = &pte[pmap_pte_index(pv->pv_va)];
tpte = *pte;
} else {
/*
* Keep track whether 'tpte' is a
* superpage explicitly instead of
* relying on RPTE_LEAF being set.
*
* This is because RPTE_LEAF is numerically
* identical to PG_PTE_PAT and thus a
* regular page could be mistaken for
* a superpage.
*/
superpage = TRUE;
}
if ((tpte & PG_V) == 0) {
panic("bad pte va %lx pte %lx",
pv->pv_va, tpte);
}
/*
* We cannot remove wired pages from a process' mapping at this time
*/
if (tpte & PG_W) {
allfree = 0;
continue;
}
if (superpage)
pa = tpte & PG_PS_FRAME;
else
pa = tpte & PG_FRAME;
m = PHYS_TO_VM_PAGE(pa);
KASSERT(m->phys_addr == pa,
("vm_page_t %p phys_addr mismatch %016jx %016jx",
m, (uintmax_t)m->phys_addr,
(uintmax_t)tpte));
KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
m < &vm_page_array[vm_page_array_size],
("pmap_remove_pages: bad tpte %#jx",
(uintmax_t)tpte));
pte_clear(pte);
/*
* Update the vm_page_t clean/reference bits.
*/
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
if (superpage) {
for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
vm_page_dirty(mt);
} else
vm_page_dirty(m);
}
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
/* Mark free */
pc->pc_map[field] |= bitmask;
if (superpage) {
pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
pvh = pa_to_pvh(tpte & PG_PS_FRAME);
TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
pvh->pv_gen++;
if (TAILQ_EMPTY(&pvh->pv_list)) {
for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
TAILQ_EMPTY(&mt->md.pv_list))
vm_page_aflag_clear(mt, PGA_WRITEABLE);
}
mpte = pmap_remove_pt_page(pmap, pv->pv_va);
if (mpte != NULL) {
pmap_resident_count_dec(pmap, 1);
KASSERT(mpte->ref_count == NPTEPG,
("pmap_remove_pages: pte page wire count error"));
mpte->ref_count = 0;
pmap_add_delayed_free_list(mpte, &free, FALSE);
}
} else {
pmap_resident_count_dec(pmap, 1);
#ifdef VERBOSE_PV
printf("freeing pv (%p, %p)\n",
pmap, pv);
#endif
TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
m->md.pv_gen++;
if ((m->a.flags & PGA_WRITEABLE) != 0 &&
TAILQ_EMPTY(&m->md.pv_list) &&
(m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
if (TAILQ_EMPTY(&pvh->pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
}
}
pmap_unuse_pt(pmap, pv->pv_va, ptel3e, &free);
freed++;
}
}
PV_STAT(atomic_add_long(&pv_entry_frees, freed));
PV_STAT(atomic_add_int(&pv_entry_spare, freed));
PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
if (allfree) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
free_pv_chunk(pc);
}
}
if (lock != NULL)
rw_wunlock(lock);
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
vm_page_free_pages_toq(&free, true);
}
void
mmu_radix_remove_write(vm_page_t m)
{
struct md_page *pvh;
pmap_t pmap;
struct rwlock *lock;
pv_entry_t next_pv, pv;
pml3_entry_t *l3e;
pt_entry_t oldpte, *pte;
int pvh_gen, md_gen;
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_remove_write: page %p is not managed", m));
vm_page_assert_busied(m);
if (!pmap_page_is_write_mapped(m))
return;
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
pa_to_pvh(VM_PAGE_TO_PHYS(m));
retry_pv_loop:
rw_wlock(lock);
TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
rw_wunlock(lock);
goto retry_pv_loop;
}
}
l3e = pmap_pml3e(pmap, pv->pv_va);
if ((*l3e & PG_RW) != 0)
(void)pmap_demote_l3e_locked(pmap, l3e, pv->pv_va, &lock);
KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
("inconsistent pv lock %p %p for page %p",
lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
PMAP_UNLOCK(pmap);
}
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
md_gen = m->md.pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen ||
md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
rw_wunlock(lock);
goto retry_pv_loop;
}
}
l3e = pmap_pml3e(pmap, pv->pv_va);
KASSERT((*l3e & RPTE_LEAF) == 0,
("pmap_remove_write: found a 2mpage in page %p's pv list",
m));
pte = pmap_l3e_to_pte(l3e, pv->pv_va);
retry:
oldpte = *pte;
if (oldpte & PG_RW) {
if (!atomic_cmpset_long(pte, oldpte,
(oldpte | RPTE_EAA_R) & ~(PG_RW | PG_M)))
goto retry;
if ((oldpte & PG_M) != 0)
vm_page_dirty(m);
pmap_invalidate_page(pmap, pv->pv_va);
}
PMAP_UNLOCK(pmap);
}
rw_wunlock(lock);
vm_page_aflag_clear(m, PGA_WRITEABLE);
}
/*
* Clear the wired attribute from the mappings for the specified range of
* addresses in the given pmap. Every valid mapping within that range
* must have the wired attribute set. In contrast, invalid mappings
* cannot have the wired attribute set, so they are ignored.
*
* The wired attribute of the page table entry is not a hardware
* feature, so there is no need to invalidate any TLB entries.
* Since pmap_demote_l3e() for the wired entry must never fail,
* pmap_delayed_invl_started()/finished() calls around the
* function are not needed.
*/
void
mmu_radix_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
vm_offset_t va_next;
pml1_entry_t *l1e;
pml2_entry_t *l2e;
pml3_entry_t *l3e;
pt_entry_t *pte;
CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
PMAP_LOCK(pmap);
for (; sva < eva; sva = va_next) {
l1e = pmap_pml1e(pmap, sva);
if ((*l1e & PG_V) == 0) {
va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
if (va_next < sva)
va_next = eva;
continue;
}
l2e = pmap_l1e_to_l2e(l1e, sva);
if ((*l2e & PG_V) == 0) {
va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
if (va_next < sva)
va_next = eva;
continue;
}
va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
if (va_next < sva)
va_next = eva;
l3e = pmap_l2e_to_l3e(l2e, sva);
if ((*l3e & PG_V) == 0)
continue;
if ((*l3e & RPTE_LEAF) != 0) {
if ((*l3e & PG_W) == 0)
panic("pmap_unwire: pde %#jx is missing PG_W",
(uintmax_t)*l3e);
/*
* Are we unwiring the entire large page? If not,
* demote the mapping and fall through.
*/
if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
atomic_clear_long(l3e, PG_W);
pmap->pm_stats.wired_count -= L3_PAGE_SIZE /
PAGE_SIZE;
continue;
} else if (!pmap_demote_l3e(pmap, l3e, sva))
panic("pmap_unwire: demotion failed");
}
if (va_next > eva)
va_next = eva;
for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
sva += PAGE_SIZE) {
MPASS(pte == pmap_pte(pmap, sva));
if ((*pte & PG_V) == 0)
continue;
if ((*pte & PG_W) == 0)
panic("pmap_unwire: pte %#jx is missing PG_W",
(uintmax_t)*pte);
/*
* PG_W must be cleared atomically. Although the pmap
* lock synchronizes access to PG_W, another processor
* could be setting PG_M and/or PG_A concurrently.
*/
atomic_clear_long(pte, PG_W);
pmap->pm_stats.wired_count--;
}
}
PMAP_UNLOCK(pmap);
}
void
mmu_radix_zero_page(vm_page_t m)
{
vm_offset_t addr;
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
addr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
pagezero(addr);
}
void
mmu_radix_zero_page_area(vm_page_t m, int off, int size)
{
caddr_t addr;
CTR4(KTR_PMAP, "%s(%p, %d, %d)", __func__, m, off, size);
MPASS(off + size <= PAGE_SIZE);
addr = (caddr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
memset(addr + off, 0, size);
}
static int
mmu_radix_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
{
pml3_entry_t *l3ep;
pt_entry_t pte;
vm_paddr_t pa;
int val;
CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
PMAP_LOCK(pmap);
l3ep = pmap_pml3e(pmap, addr);
if (l3ep != NULL && (*l3ep & PG_V)) {
if (*l3ep & RPTE_LEAF) {
pte = *l3ep;
/* Compute the physical address of the 4KB page. */
pa = ((*l3ep & PG_PS_FRAME) | (addr & L3_PAGE_MASK)) &
PG_FRAME;
val = MINCORE_SUPER;
} else {
pte = *pmap_l3e_to_pte(l3ep, addr);
pa = pte & PG_FRAME;
val = 0;
}
} else {
pte = 0;
pa = 0;
val = 0;
}
if ((pte & PG_V) != 0) {
val |= MINCORE_INCORE;
if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
if ((pte & PG_A) != 0)
val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
}
if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
(MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
(pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
*locked_pa = pa;
}
PMAP_UNLOCK(pmap);
return (val);
}
void
mmu_radix_activate(struct thread *td)
{
pmap_t pmap;
uint32_t curpid;
CTR2(KTR_PMAP, "%s(%p)", __func__, td);
critical_enter();
pmap = vmspace_pmap(td->td_proc->p_vmspace);
curpid = mfspr(SPR_PID);
if (pmap->pm_pid > isa3_base_pid &&
curpid != pmap->pm_pid) {
mmu_radix_pid_set(pmap);
}
critical_exit();
}
/*
* Increase the starting virtual address of the given mapping if a
* different alignment might result in more superpage mappings.
*/
void
mmu_radix_align_superpage(vm_object_t object, vm_ooffset_t offset,
vm_offset_t *addr, vm_size_t size)
{
CTR5(KTR_PMAP, "%s(%p, %#x, %p, %#x)", __func__, object, offset, addr,
size);
vm_offset_t superpage_offset;
if (size < L3_PAGE_SIZE)
return;
if (object != NULL && (object->flags & OBJ_COLORED) != 0)
offset += ptoa(object->pg_color);
superpage_offset = offset & L3_PAGE_MASK;
if (size - ((L3_PAGE_SIZE - superpage_offset) & L3_PAGE_MASK) < L3_PAGE_SIZE ||
(*addr & L3_PAGE_MASK) == superpage_offset)
return;
if ((*addr & L3_PAGE_MASK) < superpage_offset)
*addr = (*addr & ~L3_PAGE_MASK) + superpage_offset;
else
*addr = ((*addr + L3_PAGE_MASK) & ~L3_PAGE_MASK) + superpage_offset;
}
static void *
mmu_radix_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t attr)
{
vm_offset_t va, tmpva, ppa, offset;
ppa = trunc_page(pa);
offset = pa & PAGE_MASK;
size = roundup2(offset + size, PAGE_SIZE);
if (pa < powerpc_ptob(Maxmem))
panic("bad pa: %#lx less than Maxmem %#lx\n",
pa, powerpc_ptob(Maxmem));
va = kva_alloc(size);
if (bootverbose)
printf("%s(%#lx, %lu, %d)\n", __func__, pa, size, attr);
KASSERT(size > 0, ("%s(%#lx, %lu, %d)", __func__, pa, size, attr));
if (!va)
panic("%s: Couldn't alloc kernel virtual memory", __func__);
for (tmpva = va; size > 0;) {
mmu_radix_kenter_attr(tmpva, ppa, attr);
size -= PAGE_SIZE;
tmpva += PAGE_SIZE;
ppa += PAGE_SIZE;
}
ptesync();
return ((void *)(va + offset));
}
static void *
mmu_radix_mapdev(vm_paddr_t pa, vm_size_t size)
{
CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
return (mmu_radix_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
}
void
mmu_radix_page_set_memattr(vm_page_t m, vm_memattr_t ma)
{
CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, m, ma);
m->md.mdpg_cache_attrs = ma;
/*
* If "m" is a normal page, update its direct mapping. This update
* can be relied upon to perform any cache operations that are
* required for data coherence.
*/
if ((m->flags & PG_FICTITIOUS) == 0 &&
mmu_radix_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
PAGE_SIZE, m->md.mdpg_cache_attrs))
panic("memory attribute change on the direct map failed");
}
static void
mmu_radix_unmapdev(vm_offset_t va, vm_size_t size)
{
vm_offset_t offset;
CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, va, size);
/* If we gave a direct map region in pmap_mapdev, do nothing */
if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
return;
offset = va & PAGE_MASK;
size = round_page(offset + size);
va = trunc_page(va);
if (pmap_initialized) {
mmu_radix_qremove(va, atop(size));
kva_free(va, size);
}
}
static __inline void
pmap_pte_attr(pt_entry_t *pte, uint64_t cache_bits, uint64_t mask)
{
uint64_t opte, npte;
/*
* The cache mode bits are all in the low 32-bits of the
* PTE, so we can just spin on updating the low 32-bits.
*/
do {
opte = *pte;
npte = opte & ~mask;
npte |= cache_bits;
} while (npte != opte && !atomic_cmpset_long(pte, opte, npte));
}
/*
* Tries to demote a 1GB page mapping.
*/
static boolean_t
pmap_demote_l2e(pmap_t pmap, pml2_entry_t *l2e, vm_offset_t va)
{
pml2_entry_t oldpdpe;
pml3_entry_t *firstpde, newpde, *pde;
vm_paddr_t pdpgpa;
vm_page_t pdpg;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
oldpdpe = *l2e;
KASSERT((oldpdpe & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
pdpg = vm_page_alloc(NULL, va >> L2_PAGE_SIZE_SHIFT,
VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
if (pdpg == NULL) {
CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
" in pmap %p", va, pmap);
return (FALSE);
}
pdpgpa = VM_PAGE_TO_PHYS(pdpg);
firstpde = (pml3_entry_t *)PHYS_TO_DMAP(pdpgpa);
KASSERT((oldpdpe & PG_A) != 0,
("pmap_demote_pdpe: oldpdpe is missing PG_A"));
KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
("pmap_demote_pdpe: oldpdpe is missing PG_M"));
newpde = oldpdpe;
/*
* Initialize the page directory page.
*/
for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
*pde = newpde;
newpde += L3_PAGE_SIZE;
}
/*
* Demote the mapping.
*/
pde_store(l2e, pdpgpa);
/*
* Flush PWC --- XXX revisit
*/
pmap_invalidate_all(pmap);
pmap_l2e_demotions++;
CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
" in pmap %p", va, pmap);
return (TRUE);
}
vm_paddr_t
mmu_radix_kextract(vm_offset_t va)
{
pml3_entry_t l3e;
vm_paddr_t pa;
CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
pa = DMAP_TO_PHYS(va);
} else {
l3e = *pmap_pml3e(kernel_pmap, va);
if (l3e & RPTE_LEAF) {
pa = (l3e & PG_PS_FRAME) | (va & L3_PAGE_MASK);
pa |= (va & L3_PAGE_MASK);
} else {
/*
* Beware of a concurrent promotion that changes the
* PDE at this point! For example, vtopte() must not
* be used to access the PTE because it would use the
* new PDE. It is, however, safe to use the old PDE
* because the page table page is preserved by the
* promotion.
*/
pa = *pmap_l3e_to_pte(&l3e, va);
pa = (pa & PG_FRAME) | (va & PAGE_MASK);
pa |= (va & PAGE_MASK);
}
}
return (pa);
}
static pt_entry_t
mmu_radix_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
{
if (ma != VM_MEMATTR_DEFAULT) {
return pmap_cache_bits(ma);
}
/*
* Assume the page is cache inhibited and access is guarded unless
* it's in our available memory array.
*/
for (int i = 0; i < pregions_sz; i++) {
if ((pa >= pregions[i].mr_start) &&
(pa < (pregions[i].mr_start + pregions[i].mr_size)))
return (RPTE_ATTR_MEM);
}
return (RPTE_ATTR_GUARDEDIO);
}
static void
mmu_radix_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
{
pt_entry_t *pte, pteval;
uint64_t cache_bits;
pte = kvtopte(va);
MPASS(pte != NULL);
pteval = pa | RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
cache_bits = mmu_radix_calc_wimg(pa, ma);
pte_store(pte, pteval | cache_bits);
}
void
mmu_radix_kremove(vm_offset_t va)
{
pt_entry_t *pte;
CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
pte = kvtopte(va);
pte_clear(pte);
}
int
mmu_radix_decode_kernel_ptr(vm_offset_t addr,
int *is_user, vm_offset_t *decoded)
{
CTR2(KTR_PMAP, "%s(%#jx)", __func__, (uintmax_t)addr);
*decoded = addr;
*is_user = (addr < VM_MAXUSER_ADDRESS);
return (0);
}
static boolean_t
mmu_radix_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
{
CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
return (mem_valid(pa, size));
}
static void
mmu_radix_scan_init()
{
CTR1(KTR_PMAP, "%s()", __func__);
UNIMPLEMENTED();
}
static void
mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz,
void **va)
{
CTR4(KTR_PMAP, "%s(%#jx, %#zx, %p)", __func__, (uintmax_t)pa, sz, va);
UNIMPLEMENTED();
}
vm_offset_t
mmu_radix_quick_enter_page(vm_page_t m)
{
vm_paddr_t paddr;
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
paddr = VM_PAGE_TO_PHYS(m);
return (PHYS_TO_DMAP(paddr));
}
void
mmu_radix_quick_remove_page(vm_offset_t addr __unused)
{
/* no work to do here */
CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
}
static void
pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
{
cpu_flush_dcache((void *)sva, eva - sva);
}
int
mmu_radix_change_attr(vm_offset_t va, vm_size_t size,
vm_memattr_t mode)
{
int error;
CTR4(KTR_PMAP, "%s(%#x, %#zx, %d)", __func__, va, size, mode);
PMAP_LOCK(kernel_pmap);
error = pmap_change_attr_locked(va, size, mode, true);
PMAP_UNLOCK(kernel_pmap);
return (error);
}
static int
pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush)
{
vm_offset_t base, offset, tmpva;
vm_paddr_t pa_start, pa_end, pa_end1;
pml2_entry_t *l2e;
pml3_entry_t *l3e;
pt_entry_t *pte;
int cache_bits, error;
boolean_t changed;
PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
base = trunc_page(va);
offset = va & PAGE_MASK;
size = round_page(offset + size);
/*
* Only supported on kernel virtual addresses, including the direct
* map but excluding the recursive map.
*/
if (base < DMAP_MIN_ADDRESS)
return (EINVAL);
cache_bits = pmap_cache_bits(mode);
changed = FALSE;
/*
* Pages that aren't mapped aren't supported. Also break down 2MB pages
* into 4KB pages if required.
*/
for (tmpva = base; tmpva < base + size; ) {
l2e = pmap_pml2e(kernel_pmap, tmpva);
if (l2e == NULL || *l2e == 0)
return (EINVAL);
if (*l2e & RPTE_LEAF) {
/*
* If the current 1GB page already has the required
* memory type, then we need not demote this page. Just
* increment tmpva to the next 1GB page frame.
*/
if ((*l2e & RPTE_ATTR_MASK) == cache_bits) {
tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
continue;
}
/*
* If the current offset aligns with a 1GB page frame
* and there is at least 1GB left within the range, then
* we need not break down this page into 2MB pages.
*/
if ((tmpva & L2_PAGE_MASK) == 0 &&
tmpva + L2_PAGE_MASK < base + size) {
tmpva += L2_PAGE_MASK;
continue;
}
if (!pmap_demote_l2e(kernel_pmap, l2e, tmpva))
return (ENOMEM);
}
l3e = pmap_l2e_to_l3e(l2e, tmpva);
KASSERT(l3e != NULL, ("no l3e entry for %#lx in %p\n",
tmpva, l2e));
if (*l3e == 0)
return (EINVAL);
if (*l3e & RPTE_LEAF) {
/*
* If the current 2MB page already has the required
* memory type, then we need not demote this page. Just
* increment tmpva to the next 2MB page frame.
*/
if ((*l3e & RPTE_ATTR_MASK) == cache_bits) {
tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
continue;
}
/*
* If the current offset aligns with a 2MB page frame
* and there is at least 2MB left within the range, then
* we need not break down this page into 4KB pages.
*/
if ((tmpva & L3_PAGE_MASK) == 0 &&
tmpva + L3_PAGE_MASK < base + size) {
tmpva += L3_PAGE_SIZE;
continue;
}
if (!pmap_demote_l3e(kernel_pmap, l3e, tmpva))
return (ENOMEM);
}
pte = pmap_l3e_to_pte(l3e, tmpva);
if (*pte == 0)
return (EINVAL);
tmpva += PAGE_SIZE;
}
error = 0;
/*
* Ok, all the pages exist, so run through them updating their
* cache mode if required.
*/
pa_start = pa_end = 0;
for (tmpva = base; tmpva < base + size; ) {
l2e = pmap_pml2e(kernel_pmap, tmpva);
if (*l2e & RPTE_LEAF) {
if ((*l2e & RPTE_ATTR_MASK) != cache_bits) {
pmap_pte_attr(l2e, cache_bits,
RPTE_ATTR_MASK);
changed = TRUE;
}
if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
(*l2e & PG_PS_FRAME) < dmaplimit) {
if (pa_start == pa_end) {
/* Start physical address run. */
pa_start = *l2e & PG_PS_FRAME;
pa_end = pa_start + L2_PAGE_SIZE;
} else if (pa_end == (*l2e & PG_PS_FRAME))
pa_end += L2_PAGE_SIZE;
else {
/* Run ended, update direct map. */
error = pmap_change_attr_locked(
PHYS_TO_DMAP(pa_start),
pa_end - pa_start, mode, flush);
if (error != 0)
break;
/* Start physical address run. */
pa_start = *l2e & PG_PS_FRAME;
pa_end = pa_start + L2_PAGE_SIZE;
}
}
tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
continue;
}
l3e = pmap_l2e_to_l3e(l2e, tmpva);
if (*l3e & RPTE_LEAF) {
if ((*l3e & RPTE_ATTR_MASK) != cache_bits) {
pmap_pte_attr(l3e, cache_bits,
RPTE_ATTR_MASK);
changed = TRUE;
}
if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
(*l3e & PG_PS_FRAME) < dmaplimit) {
if (pa_start == pa_end) {
/* Start physical address run. */
pa_start = *l3e & PG_PS_FRAME;
pa_end = pa_start + L3_PAGE_SIZE;
} else if (pa_end == (*l3e & PG_PS_FRAME))
pa_end += L3_PAGE_SIZE;
else {
/* Run ended, update direct map. */
error = pmap_change_attr_locked(
PHYS_TO_DMAP(pa_start),
pa_end - pa_start, mode, flush);
if (error != 0)
break;
/* Start physical address run. */
pa_start = *l3e & PG_PS_FRAME;
pa_end = pa_start + L3_PAGE_SIZE;
}
}
tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
} else {
pte = pmap_l3e_to_pte(l3e, tmpva);
if ((*pte & RPTE_ATTR_MASK) != cache_bits) {
pmap_pte_attr(pte, cache_bits,
RPTE_ATTR_MASK);
changed = TRUE;
}
if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
(*pte & PG_FRAME) < dmaplimit) {
if (pa_start == pa_end) {
/* Start physical address run. */
pa_start = *pte & PG_FRAME;
pa_end = pa_start + PAGE_SIZE;
} else if (pa_end == (*pte & PG_FRAME))
pa_end += PAGE_SIZE;
else {
/* Run ended, update direct map. */
error = pmap_change_attr_locked(
PHYS_TO_DMAP(pa_start),
pa_end - pa_start, mode, flush);
if (error != 0)
break;
/* Start physical address run. */
pa_start = *pte & PG_FRAME;
pa_end = pa_start + PAGE_SIZE;
}
}
tmpva += PAGE_SIZE;
}
}
if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
pa_end1 = MIN(pa_end, dmaplimit);
if (pa_start != pa_end1)
error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
pa_end1 - pa_start, mode, flush);
}
/*
* Flush CPU caches if required to make sure any data isn't cached that
* shouldn't be, etc.
*/
if (changed) {
pmap_invalidate_all(kernel_pmap);
if (flush)
pmap_invalidate_cache_range(base, tmpva);
}
return (error);
}
/*
* Allocate physical memory for the vm_page array and map it into KVA,
* attempting to back the vm_pages with domain-local memory.
*/
void
mmu_radix_page_array_startup(long pages)
{
#ifdef notyet
pml2_entry_t *l2e;
pml3_entry_t *pde;
pml3_entry_t newl3;
vm_offset_t va;
long pfn;
int domain, i;
#endif
vm_paddr_t pa;
vm_offset_t start, end;
vm_page_array_size = pages;
start = VM_MIN_KERNEL_ADDRESS;
end = start + pages * sizeof(struct vm_page);
pa = vm_phys_early_alloc(0, end - start);
start = mmu_radix_map(&start, pa, end - start, VM_MEMATTR_DEFAULT);
#ifdef notyet
/* TODO: NUMA vm_page_array. Blocked out until then (copied from amd64). */
for (va = start; va < end; va += L3_PAGE_SIZE) {
pfn = first_page + (va - start) / sizeof(struct vm_page);
domain = _vm_phys_domain(ptoa(pfn));
l2e = pmap_pml2e(kernel_pmap, va);
if ((*l2e & PG_V) == 0) {
pa = vm_phys_early_alloc(domain, PAGE_SIZE);
dump_add_page(pa);
pagezero(PHYS_TO_DMAP(pa));
pde_store(l2e, (pml2_entry_t)pa);
}
pde = pmap_l2e_to_l3e(l2e, va);
if ((*pde & PG_V) != 0)
panic("Unexpected pde %p", pde);
pa = vm_phys_early_alloc(domain, L3_PAGE_SIZE);
for (i = 0; i < NPDEPG; i++)
dump_add_page(pa + i * PAGE_SIZE);
newl3 = (pml3_entry_t)(pa | RPTE_EAA_P | RPTE_EAA_R | RPTE_EAA_W);
pte_store(pde, newl3);
}
#endif
vm_page_array = (vm_page_t)start;
}
#ifdef DDB
#include <sys/kdb.h>
#include <ddb/ddb.h>
static void
pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va)
{
pml1_entry_t *l1e;
pml2_entry_t *l2e;
pml3_entry_t *l3e;
pt_entry_t *pte;
l1e = &l1[pmap_pml1e_index(va)];
db_printf("VA %#016lx l1e %#016lx", va, *l1e);
if ((*l1e & PG_V) == 0) {
db_printf("\n");
return;
}
l2e = pmap_l1e_to_l2e(l1e, va);
db_printf(" l2e %#016lx", *l2e);
if ((*l2e & PG_V) == 0 || (*l2e & RPTE_LEAF) != 0) {
db_printf("\n");
return;
}
l3e = pmap_l2e_to_l3e(l2e, va);
db_printf(" l3e %#016lx", *l3e);
if ((*l3e & PG_V) == 0 || (*l3e & RPTE_LEAF) != 0) {
db_printf("\n");
return;
}
pte = pmap_l3e_to_pte(l3e, va);
db_printf(" pte %#016lx\n", *pte);
}
void
pmap_page_print_mappings(vm_page_t m)
{
pmap_t pmap;
pv_entry_t pv;
db_printf("page %p(%lx)\n", m, m->phys_addr);
/* need to elide locks if running in ddb */
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
db_printf("pv: %p ", pv);
db_printf("va: %#016lx ", pv->pv_va);
pmap = PV_PMAP(pv);
db_printf("pmap %p ", pmap);
if (pmap != NULL) {
db_printf("asid: %lu\n", pmap->pm_pid);
pmap_pte_walk(pmap->pm_pml1, pv->pv_va);
}
}
}
DB_SHOW_COMMAND(pte, pmap_print_pte)
{
vm_offset_t va;
pmap_t pmap;
if (!have_addr) {
db_printf("show pte addr\n");
return;
}
va = (vm_offset_t)addr;
if (va >= DMAP_MIN_ADDRESS)
pmap = kernel_pmap;
else if (kdb_thread != NULL)
pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
else
pmap = vmspace_pmap(curthread->td_proc->p_vmspace);
pmap_pte_walk(pmap->pm_pml1, va);
}
#endif