freebsd-dev/sys/compat/x86bios/x86bios.c
Jung-uk Kim 3219f535d9 Rewrite x86bios and update its dependent drivers.
- Do not map entire real mode memory (1MB).  Instead, we map IVT/BDA and
ROM area separately.  Most notably, ROM area is mapped as device memory
(uncacheable) as it should be.  User memory is dynamically allocated and
free'ed with contigmalloc(9) and contigfree(9).  Remove now redundant and
potentially dangerous x86bios_alloc.c.  If this emulator ever grows to
support non-PC hardware, we may implement it with rman(9) later.
- Move all host-specific initializations from x86emu_util.c to x86bios.c and
remove now unnecessary x86emu_util.c.  Currently, non-PC hardware is not
supported.  We may use bus_space(9) later when the KPI is fixed.
- Replace all bzero() calls for emulated registers with more obviously named
x86bios_init_regs().  This function also initializes DS and SS properly.
- Add x86bios_get_intr().  This function checks if the interrupt vector is
available for the platform.  It is not necessary for PC-compatible hardware
but it may be needed later. ;-)
- Do not try turning off monitor if DPMS does not support the state.
- Allocate stable memory for VESA OEM strings instead of just holding
pointers to them.  They may or may not be accessible always.  Fix a memory
leak of video mode table while I am here.
- Add (experimental) BIOS POST call for vesa(4).  This function calls VGA
BIOS POST code from the current VGA option ROM.  Some video controllers
cannot save and restore the state properly even if it is claimed to be
supported.  Usually the symptom is blank display after resuming from suspend
state.  If the video mode does not match the previous mode after restoring,
we try BIOS POST and force the known good initial state.  Some magic was
taken from NetBSD (and it was taken from vbetool, I believe.)
- Add a loader tunable for vgapci(4) to give a hint to dpms(4) and vesa(4)
to identify who owns the VESA BIOS.  This is very useful for multi-display
adapter setup.  By default, the POST video controller is automatically
probed and the tunable "hw.pci.default_vgapci_unit" is set to corresponding
vgapci unit number.  You may override it from loader but it is very unlikely
to be necessary.  Unfortunately only AGP/PCI/PCI-E controllers can be
matched because ISA controller does not have necessary device IDs.
- Fix a long standing bug in state save/restore function.  The state buffer
pointer should be ES:BX, not ES:DI according to VBE 3.0.  If it ever worked,
that's because BX was always zero. :-)
- Clean up register initializations more clearer per VBE 3.0.
- Fix a lot of style issues with vesa(4).
2009-10-19 20:58:10 +00:00

536 lines
12 KiB
C

/*-
* Copyright (c) 2009 Alex Keda <admin@lissyara.su>
* Copyright (c) 2009 Jung-uk Kim <jkim@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_x86bios.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <contrib/x86emu/x86emu.h>
#include <contrib/x86emu/x86emu_regs.h>
#include <compat/x86bios/x86bios.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/cpufunc.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#define X86BIOS_PAGE_SIZE 0x00001000 /* 4K */
#define X86BIOS_IVT_SIZE 0x00000500 /* 1K + 256 (BDA) */
#define X86BIOS_SEG_SIZE 0x00010000 /* 64K */
#define X86BIOS_MEM_SIZE 0x00100000 /* 1M */
#define X86BIOS_IVT_BASE 0x00000000
#define X86BIOS_RAM_BASE 0x00001000
#define X86BIOS_ROM_BASE 0x000a0000 /* XXX EBDA? */
#define X86BIOS_ROM_SIZE (X86BIOS_MEM_SIZE - X86BIOS_ROM_BASE)
#define X86BIOS_PAGES (X86BIOS_MEM_SIZE / X86BIOS_PAGE_SIZE)
#define X86BIOS_R_DS _pad1
#define X86BIOS_R_SS _pad2
static struct x86emu x86bios_emu;
static struct mtx x86bios_lock;
static void *x86bios_ivt;
static void *x86bios_rom;
static void *x86bios_seg;
static vm_offset_t *x86bios_map;
static vm_paddr_t x86bios_seg_phys;
static void *
x86bios_get_pages(uint32_t offset, size_t size)
{
int i;
if (offset + size > X86BIOS_MEM_SIZE)
return (NULL);
i = offset / X86BIOS_PAGE_SIZE;
if (x86bios_map[i] != 0)
return ((void *)(x86bios_map[i] + offset -
i * X86BIOS_PAGE_SIZE));
return (NULL);
}
static void
x86bios_set_pages(vm_offset_t va, vm_paddr_t pa, size_t size)
{
int i, j;
for (i = pa / X86BIOS_PAGE_SIZE, j = 0;
j < howmany(size, X86BIOS_PAGE_SIZE); i++, j++)
x86bios_map[i] = va + j * X86BIOS_PAGE_SIZE;
}
static uint8_t
x86bios_emu_rdb(struct x86emu *emu, uint32_t addr)
{
uint8_t *va;
va = x86bios_get_pages(addr, sizeof(*va));
if (va == NULL)
x86emu_halt_sys(emu);
return (*va);
}
static uint16_t
x86bios_emu_rdw(struct x86emu *emu, uint32_t addr)
{
uint16_t *va;
va = x86bios_get_pages(addr, sizeof(*va));
if (va == NULL)
x86emu_halt_sys(emu);
return (le16toh(*va));
}
static uint32_t
x86bios_emu_rdl(struct x86emu *emu, uint32_t addr)
{
uint32_t *va;
va = x86bios_get_pages(addr, sizeof(*va));
if (va == NULL)
x86emu_halt_sys(emu);
return (le32toh(*va));
}
static void
x86bios_emu_wrb(struct x86emu *emu, uint32_t addr, uint8_t val)
{
uint8_t *va;
va = x86bios_get_pages(addr, sizeof(*va));
if (va == NULL)
x86emu_halt_sys(emu);
*va = val;
}
static void
x86bios_emu_wrw(struct x86emu *emu, uint32_t addr, uint16_t val)
{
uint16_t *va;
va = x86bios_get_pages(addr, sizeof(*va));
if (va == NULL)
x86emu_halt_sys(emu);
*va = htole16(val);
}
static void
x86bios_emu_wrl(struct x86emu *emu, uint32_t addr, uint32_t val)
{
uint32_t *va;
va = x86bios_get_pages(addr, sizeof(*va));
if (va == NULL)
x86emu_halt_sys(emu);
*va = htole32(val);
}
static uint8_t
x86bios_emu_inb(struct x86emu *emu, uint16_t port)
{
if (port == 0xb2) /* APM scratch register */
return (0);
if (port >= 0x80 && port < 0x88) /* POST status register */
return (0);
return (inb(port));
}
static uint16_t
x86bios_emu_inw(struct x86emu *emu, uint16_t port)
{
if (port >= 0x80 && port < 0x88) /* POST status register */
return (0);
return (inw(port));
}
static uint32_t
x86bios_emu_inl(struct x86emu *emu, uint16_t port)
{
if (port >= 0x80 && port < 0x88) /* POST status register */
return (0);
return (inl(port));
}
static void
x86bios_emu_outb(struct x86emu *emu, uint16_t port, uint8_t val)
{
if (port == 0xb2) /* APM scratch register */
return;
if (port >= 0x80 && port < 0x88) /* POST status register */
return;
outb(port, val);
}
static void
x86bios_emu_outw(struct x86emu *emu, uint16_t port, uint16_t val)
{
if (port >= 0x80 && port < 0x88) /* POST status register */
return;
outw(port, val);
}
static void
x86bios_emu_outl(struct x86emu *emu, uint16_t port, uint32_t val)
{
if (port >= 0x80 && port < 0x88) /* POST status register */
return;
outl(port, val);
}
static void
x86bios_emu_get_intr(struct x86emu *emu, int intno)
{
uint16_t *sp;
uint32_t iv;
emu->x86.R_SP -= 6;
sp = (uint16_t *)((vm_offset_t)x86bios_seg + emu->x86.R_SP);
sp[0] = htole16(emu->x86.R_IP);
sp[1] = htole16(emu->x86.R_CS);
sp[2] = htole16(emu->x86.R_FLG);
iv = x86bios_get_intr(intno);
emu->x86.R_IP = iv & 0x000f;
emu->x86.R_CS = (iv >> 12) & 0xffff;
emu->x86.R_FLG &= ~(F_IF | F_TF);
}
void *
x86bios_alloc(uint32_t *offset, size_t size)
{
void *vaddr;
if (offset == NULL || size == 0)
return (NULL);
vaddr = contigmalloc(size, M_DEVBUF, M_NOWAIT, X86BIOS_RAM_BASE,
X86BIOS_ROM_BASE, X86BIOS_PAGE_SIZE, 0);
if (vaddr != NULL) {
*offset = vtophys(vaddr);
x86bios_set_pages((vm_offset_t)vaddr, *offset, size);
}
return (vaddr);
}
void
x86bios_free(void *addr, size_t size)
{
vm_paddr_t paddr;
if (addr == NULL || size == 0)
return;
paddr = vtophys(addr);
if (paddr < X86BIOS_RAM_BASE || paddr >= X86BIOS_ROM_BASE ||
paddr % X86BIOS_PAGE_SIZE != 0)
return;
bzero(x86bios_map + paddr / X86BIOS_PAGE_SIZE,
sizeof(*x86bios_map) * howmany(size, X86BIOS_PAGE_SIZE));
contigfree(addr, size, M_DEVBUF);
}
void
x86bios_init_regs(struct x86regs *regs)
{
bzero(regs, sizeof(*regs));
regs->X86BIOS_R_DS = regs->X86BIOS_R_SS = x86bios_seg_phys >> 4;
}
void
x86bios_call(struct x86regs *regs, uint16_t seg, uint16_t off)
{
if (x86bios_map == NULL)
return;
if (bootverbose)
printf("Calling 0x%05x (ax=0x%04x bx=0x%04x "
"cx=0x%04x dx=0x%04x es=0x%04x di=0x%04x)\n",
(seg << 4) + off, regs->R_AX, regs->R_BX, regs->R_CX,
regs->R_DX, regs->R_ES, regs->R_DI);
mtx_lock_spin(&x86bios_lock);
memcpy(&x86bios_emu.x86, regs, sizeof(*regs));
x86emu_exec_call(&x86bios_emu, seg, off);
memcpy(regs, &x86bios_emu.x86, sizeof(*regs));
mtx_unlock_spin(&x86bios_lock);
if (bootverbose)
printf("Exiting 0x%05x (ax=0x%04x bx=0x%04x "
"cx=0x%04x dx=0x%04x es=0x%04x di=0x%04x)\n",
(seg << 4) + off, regs->R_AX, regs->R_BX, regs->R_CX,
regs->R_DX, regs->R_ES, regs->R_DI);
}
uint32_t
x86bios_get_intr(int intno)
{
uint32_t *iv;
iv = (uint32_t *)((vm_offset_t)x86bios_ivt + intno * 4);
return (le32toh(*iv));
}
void
x86bios_intr(struct x86regs *regs, int intno)
{
if (intno < 0 || intno > 255)
return;
if (x86bios_map == NULL)
return;
if (bootverbose)
printf("Calling int 0x%x (ax=0x%04x bx=0x%04x "
"cx=0x%04x dx=0x%04x es=0x%04x di=0x%04x)\n",
intno, regs->R_AX, regs->R_BX, regs->R_CX,
regs->R_DX, regs->R_ES, regs->R_DI);
mtx_lock_spin(&x86bios_lock);
memcpy(&x86bios_emu.x86, regs, sizeof(*regs));
x86emu_exec_intr(&x86bios_emu, intno);
memcpy(regs, &x86bios_emu.x86, sizeof(*regs));
mtx_unlock_spin(&x86bios_lock);
if (bootverbose)
printf("Exiting int 0x%x (ax=0x%04x bx=0x%04x "
"cx=0x%04x dx=0x%04x es=0x%04x di=0x%04x)\n",
intno, regs->R_AX, regs->R_BX, regs->R_CX,
regs->R_DX, regs->R_ES, regs->R_DI);
}
void *
x86bios_offset(uint32_t offset)
{
return (x86bios_get_pages(offset, 1));
}
void *
x86bios_get_orm(uint32_t offset)
{
uint8_t *p;
/* Does the shadow ROM contain BIOS POST code for x86? */
p = x86bios_offset(offset);
if (p == NULL || p[0] != 0x55 || p[1] != 0xaa || p[3] != 0xe9)
return (NULL);
return (p);
}
int
x86bios_match_device(uint32_t offset, device_t dev)
{
uint8_t *p;
uint16_t device, vendor;
uint8_t class, progif, subclass;
/* Does the shadow ROM contain BIOS POST code for x86? */
p = x86bios_get_orm(offset);
if (p == NULL)
return (0);
/* Does it contain PCI data structure? */
p += le16toh(*(uint16_t *)(p + 0x18));
if (bcmp(p, "PCIR", 4) != 0 ||
le16toh(*(uint16_t *)(p + 0x0a)) < 0x18 || *(p + 0x14) != 0)
return (0);
/* Does it match the vendor, device, and classcode? */
vendor = le16toh(*(uint16_t *)(p + 0x04));
device = le16toh(*(uint16_t *)(p + 0x06));
progif = *(p + 0x0d);
subclass = *(p + 0x0e);
class = *(p + 0x0f);
if (vendor != pci_get_vendor(dev) || device != pci_get_device(dev) ||
class != pci_get_class(dev) || subclass != pci_get_subclass(dev) ||
progif != pci_get_progif(dev))
return (0);
return (1);
}
static __inline int
x86bios_map_mem(void)
{
x86bios_ivt = pmap_mapdev(X86BIOS_IVT_BASE, X86BIOS_IVT_SIZE);
if (x86bios_ivt == NULL)
return (1);
x86bios_rom = pmap_mapdev(X86BIOS_ROM_BASE, X86BIOS_ROM_SIZE);
if (x86bios_rom == NULL) {
pmap_unmapdev((vm_offset_t)x86bios_ivt, X86BIOS_IVT_SIZE);
return (1);
}
x86bios_seg = contigmalloc(X86BIOS_SEG_SIZE, M_DEVBUF, M_WAITOK,
X86BIOS_RAM_BASE, X86BIOS_ROM_BASE, X86BIOS_PAGE_SIZE, 0);
x86bios_seg_phys = vtophys(x86bios_seg);
return (0);
}
static __inline void
x86bios_unmap_mem(void)
{
pmap_unmapdev((vm_offset_t)x86bios_ivt, X86BIOS_IVT_SIZE);
pmap_unmapdev((vm_offset_t)x86bios_rom, X86BIOS_ROM_SIZE);
contigfree(x86bios_seg, X86BIOS_SEG_SIZE, M_DEVBUF);
}
static void
x86bios_init(void *arg __unused)
{
int i;
mtx_init(&x86bios_lock, "x86bios lock", NULL, MTX_SPIN);
if (x86bios_map_mem() != 0)
return;
x86bios_map = malloc(sizeof(*x86bios_map) * X86BIOS_PAGES, M_DEVBUF,
M_WAITOK | M_ZERO);
x86bios_set_pages((vm_offset_t)x86bios_ivt, X86BIOS_IVT_BASE,
X86BIOS_IVT_SIZE);
x86bios_set_pages((vm_offset_t)x86bios_rom, X86BIOS_ROM_BASE,
X86BIOS_ROM_SIZE);
x86bios_set_pages((vm_offset_t)x86bios_seg, x86bios_seg_phys,
X86BIOS_SEG_SIZE);
bzero(&x86bios_emu, sizeof(x86bios_emu));
x86bios_emu.emu_rdb = x86bios_emu_rdb;
x86bios_emu.emu_rdw = x86bios_emu_rdw;
x86bios_emu.emu_rdl = x86bios_emu_rdl;
x86bios_emu.emu_wrb = x86bios_emu_wrb;
x86bios_emu.emu_wrw = x86bios_emu_wrw;
x86bios_emu.emu_wrl = x86bios_emu_wrl;
x86bios_emu.emu_inb = x86bios_emu_inb;
x86bios_emu.emu_inw = x86bios_emu_inw;
x86bios_emu.emu_inl = x86bios_emu_inl;
x86bios_emu.emu_outb = x86bios_emu_outb;
x86bios_emu.emu_outw = x86bios_emu_outw;
x86bios_emu.emu_outl = x86bios_emu_outl;
for (i = 0; i < 256; i++)
x86bios_emu._x86emu_intrTab[i] = x86bios_emu_get_intr;
}
static void
x86bios_uninit(void *arg __unused)
{
vm_offset_t *map = x86bios_map;
mtx_lock_spin(&x86bios_lock);
if (x86bios_map != NULL) {
free(x86bios_map, M_DEVBUF);
x86bios_map = NULL;
}
mtx_unlock_spin(&x86bios_lock);
if (map != NULL)
x86bios_unmap_mem();
mtx_destroy(&x86bios_lock);
}
static int
x86bios_modevent(module_t mod __unused, int type, void *data __unused)
{
switch (type) {
case MOD_LOAD:
x86bios_init(NULL);
break;
case MOD_UNLOAD:
x86bios_uninit(NULL);
break;
default:
return (ENOTSUP);
}
return (0);
}
static moduledata_t x86bios_mod = {
"x86bios",
x86bios_modevent,
NULL,
};
DECLARE_MODULE(x86bios, x86bios_mod, SI_SUB_CPU, SI_ORDER_ANY);
MODULE_VERSION(x86bios, 1);