freebsd-dev/sys/i386/isa/snd/sound.c
Bruce Evans d18c16d45b Removed buggy, `#if 0'ed asm version of translate_bytes() instead of
fixing it.  See rev.1.22 of ../sound/audio.c for fixes.  When both
the C version and the asm version are inlined, and everything is cached,
the asm version is 1.75 times slower than the C version on P5's.  On
K6's, it is only 1.25 times slower.
1999-01-09 13:43:09 +00:00

1521 lines
40 KiB
C

/*
* snd/sound.c
*
* Main sound driver for FreeBSD. This file provides the main
* entry points for probe/attach and all i/o demultiplexing, including
* default routines for generic devices.
*
* (C) 1997 Luigi Rizzo (luigi@iet.unipi.it)
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS
* IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* For each card type a template "snddev_info" structure contains
* all the relevant parameters, both for configuration and runtime.
*
* In this file we build tables of pointers to the descriptors for
* the various supported cards. The generic probe routine scans
* the table(s) looking for a matching entry, then invokes the
* board-specific probe routine. If successful, a pointer to the
* correct snddev_info is stored in snddev_last_probed, for subsequent
* use in the attach routine. The generic attach routine copies
* the template to a permanent descriptor (pcm_info[unit] and
* friends), initializes all generic parameters, and calls the
* board-specific attach routine.
*
* On device calls, the generic routines do the checks on unit and
* device parameters, then call the board-specific routines if
* available, or try to perform the task using the default code.
*
*/
#include "opt_devfs.h"
#include <i386/isa/snd/sound.h>
#ifdef DEVFS
#include <sys/devfsext.h>
#endif /* DEVFS */
#if NPCM > 0 /* from "pcm.h" via disgusting #include in snd/sound.h */
extern struct isa_driver pcmdriver ;
#define SNDSTAT_BUF_SIZE 4000
static char status_buf[SNDSTAT_BUF_SIZE] ;
static int status_len = 0 ;
static void init_status(snddev_info *d);
static d_open_t sndopen;
static d_close_t sndclose;
static d_ioctl_t sndioctl;
static d_read_t sndread;
static d_write_t sndwrite;
static d_mmap_t sndmmap;
#define CDEV_MAJOR 30
static struct cdevsw snd_cdevsw = {
sndopen, sndclose, sndread, sndwrite,
sndioctl, nostop, noreset, nodevtotty,
sndselect, sndmmap, nostrategy, "snd",
NULL, -1,
};
/*
* descriptors for active devices.
*
*/
snddev_info pcm_info[NPCM_MAX] ;
snddev_info midi_info[NPCM_MAX] ;
snddev_info synth_info[NPCM_MAX] ;
u_long nsnd = NPCM ; /* total number of sound devices */
/*
* Hooks for APM support, but code not operational yet.
*/
#include "apm.h"
#include <i386/include/apm_bios.h>
#if NAPM > 0
static int
sound_suspend(void *arg)
{
/*
* I think i can safely do nothing here and
* reserve all the work for wakeup time
*/
printf("Called APM sound suspend hook for unit %d\n", (int)arg);
return 0 ;
}
static int
sound_resume(void *arg)
{
snddev_info *d = NULL ;
d = &pcm_info[(int)arg] ;
/*
* reinitialize card registers.
* Flush buffers and reinitialize DMA channels.
* If a write was pending, pretend it is done
* (and issue any wakeup we need).
* If a read is pending, restart it.
*/
if (d->bd_id == MD_YM0020) {
DDB(printf("setting up yamaha registers\n"));
outb(0x370, 6 /* dma config */ ) ;
if (FULL_DUPLEX(d))
outb(0x371, 0xa9 ); /* use both dma chans */
else
outb(0x371, 0x8b ); /* use low dma chan */
}
printf("Called APM sound resume hook for unit %d\n", (int)arg);
return 0 ;
}
static void
init_sound_apm(int unit)
{
struct apmhook *ap;
ap = malloc(sizeof *ap, M_DEVBUF, M_NOWAIT);
bzero(ap, sizeof *ap);
ap->ah_fun = sound_resume;
ap->ah_arg = (void *)unit;
ap->ah_name = "pcm resume handler";
ap->ah_order = APM_MID_ORDER;
apm_hook_establish(APM_HOOK_RESUME, ap);
ap = malloc(sizeof *ap, M_DEVBUF, M_NOWAIT);
bzero(ap, sizeof *ap);
ap->ah_fun = sound_suspend;
ap->ah_arg = (void *)unit;
ap->ah_name = "pcm suspend handler";
ap->ah_order = APM_MID_ORDER;
apm_hook_establish(APM_HOOK_SUSPEND, ap);
}
#endif /* NAPM */
/*
* the probe routine can only return an int to the upper layer. Hence,
* it leaves the pointer to the last successfully
* probed device descriptor in snddev_last_probed
*/
snddev_info *snddev_last_probed = NULL ;
static snddev_info *
generic_snd_probe(struct isa_device * dev, snddev_info **p[], char *s);
/*
* here are the lists of known cards. Similar cards (e.g. all
* sb clones, all mss clones, ... are in the same array.
* All lists of devices of the same type (eg. all pcm, all midi...)
* are in the same array.
* Each probe for a device type gets the pointer to the main array
* and then scans the sublists.
*
* XXX should use DATA_SET to create a linker set for sb_devs and other
* such structures.
*/
extern snddev_info sb_op_desc;
extern snddev_info mss_op_desc;
static snddev_info *sb_devs[] = { /* all SB clones */
&sb_op_desc,
NULL,
} ;
static snddev_info *mss_devs[] = { /* all MSS clones */
&mss_op_desc,
NULL,
} ;
static snddev_info **pcm_devslist[] = { /* all pcm devices */
mss_devs,
sb_devs,
NULL
} ;
int
pcmprobe(struct isa_device * dev)
{
bzero(&pcm_info[dev->id_unit], sizeof(pcm_info[dev->id_unit]) );
return generic_snd_probe(dev, pcm_devslist, "pcm") ? 1 : 0 ;
}
static snddev_info **midi_devslist[] = {/* all midi devices */
NULL
} ;
int
midiprobe(struct isa_device * dev)
{
bzero(&midi_info[dev->id_unit], sizeof(midi_info[dev->id_unit]) );
return 0 ;
return generic_snd_probe(dev, midi_devslist, "midi") ? 1 : 0 ;
}
int
synthprobe(struct isa_device * dev)
{
bzero(&synth_info[dev->id_unit], sizeof(synth_info[dev->id_unit]) );
return 0 ;
}
/*
* this is the ISA part of the generic attach routine
*/
int
pcmattach(struct isa_device * dev)
{
snddev_info *d = NULL ;
struct isa_device *dvp;
int stat = 0;
dev->id_ointr = pcmintr;
if ( (dev->id_unit >= NPCM_MAX) || /* too many devs */
(snddev_last_probed == NULL) || /* last probe failed */
(snddev_last_probed->attach==NULL) ) /* no attach routine */
return 0 ; /* fail */
/*
* default initialization: copy generic parameters for the routine,
* initialize from the isa_device structure, and allocate memory.
* If everything succeeds, then call the attach routine for
* further initialization.
*/
pcm_info[dev->id_unit] = *snddev_last_probed ;
d = &pcm_info[dev->id_unit] ;
d->io_base = dev->id_iobase ;
d->irq = ffs(dev->id_irq) - 1 ;
d->dbuf_out.chan = dev->id_drq ;
if (dev->id_flags != -1 && dev->id_flags & DV_F_DUAL_DMA &&
(dev->id_flags & DV_F_DRQ_MASK) != 4 ) /* enable dma2 */
d->dbuf_in.chan = dev->id_flags & DV_F_DRQ_MASK ;
else
d->dbuf_in.chan = d->dbuf_out.chan ;
#if 1 /* does this cause trouble with PnP cards ? */
if (d->bd_id == 0)
d->bd_id = (dev->id_flags & DV_F_DEV_MASK) >> DV_F_DEV_SHIFT ;
#endif
d->status_ptr = 0;
/*
* Allocates memory and initializes the dma structs properly. We
* use independent buffers for each channel. For the time being,
* this is done independently of the dma setting. In future
* revisions, if we see that we have a single dma, we might decide
* to use a single buffer to save memory.
*/
alloc_dbuf( &(d->dbuf_out), d->bufsize );
alloc_dbuf( &(d->dbuf_in), d->bufsize );
isa_dma_acquire(d->dbuf_out.chan);
if (FULL_DUPLEX(d))
isa_dma_acquire(d->dbuf_in.chan);
/*
* should try and find a suitable value for id_id, otherwise
* the interrupt is not registered and dispatched properly.
* This is important for PnP devices, where "dev" is built on
* the fly and many field are not initialized.
*/
if (dev->id_driver == NULL) {
dev->id_driver = &pcmdriver ;
dvp=find_isadev(isa_devtab_tty, &pcmdriver, 0);
if (dvp)
dev->id_id = dvp->id_id;
}
/*
* call the generic part of the attach
*/
pcminit(d, dev->id_unit);
/*
* and finally, call the device attach routine
* XXX I should probably use d->attach(dev)
*/
stat = snddev_last_probed->attach(dev);
#if 0
/*
* XXX hooks for synt support. Try probe and attach...
*/
if (d->synth_base && opl3_probe(dev) ) {
opl3_attach(dev);
}
#endif
snddev_last_probed = NULL ;
return stat ;
}
/*
* This is the generic init routine
*/
int
pcminit(snddev_info *d, int unit)
{
#ifdef DEVFS
void *cookie;
#endif
dev_t isadev;
isadev = makedev(CDEV_MAJOR, 0);
cdevsw_add(&isadev, &snd_cdevsw, NULL);
/*
* initialize standard parameters for the device. This can be
* overridden by device-specific configurations but better do
* here the generic things.
*/
d->magic = MAGIC(unit); /* debugging... */
d->play_speed = d->rec_speed = 8000 ;
d->play_blocksize = d->rec_blocksize = 2048 ;
d->play_fmt = d->rec_fmt = AFMT_MU_LAW ;
#ifdef DEVFS
#ifndef GID_GAMES
#define GID_SND UID_ROOT
#else
#define GID_SND GID_GAMES /* i am not really sure this is a good one. */
#endif
#define UID_SND UID_ROOT
#define PERM_SND 0660
/*
* XXX remember to store the returned tokens if you want to
* be able to remove the device later
*
* Make links to first successfully probed unit.
* Attempts by later devices to make these links will fail.
*/
cookie = devfs_add_devswf(&snd_cdevsw, (unit << 4) | SND_DEV_DSP,
DV_CHR, UID_SND, GID_SND, PERM_SND, "dsp%r", unit);
if (cookie) devfs_makelink(cookie, "dsp");
cookie = devfs_add_devswf(&snd_cdevsw, (unit << 4) | SND_DEV_DSP16,
DV_CHR, UID_SND, GID_SND, PERM_SND, "dspW%r", unit);
if (cookie) devfs_makelink(cookie, "dspW");
cookie = devfs_add_devswf(&snd_cdevsw, (unit << 4) | SND_DEV_AUDIO,
DV_CHR, UID_SND, GID_SND, PERM_SND, "audio%r", unit);
if (cookie) devfs_makelink(cookie, "audio");
cookie = devfs_add_devswf(&snd_cdevsw, (unit << 4) | SND_DEV_CTL,
DV_CHR, UID_SND, GID_SND, PERM_SND, "mixer%r", unit);
if (cookie) devfs_makelink(cookie, "mixer");
cookie = devfs_add_devswf(&snd_cdevsw, (unit << 4) | SND_DEV_STATUS,
DV_CHR, UID_SND, GID_SND, PERM_SND, "sndstat%r", unit);
if (cookie) devfs_makelink(cookie, "sndstat");
#if 0 /* these two are still unsupported... */
cookie = devfs_add_devswf(&snd_cdevsw, (unit << 4) | SND_DEV_MIDIN,
DV_CHR, UID_SND, GID_SND, PERM_SND, "midi%r", unit);
if (cookie) devfs_makelink(cookie, "midi");
cookie = devfs_add_devswf(&snd_cdevsw, (unit << 4) | SND_DEV_SYNTH,
DV_CHR, UID_SND, GID_SND, PERM_SND, "sequencer%r", unit);
if (cookie) devfs_makelink(cookie, "sequencer");
#endif
#endif /* DEVFS */
#if NAPM > 0
init_sound_apm(unit);
#endif
return 0 ;
}
int midiattach(struct isa_device * dev) { return 0 ; }
int synthattach(struct isa_device * dev) { return 0 ; }
struct isa_driver pcmdriver = { pcmprobe, pcmattach, "pcm" } ;
struct isa_driver mididriver = { midiprobe, midiattach, "midi" } ;
struct isa_driver synthdriver = { synthprobe, synthattach, "synth" } ;
void
pcmintr(int unit)
{
DEB(printf("__/\\/ pcmintr -- unit %d\n", unit));
pcm_info[unit].interrupts++;
if (pcm_info[unit].isr)
pcm_info[unit].isr(unit);
#if 0 /* these do not exist at the moment. */
if (midi_info[unit].isr)
midi_info[unit].isr(unit);
if (synth_info[unit].isr)
synth_info[unit].isr(unit);
#endif
}
static snddev_info *
generic_snd_probe(struct isa_device * dev, snddev_info **p[], char *s)
{
snddev_info **q ;
struct isa_device saved_dev ;
snddev_last_probed = NULL ;
saved_dev = *dev ; /* the probe routine might alter parameters */
/*
* XXX todo: should try to match flags with device type.
*/
for ( ; p[0] != NULL ; p++ )
for ( q = *p ; q[0] ; q++ )
if (q[0]->probe && q[0]->probe(dev))
return (snddev_last_probed = q[0]) ;
else
*dev = saved_dev ;
return NULL ;
}
/*
* a small utility function which, given a device number, returns
* a pointer to the associated snddev_info struct, and sets the unit
* number.
*/
static snddev_info *
get_snddev_info(dev_t dev, int *unit)
{
int u;
snddev_info *d = NULL ;
dev = minor(dev);
u = dev >> 4 ;
if (unit)
*unit = u ;
if (u >= NPCM_MAX ||
( pcm_info[u].io_base == 0 && (dev & 0x0f) != SND_DEV_STATUS)) {
int i;
for (i = 0 ; i < NPCM_MAX ; i++)
if (pcm_info[i].io_base)
break ;
if (i != NPCM_MAX)
printf("pcm%d: unit not configured, perhaps you want pcm%d ?\n",
u, i);
else
printf("no pcm units configured\b");
return NULL ;
}
switch(dev & 0x0f) {
case SND_DEV_CTL : /* /dev/mixer handled by pcm */
case SND_DEV_STATUS : /* /dev/sndstat handled by pcm */
case SND_DEV_SNDPROC : /* /dev/sndproc handled by pcm */
case SND_DEV_DSP :
case SND_DEV_DSP16 :
case SND_DEV_AUDIO :
case SND_DEV_SEQ : /* XXX when enabled... */
d = & pcm_info[u] ;
break ;
case SND_DEV_SEQ2 :
case SND_DEV_MIDIN:
default:
printf("unsupported subdevice %d\n", dev & 0xf);
return NULL ;
}
return d ;
}
/*
* here are the switches for the main functions. The switches do
* all necessary checks on the device number to make sure
* that the device is configured. They also provide some default
* functionalities so that device-specific drivers have to deal
* only with special cases.
*/
static int
sndopen(dev_t i_dev, int flags, int mode, struct proc * p)
{
int dev, unit ;
snddev_info *d;
dev = minor(i_dev);
d = get_snddev_info(dev, &unit);
DEB(printf("open snd%d subdev %d flags 0x%08x mode 0x%08x\n",
unit, dev & 0xf, flags, mode));
if (d == NULL)
return (ENXIO) ;
switch(dev & 0x0f) {
case SND_DEV_SEQ: /* sequencer. Hack... */
#if 0 /* XXX hook for opl3 support */
if (d->synth_base)
return opl3_open(i_dev, flags, mode, p);
else
#endif
return ENXIO ;
case SND_DEV_CTL : /* mixer ... */
return 0 ; /* always succeed */
case SND_DEV_STATUS : /* implemented right here */
init_status(&pcm_info[unit]);
d->status_ptr = 0 ;
return 0 ;
default:
if (d->open == NULL) {
printf("open: unit %d not configured, perhaps you want unit %d ?\n",
unit, unit+1 );
return (ENXIO) ;
} else
return d->open(i_dev, flags, mode, p);
}
return ENXIO ;
}
static int
sndclose(dev_t i_dev, int flags, int mode, struct proc * p)
{
int dev, unit ;
snddev_info *d;
dev = minor(i_dev);
d = get_snddev_info(dev, &unit);
DEB(printf("close snd%d subdev %d\n", unit, dev & 0xf));
if (d == NULL)
return (ENXIO) ;
switch(dev & 0xf) { /* only those for which close makes sense */
case SND_DEV_SEQ:
#if 0 /* XXX hook for opl3 support */
if (d->synth_base)
return opl3_close(i_dev, flags, mode, p);
else
#endif
return ENXIO ;
case SND_DEV_AUDIO :
case SND_DEV_DSP :
case SND_DEV_DSP16 :
if (d->close)
return d->close(i_dev, flags, mode, p);
}
return 0 ;
}
static int
sndread(dev_t i_dev, struct uio * buf, int flag)
{
int ret, dev, unit;
snddev_info *d ;
u_long s;
dev = minor(i_dev);
d = get_snddev_info(dev, &unit);
DEB(printf("read snd%d subdev %d flag 0x%08x\n", unit, dev & 0xf, flag));
if (d == NULL)
return ENXIO ;
if ( (dev & 0x0f) == SND_DEV_STATUS ) {
int l, c;
u_char *p;
l = buf->uio_resid;
s=spltty();
c = status_len - d->status_ptr ;
if (c < 0) /* should not happen! */
c = 0 ;
if (c < l)
l = c ;
p = status_buf + d->status_ptr ;
d->status_ptr += l ;
splx(s);
return uiomove(p, l, buf) ;
}
/*
* XXX read from the ad1816 with a single DMA channel is unsupported.
* This is really not the place for machine-dependent functions,
* a proper device routine will be supplied in the future - luigi
*/
if ((d->bd_id == MD_AD1816) && (!(FULL_DUPLEX(d))))
return EIO;
if (d->read) /* device-specific read */
return d->read(i_dev, buf, flag);
/*
* the generic read routine. device-specific stuff should only
* be in the dma-handling procedures.
*/
s = spltty();
if ( d->flags & SND_F_READING ) {
/* another reader is in, deny request */
splx(s);
DDB(printf("read denied, another reader is in\n"));
/*
* sleep for a while to avoid killing the machine.
*/
tsleep( (void *)s, PZERO, "sndar", hz ) ;
return EBUSY ;
}
if ( ! FULL_DUPLEX(d) ) { /* half duplex */
if ( d->flags & SND_F_WRITING ) {
/* another writer is in, deny request */
splx(s);
DDB(printf("read denied, half duplex and a writer is in\n"));
tsleep( (void *)s, PZERO, "sndaw", hz ) ;
return EBUSY ;
}
while ( d->dbuf_out.dl ) {
/*
* we have a pending dma operation, post a read request
* and wait for the write to complete.
*/
d->flags |= SND_F_READING ;
DEB(printf("sndread: sleeping waiting for write to end\n"));
ret = tsleep( (caddr_t)&(d->dbuf_out),
PRIBIO | PCATCH , "sndrdw", hz ) ;
if (ret == ERESTART || ret == EINTR) {
d->flags &= ~SND_F_READING ;
splx(s);
return EINTR ;
}
}
}
d->flags |= SND_F_READING ;
splx(s);
return dsp_read_body(d, buf);
}
static int
sndwrite(dev_t i_dev, struct uio * buf, int flag)
{
int ret, dev, unit;
snddev_info *d;
u_long s;
dev = minor(i_dev);
d = get_snddev_info(dev, &unit);
DEB(printf("write snd%d subdev %d flag 0x%08x\n", unit, dev & 0xf, flag));
if (d == NULL)
return (ENXIO) ;
switch( dev & 0x0f) { /* only writeable devices */
case SND_DEV_MIDIN: /* XXX is this writable ? */
case SND_DEV_SEQ :
case SND_DEV_SEQ2 :
case SND_DEV_DSP :
case SND_DEV_DSP16 :
case SND_DEV_AUDIO :
break ;
default:
return EPERM ; /* for non-writeable devices ; */
}
if (d->write)
return d->write(i_dev, buf, flag);
/*
* Otherwise, use the generic write routine. device-specific
* stuff should only be in the dma-handling procedures.
*/
s = spltty();
if ( d->flags & SND_F_WRITING ) {
/* another writer is in, deny request */
splx(s);
DDB(printf("write denied, another writer is in\n"));
tsleep( (void *)s, PZERO , "sndaw", hz ) ;
return EBUSY ;
}
if ( ! FULL_DUPLEX(d) ) { /* half duplex */
if ( d->flags & SND_F_READING ) {
/* another reader is in, deny request */
splx(s);
DDB(printf("write denied, half duplex and a reader is in\n"));
tsleep( (void *)s, PZERO, "sndar", hz ) ;
return EBUSY ;
}
while ( d->dbuf_in.dl ) {
/*
* we have a pending read dma. Post a write request
* and wait for the read to complete (in fact I could
* abort the read dma...
*/
d->flags |= SND_F_WRITING ;
DEB(printf("sndwrite: sleeping waiting for read to end\n"));
ret = tsleep( (caddr_t)&(d->dbuf_out),
PRIBIO | PCATCH , "sndwr", hz ) ;
if (ret == ERESTART || ret == EINTR) {
d->flags &= ~SND_F_WRITING ;
splx(s);
return EINTR ;
}
}
}
d->flags |= SND_F_WRITING ;
splx(s);
return dsp_write_body(d, buf);
}
/*
* generic sound ioctl. Functions of the default driver can be
* overridden by the device-specific ioctl call.
* If a device-specific call returns ENOSYS (Function not implemented),
* the default driver is called. Otherwise, the returned value
* is passed up.
*
* The default handler, for many parameters, sets the value in the
* descriptor, sets SND_F_INIT, and calls the callback function with
* reason INIT. If successful, the callback returns 1 and the caller
* can update the parameter.
*/
static int
sndioctl(dev_t i_dev, u_long cmd, caddr_t arg, int mode, struct proc * p)
{
int ret = ENOSYS, dev, unit ;
snddev_info *d;
u_long s;
dev = minor(i_dev);
d = get_snddev_info(dev, &unit);
if (d == NULL)
return (ENXIO) ;
if ( (dev & 0x0f) == SND_DEV_SEQ ) {
/* sequencer. Hack... */
#if 0
if (d->synth_base)
return opl3_ioctl(i_dev, cmd, arg, mode, p) ;
else
#endif
return ENXIO ;
}
if (d->ioctl)
ret = d->ioctl(dev, cmd, arg, mode, p);
if (ret != ENOSYS)
return ret ;
/*
* pass control to the default ioctl handler. Set ret to 0 now.
*/
ret = 0 ;
/*
* The linux ioctl interface for the sound driver has a thousand
* different calls, and it is unpractical to put the names in
* the switch(). So we have some tests before for common routines,
* such as the ones related to the mixer. But we really ought
* to redesign the interface!
*
* Reading from the mixer just requires to look at the cached
* copy in d->mix_levels[dev], so this routine should cover
* practically all needs for mixer reading.
*/
if ( (cmd & MIXER_READ(0)) == MIXER_READ(0) && (cmd & 0xff) < 32 ) {
int dev = cmd & 0x1f ;
if ( d->mix_devs & (1<<dev) ) { /* supported */
*(int *)arg = d->mix_levels[dev];
return 0 ;
} else
return EINVAL ;
}
/*
* all routines are called with int. blocked. Make sure that
* ints are re-enabled when calling slow or blocking functions!
*/
s = spltty();
switch(cmd) {
/*
* we start with the new ioctl interface.
*/
case AIONWRITE : /* how many bytes can write ? */
if (d->dbuf_out.dl) {
if (d->special_dma)
d->callback(d, SND_CB_WR | SND_CB_DMAUPDATE) ;
else
dsp_wr_dmaupdate(&(d->dbuf_out));
}
*(int *)arg = d->dbuf_out.fl;
break;
case AIOSSIZE : /* set the current blocksize */
{
struct snd_size *p = (struct snd_size *)arg;
if (p->play_size <= 1 && p->rec_size <= 1) { /* means no blocks */
d->flags &= ~SND_F_HAS_SIZE ;
} else {
RANGE (p->play_size, 40, d->dbuf_out.bufsize /4);
d->play_blocksize = p->play_size & ~3 ;
RANGE (p->rec_size, 40, d->dbuf_in.bufsize /4);
d->rec_blocksize = p->rec_size & ~3 ;
d->flags |= SND_F_HAS_SIZE ;
}
}
splx(s);
ask_init(d);
/* FALLTHROUGH */
case AIOGSIZE : /* get the current blocksize */
{
struct snd_size *p = (struct snd_size *)arg;
p->play_size = d->play_blocksize ;
p->rec_size = d->rec_blocksize ;
}
break ;
case AIOSFMT :
{
snd_chan_param *p = (snd_chan_param *)arg;
d->play_speed = p->play_rate;
d->rec_speed = p->play_rate; /* XXX one speed allowed */
if (p->play_format & AFMT_STEREO)
d->flags |= SND_F_STEREO ;
else
d->flags &= ~SND_F_STEREO ;
d->play_fmt = p->play_format & ~AFMT_STEREO ;
d->rec_fmt = p->rec_format & ~AFMT_STEREO ;
}
splx(s);
if (!ask_init(d))
break ; /* could not reinit */
/* FALLTHROUGH */
case AIOGFMT :
{
snd_chan_param *p = (snd_chan_param *)arg;
p->play_rate = d->play_speed;
p->rec_rate = d->rec_speed;
p->play_format = d->play_fmt;
p->rec_format = d->rec_fmt;
if (d->flags & SND_F_STEREO) {
p->play_format |= AFMT_STEREO ;
p->rec_format |= AFMT_STEREO ;
}
}
break;
case AIOGCAP : /* get capabilities */
/* this should really be implemented by the driver */
{
snd_capabilities *p = (snd_capabilities *)arg;
p->rate_min = 5000;
p->rate_max = 48000; /* default */
p->bufsize = d->bufsize;
p->formats = d->audio_fmt; /* default */
p->mixers = 1 ; /* default: one mixer */
p->inputs = d->mix_devs ;
p->left = p->right = 255 ;
}
break ;
case AIOSTOP:
if (*(int *)arg == AIOSYNC_PLAY) /* play */
*(int *)arg = dsp_wrabort(d, 1 /* restart */);
else if (*(int *)arg == AIOSYNC_CAPTURE)
*(int *)arg = dsp_rdabort(d, 1 /* restart */);
else {
splx(s);
printf("AIOSTOP: bad channel 0x%x\n", *(int *)arg);
*(int *)arg = 0 ;
}
break ;
case AIOSYNC:
printf("AIOSYNC chan 0x%03lx pos %lu unimplemented\n",
((snd_sync_parm *)arg)->chan,
((snd_sync_parm *)arg)->pos);
break;
/*
* here follow the standard ioctls (filio.h etc.)
*/
case FIONREAD : /* get # bytes to read */
if ( d->dbuf_in.dl ) {
if (d->special_dma)
d->callback(d, SND_CB_RD | SND_CB_DMAUPDATE) ;
else
dsp_rd_dmaupdate(&(d->dbuf_in));
}
*(int *)arg = d->dbuf_in.rl;
break;
case FIOASYNC: /*set/clear async i/o */
DEB( printf("FIOASYNC\n") ; )
break;
case SNDCTL_DSP_NONBLOCK :
case FIONBIO : /* set/clear non-blocking i/o */
if ( *(int *)arg == 0 )
d->flags &= ~SND_F_NBIO ;
else
d->flags |= SND_F_NBIO ;
break ;
/*
* Finally, here is the linux-compatible ioctl interface
*/
#define THE_REAL_SNDCTL_DSP_GETBLKSIZE _IOWR('P', 4, int)
case THE_REAL_SNDCTL_DSP_GETBLKSIZE:
case SNDCTL_DSP_GETBLKSIZE:
*(int *) arg = d->play_blocksize ;
break ;
case SNDCTL_DSP_SETBLKSIZE :
{
int t = *(int *)arg;
if (t <= 1) { /* means no blocks */
d->flags &= ~SND_F_HAS_SIZE ;
} else {
RANGE (t, 40, d->dbuf_out.bufsize /4);
d->play_blocksize =
d->rec_blocksize = t & ~3 ; /* align to multiple of 4 */
d->flags |= SND_F_HAS_SIZE ;
}
}
splx(s);
ask_init(d);
break ;
case SNDCTL_DSP_RESET:
DEB(printf("dsp reset\n"));
dsp_wrabort(d, 1 /* restart */);
dsp_rdabort(d, 1 /* restart */);
break ;
case SNDCTL_DSP_SYNC:
DEB(printf("dsp sync\n"));
splx(s);
snd_sync(d, 1, d->dbuf_out.bufsize - 4); /* DMA does not start with <4 bytes */
break ;
case SNDCTL_DSP_SPEED:
d->play_speed = d->rec_speed = *(int *)arg ;
splx(s);
if (ask_init(d))
*(int *)arg = d->play_speed ;
break ;
case SNDCTL_DSP_STEREO:
if ( *(int *)arg == 0 )
d->flags &= ~SND_F_STEREO ; /* mono */
else if ( *(int *)arg == 1 )
d->flags |= SND_F_STEREO ; /* stereo */
else {
printf("dsp stereo: %d is invalid, assuming 1\n", *(int *)arg );
d->flags |= SND_F_STEREO ; /* stereo */
}
splx(s);
if (ask_init(d))
*(int *)arg = (d->flags & SND_F_STEREO) ? 1 : 0 ;
break ;
case SOUND_PCM_WRITE_CHANNELS:
if ( *(int *)arg == 1)
d->flags &= ~SND_F_STEREO ; /* mono */
else if ( *(int *)arg == 2)
d->flags |= SND_F_STEREO ; /* stereo */
else {
ret = EINVAL ;
break ;
}
splx(s);
if (ask_init(d))
*(int *)arg = (d->flags & SND_F_STEREO) ? 2 : 1 ;
break ;
case SOUND_PCM_READ_RATE:
*(int *)arg = d->play_speed;
break ;
case SOUND_PCM_READ_CHANNELS:
*(int *)arg = (d->flags & SND_F_STEREO) ? 2 : 1;
break ;
case SNDCTL_DSP_GETFMTS: /* returns a mask of supported fmts */
*(int *)arg = (int)d->audio_fmt ;
break ;
case SNDCTL_DSP_SETFMT: /* sets _one_ format */
/*
* when some card (SB16) is opened RDONLY or WRONLY,
* only one of the fields is set, the other becomes 0.
* This makes it possible to select DMA channels at runtime.
*/
if (d->play_fmt)
d->play_fmt = *(int *)arg ;
if (d->rec_fmt)
d->rec_fmt = *(int *)arg ;
splx(s);
if (ask_init(d))
*(int *)arg = d->play_fmt ;
break ;
case SNDCTL_DSP_SUBDIVIDE:
/* XXX watch out, this is RW! */
DEB(printf("SNDCTL_DSP_SUBDIVIDE yet unimplemented\n");)
break;
case SNDCTL_DSP_SETFRAGMENT:
/* XXX watch out, this is RW! */
DEB(printf("SNDCTL_DSP_SETFRAGMENT 0x%08x\n", *(int *)arg));
{
int bytes, count;
bytes = *(int *)arg & 0xffff ;
count = ( *(int *)arg >> 16) & 0xffff ;
if (bytes > 15)
bytes = 15 ;
bytes = 1 << bytes ;
if (bytes <= 1) { /* means no blocks */
d->flags &= ~SND_F_HAS_SIZE ;
} else {
RANGE (bytes, 40, d->dbuf_out.bufsize /4);
d->play_blocksize =
d->rec_blocksize = bytes & ~3 ; /* align to multiple of 4 */
d->flags |= SND_F_HAS_SIZE ;
}
splx(s);
ask_init(d);
#if 0
/* XXX todo: set the buffer size to the # of fragments */
count = d->dbuf_in.bufsize / d->play_blocksize ;
bytes = ffs(d->play_blocksize) - 1;
/*
* don't change arg, since it's fake anyways and some
* programs might fail if we do.
*/
*(int *)arg = (count << 16) | bytes ;
#endif
}
break ;
case SNDCTL_DSP_GETISPACE:
/* return space available in the input queue */
{
audio_buf_info *a = (audio_buf_info *)arg;
snd_dbuf *b = &(d->dbuf_in);
if (b->dl) {
if (d->special_dma)
d->callback(d, SND_CB_RD | SND_CB_DMAUPDATE) ;
else
dsp_rd_dmaupdate( b );
}
a->bytes = d->dbuf_in.fl ;
a->fragments = 1 ;
a->fragstotal = b->bufsize / d->rec_blocksize ;
a->fragsize = d->rec_blocksize ;
}
break ;
case SNDCTL_DSP_GETOSPACE:
/* return space available in the output queue */
{
audio_buf_info *a = (audio_buf_info *)arg;
snd_dbuf *b = &(d->dbuf_out);
if (b->dl) {
if (d->special_dma)
d->callback(d, SND_CB_WR | SND_CB_DMAUPDATE) ;
else
dsp_wr_dmaupdate( b );
}
a->bytes = d->dbuf_out.fl ;
a->fragments = 1 ;
a->fragstotal = b->bufsize / d->play_blocksize ;
a->fragsize = d->play_blocksize ;
}
break ;
case SNDCTL_DSP_GETIPTR:
{
count_info *a = (count_info *)arg;
snd_dbuf *b = &(d->dbuf_in);
if (b->dl) {
if (d->special_dma)
d->callback(d, SND_CB_RD | SND_CB_DMAUPDATE) ;
else
dsp_rd_dmaupdate( b );
}
a->bytes = b->total;
a->blocks = (b->total - b->prev_total +
d->rec_blocksize -1 ) / d->rec_blocksize ;
a->ptr = b->fp ; /* XXX not sure... */
b->prev_total = b->total ;
}
break;
case SNDCTL_DSP_GETOPTR:
{
count_info *a = (count_info *)arg;
snd_dbuf *b = &(d->dbuf_out);
if (b->dl) {
if (d->special_dma)
d->callback(d, SND_CB_WR | SND_CB_DMAUPDATE) ;
else
dsp_wr_dmaupdate( b );
}
a->bytes = b->total;
a->blocks = (b->total - b->prev_total
/* +d->play_blocksize -1*/ ) / d->play_blocksize ;
a->ptr = b->rp ; /* XXX not sure... */
b->prev_total = b->total ;
}
break;
case SNDCTL_DSP_GETCAPS :
*(int *) arg = 0x0 ; /* revision */
if (FULL_DUPLEX(d))
*(int *) arg |= DSP_CAP_DUPLEX ;
*(int *) arg |= DSP_CAP_REALTIME ;
break ;
case SOUND_PCM_READ_BITS:
if (d->play_fmt == AFMT_S16_LE)
*(int *) arg = 16 ;
else
*(int *) arg = 8 ;
break ;
/*
* mixer calls
*/
case SOUND_MIXER_READ_DEVMASK :
case SOUND_MIXER_READ_CAPS :
case SOUND_MIXER_READ_STEREODEVS :
*(int *)arg = d->mix_devs;
break ;
case SOUND_MIXER_READ_RECMASK :
*(int *)arg = d->mix_rec_devs;
break ;
case SOUND_MIXER_READ_RECSRC :
*(int *)arg = d->mix_recsrc ;
break;
default:
DEB(printf("default ioctl snd%d subdev %d fn 0x%08x fail\n",
unit, dev & 0xf, cmd));
ret = EINVAL;
break ;
}
splx(s);
return ret ;
}
/*
* we use the name 'select', but the new "poll" interface this is
* really sndpoll. Second arg for poll is not "rw" but "events"
*/
int
sndselect(dev_t i_dev, int rw, struct proc * p)
{
int dev, unit, c = 1 /* default: success */ ;
snddev_info *d ;
u_long flags;
dev = minor(i_dev);
d = get_snddev_info(dev, &unit);
DEB(printf("sndselect dev 0x%04x rw 0x%08x\n",i_dev, rw));
if (d == NULL ) /* should not happen! */
return (ENXIO) ;
if (d->select == NULL)
return ( (rw & (POLLIN|POLLOUT|POLLRDNORM|POLLWRNORM)) | POLLHUP);
else if (d->select != sndselect )
return d->select(i_dev, rw, p);
else {
/* handle it here with the generic code */
/*
* if the user selected a block size, then we want to use the
* device as a block device, and select will return ready when
* we have a full block.
* In all other cases, select will return when 1 byte is ready.
*/
int lim = 1;
int revents = 0 ;
if (rw & (POLLOUT | POLLWRNORM) ) {
if ( d->flags & SND_F_HAS_SIZE )
lim = d->play_blocksize ;
/* XXX fix the test here for half duplex devices */
if (1 /* write is compatible with current mode */) {
flags = spltty();
if (d->dbuf_out.dl) {
if (d->special_dma)
d->callback(d, SND_CB_WR | SND_CB_DMAUPDATE) ;
else
dsp_wr_dmaupdate(&(d->dbuf_out));
}
c = d->dbuf_out.fl ;
if (c < lim) /* no space available */
selrecord(p, & (d->wsel));
else
revents |= rw & (POLLOUT | POLLWRNORM);
splx(flags);
}
}
if (rw & (POLLIN | POLLRDNORM)) {
if ( d->flags & SND_F_HAS_SIZE )
lim = d->rec_blocksize ;
/* XXX fix the test here */
if (1 /* read is compatible with current mode */) {
flags = spltty();
if ( d->dbuf_in.dl == 0 ) /* dma idle, restart it */
dsp_rdintr(d);
else {
if (d->special_dma)
d->callback(d, SND_CB_RD | SND_CB_DMAUPDATE) ;
else
dsp_rd_dmaupdate(&(d->dbuf_in));
}
c = d->dbuf_in.rl ;
if (c < lim) /* no data available */
selrecord(p, & (d->rsel));
else
revents |= rw & (POLLIN | POLLRDNORM);
splx(flags);
}
DEB(printf("sndselect on read: %d >= %d flags 0x%08x\n",
c, lim, d->flags));
return c < lim ? 0 : 1 ;
}
return revents;
}
return ENXIO ; /* notreached */
}
/*
* The mmap interface allows access to the play and read buffer,
* plus the device descriptor.
* The various blocks are accessible at the following offsets:
*
* 0x00000000 ( 0 ) : write buffer ;
* 0x01000000 (16 MB) : read buffer ;
* 0x02000000 (32 MB) : device descriptor (dangerous!)
*
* WARNING: the mmap routines assume memory areas are aligned. This
* is true (probably) for the dma buffers, but likely false for the
* device descriptor. As a consequence, we do not know where it is
* located in the requested area.
*/
#include <sys/mman.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_extern.h>
static int
sndmmap(dev_t dev, vm_offset_t offset, int nprot)
{
snddev_info *d = get_snddev_info(dev, NULL);
DEB(printf("sndmmap d 0x%p dev 0x%04x ofs 0x%08x nprot 0x%08x\n",
d, dev, offset, nprot));
if (d == NULL || nprot & PROT_EXEC)
return -1 ; /* forbidden */
if (offset >= d->dbuf_out.bufsize && (nprot & PROT_WRITE) )
return -1 ; /* can only write to the first block */
if (offset < d->dbuf_out.bufsize)
return i386_btop(vtophys(d->dbuf_out.buf + offset));
offset -= 1 << 24;
if ( (offset >= 0) && (offset < d->dbuf_in.bufsize))
return i386_btop(vtophys(d->dbuf_in.buf + offset));
offset -= 1 << 24;
if ( (offset >= 0) && (offset < 0x2000)) {
return i386_btop(vtophys( ((int)d & ~0xfff) + offset));
}
return -1 ;
}
/*
* ask_init sets the init flag in the device descriptor, and
* possibly calls the appropriate callback routine, returning 1
* if the callback was successful. This enables ioctls handler for
* rw parameters to read back the updated value.
* Since the init callback can be slow, ask_init() should be called
* with interrupts enabled.
*/
int
ask_init(snddev_info *d)
{
u_long s;
if ( d->callback == NULL )
return 0 ;
s = spltty();
if ( d->flags & SND_F_PENDING_IO ||
d->dbuf_out.dl || d->dbuf_in.dl ) {
/* cannot do it now, record the request and return */
d->flags |= SND_F_INIT ;
splx(s);
return 0 ;
} else {
splx(s);
d->callback(d, SND_CB_INIT );
return 1;
}
}
/*
* these are the functions for the soundstat device. We copy parameters
* from the device info structure to static variables, and from there
* back to the structure when done.
*/
static void
init_status(snddev_info *d)
{
/*
* Write the status information to the status_buf and update
* status_len. There is a limit of SNDSTAT_BUF_SIZE bytes for the data.
*/
int i;
if (status_len != 0) /* only do init once */
return ;
snprintf(status_buf, sizeof(status_buf),
"FreeBSD Audio Driver (981002) " __DATE__ " " __TIME__ "\n"
"Installed devices:\n");
for (i = 0; i < NPCM_MAX; i++) {
if (pcm_info[i].open)
snprintf(status_buf + strlen(status_buf),
sizeof(status_buf) - strlen(status_buf),
"pcm%d: <%s> at 0x%x irq %d dma %d:%d\n",
i, pcm_info[i].name, pcm_info[i].io_base,
pcm_info[i].irq,
pcm_info[i].dbuf_out.chan, pcm_info[i].dbuf_in.chan);
if (midi_info[i].open)
snprintf(status_buf + strlen(status_buf),
sizeof(status_buf) - strlen(status_buf),
"midi%d: <%s> at 0x%x irq %d dma %d:%d\n",
i, midi_info[i].name, midi_info[i].io_base,
midi_info[i].irq,
midi_info[i].dbuf_out.chan, midi_info[i].dbuf_in.chan);
if (pcm_info[i].synth_base) {
char *s = "???";
switch (pcm_info[i].synth_type) {
case 2 : s = "OPL2"; break;
case 3 : s = "OPL3"; break;
case 4 : s = "OPL4"; break;
}
snprintf(status_buf + strlen(status_buf),
sizeof(status_buf) - strlen(status_buf),
"sequencer%d: <%s> at 0x%x (not functional)\n",
i, s, pcm_info[i].synth_base);
}
}
status_len = strlen(status_buf) ;
}
/*
* finally, some "libraries"
*/
/*
* isa_dmastatus1() is a wrapper for isa_dmastatus(), which
* might return -1 or -2 in some cases (errors). Since for the
* user code it is more comfortable not to check for these cases,
* negative values are mapped back to 0 (which is reasonable).
*/
int
isa_dmastatus1(int channel)
{
int r = isa_dmastatus(channel);
if (r<0) r = 0;
return r;
}
/*
* snd_conflict scans already-attached boards to see if
* the current address is conflicting with one of the already
* assigned ones. Returns 1 if a conflict is detected.
*/
int
snd_conflict(int io_base)
{
int i;
for (i=0; i< NPCM_MAX ; i++) {
if ( (io_base == pcm_info[i].io_base ) ||
(io_base == pcm_info[i].alt_base ) ||
(io_base == pcm_info[i].conf_base) ||
(io_base == pcm_info[i].mix_base ) ||
(io_base == pcm_info[i].midi_base) ||
(io_base == pcm_info[i].synth_base) ) {
BVDDB(printf("device at 0x%x already attached as unit %d\n",
io_base, i);)
return 1 ;
}
}
return 0;
}
void
snd_set_blocksize(snddev_info *d)
{
int tmp ;
/*
* compute the sample size, and possibly
* set the blocksize so as to guarantee approx 1/4s
* between callbacks.
*/
tmp = 1 ;
if (d->flags & SND_F_STEREO) tmp += tmp;
if (d->play_fmt & (AFMT_S16_LE|AFMT_U16_LE)) tmp += tmp;
d->dbuf_out.sample_size = tmp ;
tmp = tmp * d->play_speed;
if ( (d->flags & SND_F_HAS_SIZE) == 0) {
d->play_blocksize = (tmp / 4) & ~3; /* 0.25s, aligned to 4 */
RANGE (d->play_blocksize, 1024, (d->bufsize / 4) & ~3);
}
tmp = 1 ;
if (d->flags & SND_F_STEREO) tmp += tmp;
if (d->rec_fmt & (AFMT_S16_LE|AFMT_U16_LE)) tmp += tmp;
tmp = tmp * d->rec_speed;
d->dbuf_in.sample_size = tmp ;
if ( (d->flags & SND_F_HAS_SIZE) == 0) {
d->rec_blocksize = (tmp / 4) & ~3; /* 0.25s, aligned to 4 */
RANGE (d->rec_blocksize, 1024, (d->bufsize / 4) & ~3);
}
}
/*
* The various mixers use a variety of bitmasks etc. The Voxware
* driver had a very nice technique to describe a mixer and interface
* to it. A table defines, for each channel, which register, bits,
* offset, polarity to use. This procedure creates the new value
* using the table and the old value.
*/
void
change_bits(mixer_tab *t, u_char *regval, int dev, int chn, int newval)
{
u_char mask;
int shift;
DEB(printf("ch_bits dev %d ch %d val %d old 0x%02x "
"r %d p %d bit %d off %d\n",
dev, chn, newval, *regval,
(*t)[dev][chn].regno, (*t)[dev][chn].polarity,
(*t)[dev][chn].nbits, (*t)[dev][chn].bitoffs ) );
if ( (*t)[dev][chn].polarity == 1) /* reverse */
newval = 100 - newval ;
mask = (1 << (*t)[dev][chn].nbits) - 1;
newval = (int) ((newval * mask) + 50) / 100; /* Scale it */
shift = (*t)[dev][chn].bitoffs /*- (*t)[dev][LEFT_CHN].nbits + 1*/;
*regval &= ~(mask << shift); /* Filter out the previous value */
*regval |= (newval & mask) << shift; /* Set the new value */
}
/*
* code for translating between U8 and ULAW. Needed to support
* /dev/audio on the SoundBlaster. Actually, we would also need
* ulaw -> 16 bits (for the soundblaster as well, when used in
* full-duplex)
*/
void
translate_bytes (u_char *table, u_char *buff, int n)
{
u_long i;
if (n <= 0)
return;
for (i = 0; i < n; ++i)
buff[i] = table[buff[i]];
}
#endif /* NPCM > 0 */