freebsd-dev/sys/sparc64/sparc64/exception.S
Gleb Smirnoff 83c9dea1ba - Remove 'struct vmmeter' from 'struct pcpu', leaving only global vmmeter
in place.  To do per-cpu stats, convert all fields that previously were
  maintained in the vmmeters that sit in pcpus to counter(9).
- Since some vmmeter stats may be touched at very early stages of boot,
  before we have set up UMA and we can do counter_u64_alloc(), provide an
  early counter mechanism:
  o Leave one spare uint64_t in struct pcpu, named pc_early_dummy_counter.
  o Point counter(9) fields of vmmeter to pcpu[0].pc_early_dummy_counter,
    so that at early stages of boot, before counters are allocated we already
    point to a counter that can be safely written to.
  o For sparc64 that required a whole dummy pcpu[MAXCPU] array.

Further related changes:
- Don't include vmmeter.h into pcpu.h.
- vm.stats.vm.v_swappgsout and vm.stats.vm.v_swappgsin changed to 64-bit,
  to match kernel representation.
- struct vmmeter hidden under _KERNEL, and only vmstat(1) is an exclusion.

This is based on benno@'s 4-year old patch:
https://lists.freebsd.org/pipermail/freebsd-arch/2013-July/014471.html

Reviewed by:	kib, gallatin, marius, lidl
Differential Revision:	https://reviews.freebsd.org/D10156
2017-04-17 17:34:47 +00:00

3066 lines
70 KiB
ArmAsm

/*-
* Copyright (c) 1997 Berkeley Software Design, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Berkeley Software Design Inc's name may not be used to endorse or
* promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* BSDI $Id: locore.s,v 1.36.2.15 1999/08/23 22:34:41 cp Exp $
*/
/*-
* Copyright (c) 2001 Jake Burkholder.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <machine/asm.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include "opt_ddb.h"
#include "opt_kstack_pages.h"
#include <machine/asi.h>
#include <machine/asmacros.h>
#include <machine/frame.h>
#include <machine/fsr.h>
#include <machine/intr_machdep.h>
#include <machine/ktr.h>
#include <machine/pcb.h>
#include <machine/pstate.h>
#include <machine/trap.h>
#include <machine/tsb.h>
#include <machine/tstate.h>
#include <machine/utrap.h>
#include <machine/wstate.h>
#include "assym.s"
#define TSB_ASI 0x0
#define TSB_KERNEL 0x0
#define TSB_KERNEL_MASK 0x0
#define TSB_KERNEL_PHYS 0x0
#define TSB_KERNEL_PHYS_END 0x0
#define TSB_QUAD_LDD 0x0
.register %g2,#ignore
.register %g3,#ignore
.register %g6,#ignore
.register %g7,#ignore
/*
* Atomically set a bit in a TTE.
*/
#define TTE_SET_BIT(r1, r2, r3, bit, a, asi) \
add r1, TTE_DATA, r1 ; \
LD(x, a) [r1] asi, r2 ; \
9: or r2, bit, r3 ; \
CAS(x, a) [r1] asi, r2, r3 ; \
cmp r2, r3 ; \
bne,pn %xcc, 9b ; \
mov r3, r2
#define TTE_SET_REF(r1, r2, r3, a, asi) TTE_SET_BIT(r1, r2, r3, TD_REF, a, asi)
#define TTE_SET_W(r1, r2, r3, a, asi) TTE_SET_BIT(r1, r2, r3, TD_W, a, asi)
/*
* Macros for spilling and filling live windows.
*
* NOTE: These macros use exactly 16 instructions, and it is assumed that the
* handler will not use more than 24 instructions total, to leave room for
* resume vectors which occupy the last 8 instructions.
*/
#define SPILL(storer, base, size, asi) \
storer %l0, [base + (0 * size)] asi ; \
storer %l1, [base + (1 * size)] asi ; \
storer %l2, [base + (2 * size)] asi ; \
storer %l3, [base + (3 * size)] asi ; \
storer %l4, [base + (4 * size)] asi ; \
storer %l5, [base + (5 * size)] asi ; \
storer %l6, [base + (6 * size)] asi ; \
storer %l7, [base + (7 * size)] asi ; \
storer %i0, [base + (8 * size)] asi ; \
storer %i1, [base + (9 * size)] asi ; \
storer %i2, [base + (10 * size)] asi ; \
storer %i3, [base + (11 * size)] asi ; \
storer %i4, [base + (12 * size)] asi ; \
storer %i5, [base + (13 * size)] asi ; \
storer %i6, [base + (14 * size)] asi ; \
storer %i7, [base + (15 * size)] asi
#define FILL(loader, base, size, asi) \
loader [base + (0 * size)] asi, %l0 ; \
loader [base + (1 * size)] asi, %l1 ; \
loader [base + (2 * size)] asi, %l2 ; \
loader [base + (3 * size)] asi, %l3 ; \
loader [base + (4 * size)] asi, %l4 ; \
loader [base + (5 * size)] asi, %l5 ; \
loader [base + (6 * size)] asi, %l6 ; \
loader [base + (7 * size)] asi, %l7 ; \
loader [base + (8 * size)] asi, %i0 ; \
loader [base + (9 * size)] asi, %i1 ; \
loader [base + (10 * size)] asi, %i2 ; \
loader [base + (11 * size)] asi, %i3 ; \
loader [base + (12 * size)] asi, %i4 ; \
loader [base + (13 * size)] asi, %i5 ; \
loader [base + (14 * size)] asi, %i6 ; \
loader [base + (15 * size)] asi, %i7
#define ERRATUM50(reg) mov reg, reg
#define KSTACK_SLOP 1024
/*
* Sanity check the kernel stack and bail out if it's wrong.
* XXX: doesn't handle being on the panic stack.
*/
#define KSTACK_CHECK \
dec 16, ASP_REG ; \
stx %g1, [ASP_REG + 0] ; \
stx %g2, [ASP_REG + 8] ; \
add %sp, SPOFF, %g1 ; \
andcc %g1, (1 << PTR_SHIFT) - 1, %g0 ; \
bnz,a %xcc, tl1_kstack_fault ; \
inc 16, ASP_REG ; \
ldx [PCPU(CURTHREAD)], %g2 ; \
ldx [%g2 + TD_KSTACK], %g2 ; \
add %g2, KSTACK_SLOP, %g2 ; \
subcc %g1, %g2, %g1 ; \
ble,a %xcc, tl1_kstack_fault ; \
inc 16, ASP_REG ; \
set KSTACK_PAGES * PAGE_SIZE, %g2 ; \
cmp %g1, %g2 ; \
bgt,a %xcc, tl1_kstack_fault ; \
inc 16, ASP_REG ; \
ldx [ASP_REG + 8], %g2 ; \
ldx [ASP_REG + 0], %g1 ; \
inc 16, ASP_REG
.globl tl_text_begin
tl_text_begin:
nop
ENTRY(tl1_kstack_fault)
rdpr %tl, %g1
1: cmp %g1, 2
be,a 2f
nop
#if KTR_COMPILE & KTR_TRAP
CATR(KTR_TRAP, "tl1_kstack_fault: tl=%#lx tpc=%#lx tnpc=%#lx"
, %g2, %g3, %g4, 7, 8, 9)
rdpr %tl, %g3
stx %g3, [%g2 + KTR_PARM1]
rdpr %tpc, %g3
stx %g3, [%g2 + KTR_PARM1]
rdpr %tnpc, %g3
stx %g3, [%g2 + KTR_PARM1]
9:
#endif
sub %g1, 1, %g1
wrpr %g1, 0, %tl
ba,a %xcc, 1b
nop
2:
#if KTR_COMPILE & KTR_TRAP
CATR(KTR_TRAP,
"tl1_kstack_fault: sp=%#lx ks=%#lx cr=%#lx cs=%#lx ow=%#lx ws=%#lx"
, %g1, %g2, %g3, 7, 8, 9)
add %sp, SPOFF, %g2
stx %g2, [%g1 + KTR_PARM1]
ldx [PCPU(CURTHREAD)], %g2
ldx [%g2 + TD_KSTACK], %g2
stx %g2, [%g1 + KTR_PARM2]
rdpr %canrestore, %g2
stx %g2, [%g1 + KTR_PARM3]
rdpr %cansave, %g2
stx %g2, [%g1 + KTR_PARM4]
rdpr %otherwin, %g2
stx %g2, [%g1 + KTR_PARM5]
rdpr %wstate, %g2
stx %g2, [%g1 + KTR_PARM6]
9:
#endif
wrpr %g0, 0, %canrestore
wrpr %g0, 6, %cansave
wrpr %g0, 0, %otherwin
wrpr %g0, WSTATE_KERNEL, %wstate
sub ASP_REG, SPOFF + CCFSZ, %sp
clr %fp
set trap, %o2
ba %xcc, tl1_trap
mov T_KSTACK_FAULT | T_KERNEL, %o0
END(tl1_kstack_fault)
/*
* Magic to resume from a spill or fill trap. If we get an alignment or an
* MMU fault during a spill or a fill, this macro will detect the fault and
* resume at a set instruction offset in the trap handler.
*
* To check if the previous trap was a spill/fill we convert the trapped pc
* to a trap type and verify that it is in the range of spill/fill vectors.
* The spill/fill vectors are types 0x80-0xff and 0x280-0x2ff, masking off the
* tl bit allows us to detect both ranges with one test.
*
* This is:
* 0x80 <= (((%tpc - %tba) >> 5) & ~0x200) < 0x100
*
* To calculate the new pc we take advantage of the xor feature of wrpr.
* Forcing all the low bits of the trapped pc on we can produce any offset
* into the spill/fill vector. The size of a spill/fill trap vector is 0x80.
*
* 0x7f ^ 0x1f == 0x60
* 0x1f == (0x80 - 0x60) - 1
*
* Which are the offset and xor value used to resume from alignment faults.
*/
/*
* Determine if we have trapped inside of a spill/fill vector, and if so resume
* at a fixed instruction offset in the trap vector. Must be called on
* alternate globals.
*/
#define RESUME_SPILLFILL_MAGIC(stxa_g0_sfsr, xor) \
dec 16, ASP_REG ; \
stx %g1, [ASP_REG + 0] ; \
stx %g2, [ASP_REG + 8] ; \
rdpr %tpc, %g1 ; \
ERRATUM50(%g1) ; \
rdpr %tba, %g2 ; \
sub %g1, %g2, %g2 ; \
srlx %g2, 5, %g2 ; \
andn %g2, 0x200, %g2 ; \
cmp %g2, 0x80 ; \
blu,pt %xcc, 9f ; \
cmp %g2, 0x100 ; \
bgeu,pt %xcc, 9f ; \
or %g1, 0x7f, %g1 ; \
wrpr %g1, xor, %tnpc ; \
stxa_g0_sfsr ; \
ldx [ASP_REG + 8], %g2 ; \
ldx [ASP_REG + 0], %g1 ; \
inc 16, ASP_REG ; \
done ; \
9: ldx [ASP_REG + 8], %g2 ; \
ldx [ASP_REG + 0], %g1 ; \
inc 16, ASP_REG
/*
* For certain faults we need to clear the SFSR MMU register before returning.
*/
#define RSF_CLR_SFSR \
wr %g0, ASI_DMMU, %asi ; \
stxa %g0, [%g0 + AA_DMMU_SFSR] %asi
#define RSF_XOR(off) ((0x80 - off) - 1)
/*
* Instruction offsets in spill and fill trap handlers for handling certain
* nested traps, and corresponding xor constants for wrpr.
*/
#define RSF_OFF_ALIGN 0x60
#define RSF_OFF_MMU 0x70
#define RESUME_SPILLFILL_ALIGN \
RESUME_SPILLFILL_MAGIC(RSF_CLR_SFSR, RSF_XOR(RSF_OFF_ALIGN))
#define RESUME_SPILLFILL_MMU \
RESUME_SPILLFILL_MAGIC(EMPTY, RSF_XOR(RSF_OFF_MMU))
#define RESUME_SPILLFILL_MMU_CLR_SFSR \
RESUME_SPILLFILL_MAGIC(RSF_CLR_SFSR, RSF_XOR(RSF_OFF_MMU))
/*
* Constant to add to %tnpc when taking a fill trap just before returning to
* user mode.
*/
#define RSF_FILL_INC tl0_ret_fill_end - tl0_ret_fill
/*
* Generate a T_SPILL or T_FILL trap if the window operation fails.
*/
#define RSF_TRAP(type) \
ba %xcc, tl0_sftrap ; \
mov type, %g2 ; \
.align 16
/*
* Game over if the window operation fails.
*/
#define RSF_FATAL(type) \
ba %xcc, rsf_fatal ; \
mov type, %g2 ; \
.align 16
/*
* Magic to resume from a failed fill a few instructions after the corrsponding
* restore. This is used on return from the kernel to usermode.
*/
#define RSF_FILL_MAGIC \
rdpr %tnpc, %g1 ; \
add %g1, RSF_FILL_INC, %g1 ; \
wrpr %g1, 0, %tnpc ; \
done ; \
.align 16
/*
* Spill to the pcb if a spill to the user stack in kernel mode fails.
*/
#define RSF_SPILL_TOPCB \
ba,a %xcc, tl1_spill_topcb ; \
nop ; \
.align 16
ENTRY(rsf_fatal)
#if KTR_COMPILE & KTR_TRAP
CATR(KTR_TRAP, "rsf_fatal: bad window trap tt=%#lx type=%#lx"
, %g1, %g3, %g4, 7, 8, 9)
rdpr %tt, %g3
stx %g3, [%g1 + KTR_PARM1]
stx %g2, [%g1 + KTR_PARM2]
9:
#endif
KSTACK_CHECK
sir
END(rsf_fatal)
.data
_ALIGN_DATA
.globl intrnames, sintrnames
intrnames:
.space (IV_MAX + PIL_MAX) * (MAXCOMLEN + 1)
sintrnames:
.quad (IV_MAX + PIL_MAX) * (MAXCOMLEN + 1)
.globl intrcnt, sintrcnt
intrcnt:
.space (IV_MAX + PIL_MAX) * 8
sintrcnt:
.quad (IV_MAX + PIL_MAX) * 8
.text
/*
* Trap table and associated macros
*
* Due to its size a trap table is an inherently hard thing to represent in
* code in a clean way. There are approximately 1024 vectors, of 8 or 32
* instructions each, many of which are identical. The way that this is
* laid out is the instructions (8 or 32) for the actual trap vector appear
* as an AS macro. In general this code branches to tl0_trap or tl1_trap,
* but if not supporting code can be placed just after the definition of the
* macro. The macros are then instantiated in a different section (.trap),
* which is setup to be placed by the linker at the beginning of .text, and the
* code around the macros is moved to the end of trap table. In this way the
* code that must be sequential in memory can be split up, and located near
* its supporting code so that it is easier to follow.
*/
/*
* Clean window traps occur when %cleanwin is zero to ensure that data
* is not leaked between address spaces in registers.
*/
.macro clean_window
clr %o0
clr %o1
clr %o2
clr %o3
clr %o4
clr %o5
clr %o6
clr %o7
clr %l0
clr %l1
clr %l2
clr %l3
clr %l4
clr %l5
clr %l6
rdpr %cleanwin, %l7
inc %l7
wrpr %l7, 0, %cleanwin
clr %l7
retry
.align 128
.endm
/*
* Stack fixups for entry from user mode. We are still running on the
* user stack, and with its live registers, so we must save soon. We
* are on alternate globals so we do have some registers. Set the
* transitional window state, and do the save. If this traps we
* attempt to spill a window to the user stack. If this fails, we
* spill the window to the pcb and continue. Spilling to the pcb
* must not fail.
*
* NOTE: Must be called with alternate globals and clobbers %g1.
*/
.macro tl0_split
rdpr %wstate, %g1
wrpr %g1, WSTATE_TRANSITION, %wstate
save
.endm
.macro tl0_setup type
tl0_split
clr %o1
set trap, %o2
ba %xcc, tl0_utrap
mov \type, %o0
.endm
/*
* Generic trap type. Call trap() with the specified type.
*/
.macro tl0_gen type
tl0_setup \type
.align 32
.endm
/*
* This is used to suck up the massive swaths of reserved trap types.
* Generates count "reserved" trap vectors.
*/
.macro tl0_reserved count
.rept \count
tl0_gen T_RESERVED
.endr
.endm
.macro tl1_split
rdpr %wstate, %g1
wrpr %g1, WSTATE_NESTED, %wstate
save %sp, -(CCFSZ + TF_SIZEOF), %sp
.endm
.macro tl1_setup type
tl1_split
clr %o1
set trap, %o2
ba %xcc, tl1_trap
mov \type | T_KERNEL, %o0
.endm
.macro tl1_gen type
tl1_setup \type
.align 32
.endm
.macro tl1_reserved count
.rept \count
tl1_gen T_RESERVED
.endr
.endm
.macro tl0_insn_excptn
wrpr %g0, PSTATE_ALT, %pstate
wr %g0, ASI_IMMU, %asi
rdpr %tpc, %g3
ldxa [%g0 + AA_IMMU_SFSR] %asi, %g4
/*
* XXX in theory, a store to AA_IMMU_SFSR must be immediately
* followed by a DONE, FLUSH or RETRY for USIII. In practice,
* this triggers a RED state exception though.
*/
stxa %g0, [%g0 + AA_IMMU_SFSR] %asi
membar #Sync
ba %xcc, tl0_sfsr_trap
mov T_INSTRUCTION_EXCEPTION, %g2
.align 32
.endm
.macro tl0_data_excptn
wrpr %g0, PSTATE_ALT, %pstate
wr %g0, ASI_DMMU, %asi
ldxa [%g0 + AA_DMMU_SFAR] %asi, %g3
ldxa [%g0 + AA_DMMU_SFSR] %asi, %g4
stxa %g0, [%g0 + AA_DMMU_SFSR] %asi
membar #Sync
ba %xcc, tl0_sfsr_trap
mov T_DATA_EXCEPTION, %g2
.align 32
.endm
.macro tl0_align
wr %g0, ASI_DMMU, %asi
ldxa [%g0 + AA_DMMU_SFAR] %asi, %g3
ldxa [%g0 + AA_DMMU_SFSR] %asi, %g4
stxa %g0, [%g0 + AA_DMMU_SFSR] %asi
membar #Sync
ba %xcc, tl0_sfsr_trap
mov T_MEM_ADDRESS_NOT_ALIGNED, %g2
.align 32
.endm
ENTRY(tl0_sfsr_trap)
tl0_split
clr %o1
set trap, %o2
mov %g3, %o4
mov %g4, %o5
ba %xcc, tl0_utrap
mov %g2, %o0
END(tl0_sfsr_trap)
.macro tl0_intr level, mask
tl0_split
set \mask, %o1
ba %xcc, tl0_intr
mov \level, %o0
.align 32
.endm
#define INTR(level, traplvl) \
tl ## traplvl ## _intr level, 1 << level
#define TICK(traplvl) \
tl ## traplvl ## _intr PIL_TICK, 0x10001
#define INTR_LEVEL(tl) \
INTR(1, tl) ; \
INTR(2, tl) ; \
INTR(3, tl) ; \
INTR(4, tl) ; \
INTR(5, tl) ; \
INTR(6, tl) ; \
INTR(7, tl) ; \
INTR(8, tl) ; \
INTR(9, tl) ; \
INTR(10, tl) ; \
INTR(11, tl) ; \
INTR(12, tl) ; \
INTR(13, tl) ; \
TICK(tl) ; \
INTR(15, tl) ;
.macro tl0_intr_level
INTR_LEVEL(0)
.endm
.macro intr_vector
ldxa [%g0] ASI_INTR_RECEIVE, %g1
andcc %g1, IRSR_BUSY, %g0
bnz,a,pt %xcc, intr_vector
nop
ba,a,pt %xcc, intr_vector_stray
nop
.align 32
.endm
.macro tl0_immu_miss
/*
* Load the context and the virtual page number from the tag access
* register. We ignore the context.
*/
wr %g0, ASI_IMMU, %asi
ldxa [%g0 + AA_IMMU_TAR] %asi, %g1
/*
* Initialize the page size walker.
*/
mov TS_MIN, %g2
/*
* Loop over all supported page sizes.
*/
/*
* Compute the page shift for the page size we are currently looking
* for.
*/
1: add %g2, %g2, %g3
add %g3, %g2, %g3
add %g3, PAGE_SHIFT, %g3
/*
* Extract the virtual page number from the contents of the tag
* access register.
*/
srlx %g1, %g3, %g3
/*
* Compute the TTE bucket address.
*/
ldxa [%g0 + AA_IMMU_TSB] %asi, %g5
and %g3, TSB_BUCKET_MASK, %g4
sllx %g4, TSB_BUCKET_SHIFT + TTE_SHIFT, %g4
add %g4, %g5, %g4
/*
* Compute the TTE tag target.
*/
sllx %g3, TV_SIZE_BITS, %g3
or %g3, %g2, %g3
/*
* Loop over the TTEs in this bucket.
*/
/*
* Load the TTE. Note that this instruction may fault, clobbering
* the contents of the tag access register, %g5, %g6, and %g7. We
* do not use %g5, and %g6 and %g7 are not used until this instruction
* completes successfully.
*/
2: ldda [%g4] ASI_NUCLEUS_QUAD_LDD, %g6 /*, %g7 */
/*
* Check that it's valid and executable and that the TTE tags match.
*/
brgez,pn %g7, 3f
andcc %g7, TD_EXEC, %g0
bz,pn %xcc, 3f
cmp %g3, %g6
bne,pn %xcc, 3f
EMPTY
/*
* We matched a TTE, load the TLB.
*/
/*
* Set the reference bit, if it's currently clear.
*/
andcc %g7, TD_REF, %g0
bz,a,pn %xcc, tl0_immu_miss_set_ref
nop
/*
* Load the TTE tag and data into the TLB and retry the instruction.
*/
stxa %g1, [%g0 + AA_IMMU_TAR] %asi
stxa %g7, [%g0] ASI_ITLB_DATA_IN_REG
retry
/*
* Advance to the next TTE in this bucket, and check the low bits
* of the bucket pointer to see if we've finished the bucket.
*/
3: add %g4, 1 << TTE_SHIFT, %g4
andcc %g4, (1 << (TSB_BUCKET_SHIFT + TTE_SHIFT)) - 1, %g0
bnz,pt %xcc, 2b
EMPTY
/*
* See if we just checked the largest page size, and advance to the
* next one if not.
*/
cmp %g2, TS_MAX
bne,pt %xcc, 1b
add %g2, 1, %g2
/*
* Not in user TSB, call C code.
*/
ba,a %xcc, tl0_immu_miss_trap
.align 128
.endm
ENTRY(tl0_immu_miss_set_ref)
/*
* Set the reference bit.
*/
TTE_SET_REF(%g4, %g2, %g3, a, ASI_N)
/*
* May have become invalid during casxa, in which case start over.
*/
brgez,pn %g2, 1f
nop
/*
* Load the TTE tag and data into the TLB and retry the instruction.
*/
stxa %g1, [%g0 + AA_IMMU_TAR] %asi
stxa %g2, [%g0] ASI_ITLB_DATA_IN_REG
1: retry
END(tl0_immu_miss_set_ref)
ENTRY(tl0_immu_miss_trap)
/*
* Put back the contents of the tag access register, in case we
* faulted.
*/
sethi %hi(KERNBASE), %g2
stxa %g1, [%g0 + AA_IMMU_TAR] %asi
flush %g2
/*
* Switch to alternate globals.
*/
wrpr %g0, PSTATE_ALT, %pstate
/*
* Reload the tag access register.
*/
ldxa [%g0 + AA_IMMU_TAR] %asi, %g2
/*
* Save the tag access register, and call common trap code.
*/
tl0_split
clr %o1
set trap, %o2
mov %g2, %o3
ba %xcc, tl0_utrap
mov T_INSTRUCTION_MISS, %o0
END(tl0_immu_miss_trap)
.macro tl0_dmmu_miss
/*
* Load the context and the virtual page number from the tag access
* register. We ignore the context.
*/
wr %g0, ASI_DMMU, %asi
ldxa [%g0 + AA_DMMU_TAR] %asi, %g1
/*
* Initialize the page size walker.
*/
tl1_dmmu_miss_user:
mov TS_MIN, %g2
/*
* Loop over all supported page sizes.
*/
/*
* Compute the page shift for the page size we are currently looking
* for.
*/
1: add %g2, %g2, %g3
add %g3, %g2, %g3
add %g3, PAGE_SHIFT, %g3
/*
* Extract the virtual page number from the contents of the tag
* access register.
*/
srlx %g1, %g3, %g3
/*
* Compute the TTE bucket address.
*/
ldxa [%g0 + AA_DMMU_TSB] %asi, %g5
and %g3, TSB_BUCKET_MASK, %g4
sllx %g4, TSB_BUCKET_SHIFT + TTE_SHIFT, %g4
add %g4, %g5, %g4
/*
* Compute the TTE tag target.
*/
sllx %g3, TV_SIZE_BITS, %g3
or %g3, %g2, %g3
/*
* Loop over the TTEs in this bucket.
*/
/*
* Load the TTE. Note that this instruction may fault, clobbering
* the contents of the tag access register, %g5, %g6, and %g7. We
* do not use %g5, and %g6 and %g7 are not used until this instruction
* completes successfully.
*/
2: ldda [%g4] ASI_NUCLEUS_QUAD_LDD, %g6 /*, %g7 */
/*
* Check that it's valid and that the virtual page numbers match.
*/
brgez,pn %g7, 3f
cmp %g3, %g6
bne,pn %xcc, 3f
EMPTY
/*
* We matched a TTE, load the TLB.
*/
/*
* Set the reference bit, if it's currently clear.
*/
andcc %g7, TD_REF, %g0
bz,a,pn %xcc, tl0_dmmu_miss_set_ref
nop
/*
* Load the TTE tag and data into the TLB and retry the instruction.
*/
stxa %g1, [%g0 + AA_DMMU_TAR] %asi
stxa %g7, [%g0] ASI_DTLB_DATA_IN_REG
retry
/*
* Advance to the next TTE in this bucket, and check the low bits
* of the bucket pointer to see if we've finished the bucket.
*/
3: add %g4, 1 << TTE_SHIFT, %g4
andcc %g4, (1 << (TSB_BUCKET_SHIFT + TTE_SHIFT)) - 1, %g0
bnz,pt %xcc, 2b
EMPTY
/*
* See if we just checked the largest page size, and advance to the
* next one if not.
*/
cmp %g2, TS_MAX
bne,pt %xcc, 1b
add %g2, 1, %g2
/*
* Not in user TSB, call C code.
*/
ba,a %xcc, tl0_dmmu_miss_trap
.align 128
.endm
ENTRY(tl0_dmmu_miss_set_ref)
/*
* Set the reference bit.
*/
TTE_SET_REF(%g4, %g2, %g3, a, ASI_N)
/*
* May have become invalid during casxa, in which case start over.
*/
brgez,pn %g2, 1f
nop
/*
* Load the TTE tag and data into the TLB and retry the instruction.
*/
stxa %g1, [%g0 + AA_DMMU_TAR] %asi
stxa %g2, [%g0] ASI_DTLB_DATA_IN_REG
1: retry
END(tl0_dmmu_miss_set_ref)
ENTRY(tl0_dmmu_miss_trap)
/*
* Put back the contents of the tag access register, in case we
* faulted.
*/
stxa %g1, [%g0 + AA_DMMU_TAR] %asi
membar #Sync
/*
* Switch to alternate globals.
*/
wrpr %g0, PSTATE_ALT, %pstate
/*
* Check if we actually came from the kernel.
*/
rdpr %tl, %g1
cmp %g1, 1
bgt,a,pn %xcc, 1f
nop
/*
* Reload the tag access register.
*/
ldxa [%g0 + AA_DMMU_TAR] %asi, %g2
/*
* Save the tag access register and call common trap code.
*/
tl0_split
clr %o1
set trap, %o2
mov %g2, %o3
ba %xcc, tl0_utrap
mov T_DATA_MISS, %o0
/*
* Handle faults during window spill/fill.
*/
1: RESUME_SPILLFILL_MMU
/*
* Reload the tag access register.
*/
ldxa [%g0 + AA_DMMU_TAR] %asi, %g2
tl1_split
clr %o1
set trap, %o2
mov %g2, %o3
ba %xcc, tl1_trap
mov T_DATA_MISS | T_KERNEL, %o0
END(tl0_dmmu_miss_trap)
.macro tl0_dmmu_prot
ba,a %xcc, tl0_dmmu_prot_1
nop
.align 128
.endm
ENTRY(tl0_dmmu_prot_1)
/*
* Load the context and the virtual page number from the tag access
* register. We ignore the context.
*/
wr %g0, ASI_DMMU, %asi
ldxa [%g0 + AA_DMMU_TAR] %asi, %g1
/*
* Initialize the page size walker.
*/
tl1_dmmu_prot_user:
mov TS_MIN, %g2
/*
* Loop over all supported page sizes.
*/
/*
* Compute the page shift for the page size we are currently looking
* for.
*/
1: add %g2, %g2, %g3
add %g3, %g2, %g3
add %g3, PAGE_SHIFT, %g3
/*
* Extract the virtual page number from the contents of the tag
* access register.
*/
srlx %g1, %g3, %g3
/*
* Compute the TTE bucket address.
*/
ldxa [%g0 + AA_DMMU_TSB] %asi, %g5
and %g3, TSB_BUCKET_MASK, %g4
sllx %g4, TSB_BUCKET_SHIFT + TTE_SHIFT, %g4
add %g4, %g5, %g4
/*
* Compute the TTE tag target.
*/
sllx %g3, TV_SIZE_BITS, %g3
or %g3, %g2, %g3
/*
* Loop over the TTEs in this bucket.
*/
/*
* Load the TTE. Note that this instruction may fault, clobbering
* the contents of the tag access register, %g5, %g6, and %g7. We
* do not use %g5, and %g6 and %g7 are not used until this instruction
* completes successfully.
*/
2: ldda [%g4] ASI_NUCLEUS_QUAD_LDD, %g6 /*, %g7 */
/*
* Check that it's valid and writable and that the virtual page
* numbers match.
*/
brgez,pn %g7, 4f
andcc %g7, TD_SW, %g0
bz,pn %xcc, 4f
cmp %g3, %g6
bne,pn %xcc, 4f
nop
/*
* Set the hardware write bit.
*/
TTE_SET_W(%g4, %g2, %g3, a, ASI_N)
/*
* Delete the old TLB entry and clear the SFSR.
*/
srlx %g1, PAGE_SHIFT, %g3
sllx %g3, PAGE_SHIFT, %g3
stxa %g0, [%g3] ASI_DMMU_DEMAP
stxa %g0, [%g0 + AA_DMMU_SFSR] %asi
membar #Sync
/*
* May have become invalid during casxa, in which case start over.
*/
brgez,pn %g2, 3f
or %g2, TD_W, %g2
/*
* Load the TTE data into the TLB and retry the instruction.
*/
stxa %g1, [%g0 + AA_DMMU_TAR] %asi
stxa %g2, [%g0] ASI_DTLB_DATA_IN_REG
3: retry
/*
* Check the low bits to see if we've finished the bucket.
*/
4: add %g4, 1 << TTE_SHIFT, %g4
andcc %g4, (1 << (TSB_BUCKET_SHIFT + TTE_SHIFT)) - 1, %g0
bnz,pt %xcc, 2b
EMPTY
/*
* See if we just checked the largest page size, and advance to the
* next one if not.
*/
cmp %g2, TS_MAX
bne,pt %xcc, 1b
add %g2, 1, %g2
/*
* Not in user TSB, call C code.
*/
ba,a %xcc, tl0_dmmu_prot_trap
nop
END(tl0_dmmu_prot_1)
ENTRY(tl0_dmmu_prot_trap)
/*
* Put back the contents of the tag access register, in case we
* faulted.
*/
stxa %g1, [%g0 + AA_DMMU_TAR] %asi
membar #Sync
/*
* Switch to alternate globals.
*/
wrpr %g0, PSTATE_ALT, %pstate
/*
* Check if we actually came from the kernel.
*/
rdpr %tl, %g1
cmp %g1, 1
bgt,a,pn %xcc, 1f
nop
/*
* Load the SFAR, SFSR and TAR.
*/
ldxa [%g0 + AA_DMMU_TAR] %asi, %g2
ldxa [%g0 + AA_DMMU_SFAR] %asi, %g3
ldxa [%g0 + AA_DMMU_SFSR] %asi, %g4
stxa %g0, [%g0 + AA_DMMU_SFSR] %asi
membar #Sync
/*
* Save the MMU registers and call common trap code.
*/
tl0_split
clr %o1
set trap, %o2
mov %g2, %o3
mov %g3, %o4
mov %g4, %o5
ba %xcc, tl0_utrap
mov T_DATA_PROTECTION, %o0
/*
* Handle faults during window spill/fill.
*/
1: RESUME_SPILLFILL_MMU_CLR_SFSR
/*
* Load the SFAR, SFSR and TAR. Clear the SFSR.
*/
ldxa [%g0 + AA_DMMU_TAR] %asi, %g2
ldxa [%g0 + AA_DMMU_SFAR] %asi, %g3
ldxa [%g0 + AA_DMMU_SFSR] %asi, %g4
stxa %g0, [%g0 + AA_DMMU_SFSR] %asi
membar #Sync
tl1_split
clr %o1
set trap, %o2
mov %g2, %o3
mov %g3, %o4
mov %g4, %o5
ba %xcc, tl1_trap
mov T_DATA_PROTECTION | T_KERNEL, %o0
END(tl0_dmmu_prot_trap)
.macro tl0_spill_0_n
wr %g0, ASI_AIUP, %asi
SPILL(stxa, %sp + SPOFF, 8, %asi)
saved
retry
.align 32
RSF_TRAP(T_SPILL)
RSF_TRAP(T_SPILL)
.endm
.macro tl0_spill_1_n
wr %g0, ASI_AIUP, %asi
SPILL(stwa, %sp, 4, %asi)
saved
retry
.align 32
RSF_TRAP(T_SPILL)
RSF_TRAP(T_SPILL)
.endm
.macro tl0_fill_0_n
wr %g0, ASI_AIUP, %asi
FILL(ldxa, %sp + SPOFF, 8, %asi)
restored
retry
.align 32
RSF_TRAP(T_FILL)
RSF_TRAP(T_FILL)
.endm
.macro tl0_fill_1_n
wr %g0, ASI_AIUP, %asi
FILL(lduwa, %sp, 4, %asi)
restored
retry
.align 32
RSF_TRAP(T_FILL)
RSF_TRAP(T_FILL)
.endm
ENTRY(tl0_sftrap)
rdpr %tstate, %g1
and %g1, TSTATE_CWP_MASK, %g1
wrpr %g1, 0, %cwp
tl0_split
clr %o1
set trap, %o2
ba %xcc, tl0_trap
mov %g2, %o0
END(tl0_sftrap)
.macro tl0_spill_bad count
.rept \count
sir
.align 128
.endr
.endm
.macro tl0_fill_bad count
.rept \count
sir
.align 128
.endr
.endm
.macro tl0_syscall
tl0_split
clr %o1
set syscall, %o2
ba %xcc, tl0_trap
mov T_SYSCALL, %o0
.align 32
.endm
.macro tl0_fp_restore
ba,a %xcc, tl0_fp_restore
nop
.align 32
.endm
ENTRY(tl0_fp_restore)
ldx [PCB_REG + PCB_FLAGS], %g1
andn %g1, PCB_FEF, %g1
stx %g1, [PCB_REG + PCB_FLAGS]
wr %g0, FPRS_FEF, %fprs
wr %g0, ASI_BLK_S, %asi
ldda [PCB_REG + PCB_UFP + (0 * 64)] %asi, %f0
ldda [PCB_REG + PCB_UFP + (1 * 64)] %asi, %f16
ldda [PCB_REG + PCB_UFP + (2 * 64)] %asi, %f32
ldda [PCB_REG + PCB_UFP + (3 * 64)] %asi, %f48
membar #Sync
done
END(tl0_fp_restore)
.macro tl1_insn_excptn
wrpr %g0, PSTATE_ALT, %pstate
wr %g0, ASI_IMMU, %asi
rdpr %tpc, %g3
ldxa [%g0 + AA_IMMU_SFSR] %asi, %g4
/*
* XXX in theory, a store to AA_IMMU_SFSR must be immediately
* followed by a DONE, FLUSH or RETRY for USIII. In practice,
* this triggers a RED state exception though.
*/
stxa %g0, [%g0 + AA_IMMU_SFSR] %asi
membar #Sync
ba %xcc, tl1_insn_exceptn_trap
mov T_INSTRUCTION_EXCEPTION | T_KERNEL, %g2
.align 32
.endm
ENTRY(tl1_insn_exceptn_trap)
tl1_split
clr %o1
set trap, %o2
mov %g3, %o4
mov %g4, %o5
ba %xcc, tl1_trap
mov %g2, %o0
END(tl1_insn_exceptn_trap)
.macro tl1_fp_disabled
ba,a %xcc, tl1_fp_disabled_1
nop
.align 32
.endm
ENTRY(tl1_fp_disabled_1)
rdpr %tpc, %g1
set fpu_fault_begin, %g2
sub %g1, %g2, %g1
cmp %g1, fpu_fault_size
bgeu,a,pn %xcc, 1f
nop
wr %g0, FPRS_FEF, %fprs
wr %g0, ASI_BLK_S, %asi
ldda [PCB_REG + PCB_KFP + (0 * 64)] %asi, %f0
ldda [PCB_REG + PCB_KFP + (1 * 64)] %asi, %f16
ldda [PCB_REG + PCB_KFP + (2 * 64)] %asi, %f32
ldda [PCB_REG + PCB_KFP + (3 * 64)] %asi, %f48
membar #Sync
retry
1: tl1_split
clr %o1
set trap, %o2
ba %xcc, tl1_trap
mov T_FP_DISABLED | T_KERNEL, %o0
END(tl1_fp_disabled_1)
.macro tl1_data_excptn
wrpr %g0, PSTATE_ALT, %pstate
ba,a %xcc, tl1_data_excptn_trap
nop
.align 32
.endm
ENTRY(tl1_data_excptn_trap)
RESUME_SPILLFILL_MMU_CLR_SFSR
ba %xcc, tl1_sfsr_trap
mov T_DATA_EXCEPTION | T_KERNEL, %g2
END(tl1_data_excptn_trap)
.macro tl1_align
wrpr %g0, PSTATE_ALT, %pstate
ba,a %xcc, tl1_align_trap
nop
.align 32
.endm
ENTRY(tl1_align_trap)
RESUME_SPILLFILL_ALIGN
ba %xcc, tl1_sfsr_trap
mov T_MEM_ADDRESS_NOT_ALIGNED | T_KERNEL, %g2
END(tl1_align_trap)
ENTRY(tl1_sfsr_trap)
wr %g0, ASI_DMMU, %asi
ldxa [%g0 + AA_DMMU_SFAR] %asi, %g3
ldxa [%g0 + AA_DMMU_SFSR] %asi, %g4
stxa %g0, [%g0 + AA_DMMU_SFSR] %asi
membar #Sync
tl1_split
clr %o1
set trap, %o2
mov %g3, %o4
mov %g4, %o5
ba %xcc, tl1_trap
mov %g2, %o0
END(tl1_sfsr_trap)
.macro tl1_intr level, mask
tl1_split
set \mask, %o1
ba %xcc, tl1_intr
mov \level, %o0
.align 32
.endm
.macro tl1_intr_level
INTR_LEVEL(1)
.endm
.macro tl1_immu_miss
/*
* Load the context and the virtual page number from the tag access
* register. We ignore the context.
*/
wr %g0, ASI_IMMU, %asi
ldxa [%g0 + AA_IMMU_TAR] %asi, %g5
/*
* Compute the address of the TTE. The TSB mask and address of the
* TSB are patched at startup.
*/
.globl tl1_immu_miss_patch_tsb_1
tl1_immu_miss_patch_tsb_1:
sethi %uhi(TSB_KERNEL), %g6
or %g6, %ulo(TSB_KERNEL), %g6
sllx %g6, 32, %g6
sethi %hi(TSB_KERNEL), %g7
or %g7, %g6, %g7
.globl tl1_immu_miss_patch_tsb_mask_1
tl1_immu_miss_patch_tsb_mask_1:
sethi %hi(TSB_KERNEL_MASK), %g6
or %g6, %lo(TSB_KERNEL_MASK), %g6
srlx %g5, TAR_VPN_SHIFT, %g5
and %g5, %g6, %g6
sllx %g6, TTE_SHIFT, %g6
add %g6, %g7, %g6
/*
* Load the TTE.
*/
.globl tl1_immu_miss_patch_quad_ldd_1
tl1_immu_miss_patch_quad_ldd_1:
ldda [%g6] TSB_QUAD_LDD, %g6 /*, %g7 */
/*
* Check that it's valid and executable and that the virtual page
* numbers match.
*/
brgez,pn %g7, tl1_immu_miss_trap
andcc %g7, TD_EXEC, %g0
bz,pn %xcc, tl1_immu_miss_trap
srlx %g6, TV_SIZE_BITS, %g6
cmp %g5, %g6
bne,pn %xcc, tl1_immu_miss_trap
EMPTY
/*
* Set the reference bit if it's currently clear.
*/
andcc %g7, TD_REF, %g0
bz,a,pn %xcc, tl1_immu_miss_set_ref
nop
/*
* Load the TTE data into the TLB and retry the instruction.
*/
stxa %g7, [%g0] ASI_ITLB_DATA_IN_REG
retry
.align 128
.endm
ENTRY(tl1_immu_miss_set_ref)
/*
* Recompute the TTE address, which we clobbered loading the TTE.
* The TSB mask and address of the TSB are patched at startup.
*/
.globl tl1_immu_miss_patch_tsb_2
tl1_immu_miss_patch_tsb_2:
sethi %uhi(TSB_KERNEL), %g6
or %g6, %ulo(TSB_KERNEL), %g6
sllx %g6, 32, %g6
sethi %hi(TSB_KERNEL), %g7
or %g7, %g6, %g7
.globl tl1_immu_miss_patch_tsb_mask_2
tl1_immu_miss_patch_tsb_mask_2:
sethi %hi(TSB_KERNEL_MASK), %g6
or %g6, %lo(TSB_KERNEL_MASK), %g6
and %g5, %g6, %g5
sllx %g5, TTE_SHIFT, %g5
add %g5, %g7, %g5
/*
* Set the reference bit.
*/
.globl tl1_immu_miss_patch_asi_1
tl1_immu_miss_patch_asi_1:
wr %g0, TSB_ASI, %asi
TTE_SET_REF(%g5, %g6, %g7, a, %asi)
/*
* May have become invalid during casxa, in which case start over.
*/
brgez,pn %g6, 1f
nop
/*
* Load the TTE data into the TLB and retry the instruction.
*/
stxa %g6, [%g0] ASI_ITLB_DATA_IN_REG
1: retry
END(tl1_immu_miss_set_ref)
ENTRY(tl1_immu_miss_trap)
/*
* Switch to alternate globals.
*/
wrpr %g0, PSTATE_ALT, %pstate
ldxa [%g0 + AA_IMMU_TAR] %asi, %g2
tl1_split
clr %o1
set trap, %o2
mov %g2, %o3
ba %xcc, tl1_trap
mov T_INSTRUCTION_MISS | T_KERNEL, %o0
END(tl1_immu_miss_trap)
.macro tl1_dmmu_miss
/*
* Load the context and the virtual page number from the tag access
* register.
*/
wr %g0, ASI_DMMU, %asi
ldxa [%g0 + AA_DMMU_TAR] %asi, %g5
/*
* Extract the context from the contents of the tag access register.
* If it's non-zero this is a fault on a user address. Note that the
* faulting address is passed in %g1.
*/
sllx %g5, 64 - TAR_VPN_SHIFT, %g6
brnz,a,pn %g6, tl1_dmmu_miss_user
mov %g5, %g1
/*
* Check for the direct mapped physical region. These addresses have
* the high bit set so they are negative.
*/
brlz,pn %g5, tl1_dmmu_miss_direct
EMPTY
/*
* Compute the address of the TTE. The TSB mask and address of the
* TSB are patched at startup.
*/
.globl tl1_dmmu_miss_patch_tsb_1
tl1_dmmu_miss_patch_tsb_1:
sethi %uhi(TSB_KERNEL), %g6
or %g6, %ulo(TSB_KERNEL), %g6
sllx %g6, 32, %g6
sethi %hi(TSB_KERNEL), %g7
or %g7, %g6, %g7
.globl tl1_dmmu_miss_patch_tsb_mask_1
tl1_dmmu_miss_patch_tsb_mask_1:
sethi %hi(TSB_KERNEL_MASK), %g6
or %g6, %lo(TSB_KERNEL_MASK), %g6
srlx %g5, TAR_VPN_SHIFT, %g5
and %g5, %g6, %g6
sllx %g6, TTE_SHIFT, %g6
add %g6, %g7, %g6
/*
* Load the TTE.
*/
.globl tl1_dmmu_miss_patch_quad_ldd_1
tl1_dmmu_miss_patch_quad_ldd_1:
ldda [%g6] TSB_QUAD_LDD, %g6 /*, %g7 */
/*
* Check that it's valid and that the virtual page numbers match.
*/
brgez,pn %g7, tl1_dmmu_miss_trap
srlx %g6, TV_SIZE_BITS, %g6
cmp %g5, %g6
bne,pn %xcc, tl1_dmmu_miss_trap
EMPTY
/*
* Set the reference bit if it's currently clear.
*/
andcc %g7, TD_REF, %g0
bz,a,pt %xcc, tl1_dmmu_miss_set_ref
nop
/*
* Load the TTE data into the TLB and retry the instruction.
*/
stxa %g7, [%g0] ASI_DTLB_DATA_IN_REG
retry
.align 128
.endm
ENTRY(tl1_dmmu_miss_set_ref)
/*
* Recompute the TTE address, which we clobbered loading the TTE.
* The TSB mask and address of the TSB are patched at startup.
*/
.globl tl1_dmmu_miss_patch_tsb_mask_2
tl1_dmmu_miss_patch_tsb_2:
sethi %uhi(TSB_KERNEL), %g6
or %g6, %ulo(TSB_KERNEL), %g6
sllx %g6, 32, %g6
sethi %hi(TSB_KERNEL), %g7
or %g7, %g6, %g7
.globl tl1_dmmu_miss_patch_tsb_2
tl1_dmmu_miss_patch_tsb_mask_2:
sethi %hi(TSB_KERNEL_MASK), %g6
or %g6, %lo(TSB_KERNEL_MASK), %g6
and %g5, %g6, %g5
sllx %g5, TTE_SHIFT, %g5
add %g5, %g7, %g5
/*
* Set the reference bit.
*/
.globl tl1_dmmu_miss_patch_asi_1
tl1_dmmu_miss_patch_asi_1:
wr %g0, TSB_ASI, %asi
TTE_SET_REF(%g5, %g6, %g7, a, %asi)
/*
* May have become invalid during casxa, in which case start over.
*/
brgez,pn %g6, 1f
nop
/*
* Load the TTE data into the TLB and retry the instruction.
*/
stxa %g6, [%g0] ASI_DTLB_DATA_IN_REG
1: retry
END(tl1_dmmu_miss_set_ref)
ENTRY(tl1_dmmu_miss_trap)
/*
* Switch to alternate globals.
*/
wrpr %g0, PSTATE_ALT, %pstate
ldxa [%g0 + AA_DMMU_TAR] %asi, %g2
KSTACK_CHECK
tl1_split
clr %o1
set trap, %o2
mov %g2, %o3
ba %xcc, tl1_trap
mov T_DATA_MISS | T_KERNEL, %o0
END(tl1_dmmu_miss_trap)
ENTRY(tl1_dmmu_miss_direct)
/*
* Mask off the high bits of the virtual address to get the physical
* address, and or in the TTE bits. The virtual address bits that
* correspond to the TTE valid and page size bits are left set, so
* they don't have to be included in the TTE bits below. We know they
* are set because the virtual address is in the upper va hole.
* NB: if we are taking advantage of the ASI_ATOMIC_QUAD_LDD_PHYS
* and we get a miss on the directly accessed kernel TSB we must not
* set TD_CV in order to access it uniformly bypassing the D$.
*/
setx TLB_DIRECT_ADDRESS_MASK, %g7, %g4
and %g5, %g4, %g4
setx TLB_DIRECT_TO_TTE_MASK, %g7, %g6
and %g5, %g6, %g5
.globl tl1_dmmu_miss_direct_patch_tsb_phys_1
tl1_dmmu_miss_direct_patch_tsb_phys_1:
sethi %uhi(TSB_KERNEL_PHYS), %g3
or %g3, %ulo(TSB_KERNEL_PHYS), %g3
sllx %g3, 32, %g3
sethi %hi(TSB_KERNEL_PHYS), %g3
or %g7, %g3, %g7
cmp %g4, %g7
bl,pt %xcc, 1f
or %g5, TD_CP | TD_W, %g5
.globl tl1_dmmu_miss_direct_patch_tsb_phys_end_1
tl1_dmmu_miss_direct_patch_tsb_phys_end_1:
sethi %uhi(TSB_KERNEL_PHYS_END), %g3
or %g3, %ulo(TSB_KERNEL_PHYS_END), %g3
sllx %g3, 32, %g3
sethi %hi(TSB_KERNEL_PHYS_END), %g7
or %g7, %g3, %g7
cmp %g4, %g7
bg,a,pt %xcc, 1f
nop
ba,pt %xcc, 2f
nop
1: or %g5, TD_CV, %g5
/*
* Load the TTE data into the TLB and retry the instruction.
*/
2: stxa %g5, [%g0] ASI_DTLB_DATA_IN_REG
retry
END(tl1_dmmu_miss_direct)
.macro tl1_dmmu_prot
ba,a %xcc, tl1_dmmu_prot_1
nop
.align 128
.endm
ENTRY(tl1_dmmu_prot_1)
/*
* Load the context and the virtual page number from the tag access
* register.
*/
wr %g0, ASI_DMMU, %asi
ldxa [%g0 + AA_DMMU_TAR] %asi, %g5
/*
* Extract the context from the contents of the tag access register.
* If it's non-zero this is a fault on a user address. Note that the
* faulting address is passed in %g1.
*/
sllx %g5, 64 - TAR_VPN_SHIFT, %g6
brnz,a,pn %g6, tl1_dmmu_prot_user
mov %g5, %g1
/*
* Compute the address of the TTE. The TSB mask and address of the
* TSB are patched at startup.
*/
.globl tl1_dmmu_prot_patch_tsb_1
tl1_dmmu_prot_patch_tsb_1:
sethi %uhi(TSB_KERNEL), %g6
or %g6, %ulo(TSB_KERNEL), %g6
sllx %g6, 32, %g6
sethi %hi(TSB_KERNEL), %g7
or %g7, %g6, %g7
.globl tl1_dmmu_prot_patch_tsb_mask_1
tl1_dmmu_prot_patch_tsb_mask_1:
sethi %hi(TSB_KERNEL_MASK), %g6
or %g6, %lo(TSB_KERNEL_MASK), %g6
srlx %g5, TAR_VPN_SHIFT, %g5
and %g5, %g6, %g6
sllx %g6, TTE_SHIFT, %g6
add %g6, %g7, %g6
/*
* Load the TTE.
*/
.globl tl1_dmmu_prot_patch_quad_ldd_1
tl1_dmmu_prot_patch_quad_ldd_1:
ldda [%g6] TSB_QUAD_LDD, %g6 /*, %g7 */
/*
* Check that it's valid and writeable and that the virtual page
* numbers match.
*/
brgez,pn %g7, tl1_dmmu_prot_trap
andcc %g7, TD_SW, %g0
bz,pn %xcc, tl1_dmmu_prot_trap
srlx %g6, TV_SIZE_BITS, %g6
cmp %g5, %g6
bne,pn %xcc, tl1_dmmu_prot_trap
EMPTY
/*
* Delete the old TLB entry and clear the SFSR.
*/
sllx %g5, TAR_VPN_SHIFT, %g6
or %g6, TLB_DEMAP_NUCLEUS, %g6
stxa %g0, [%g6] ASI_DMMU_DEMAP
stxa %g0, [%g0 + AA_DMMU_SFSR] %asi
membar #Sync
/*
* Recompute the TTE address, which we clobbered loading the TTE.
* The TSB mask and address of the TSB are patched at startup.
*/
.globl tl1_dmmu_prot_patch_tsb_2
tl1_dmmu_prot_patch_tsb_2:
sethi %uhi(TSB_KERNEL), %g6
or %g6, %ulo(TSB_KERNEL), %g6
sllx %g6, 32, %g6
sethi %hi(TSB_KERNEL), %g7
or %g7, %g6, %g7
.globl tl1_dmmu_prot_patch_tsb_mask_2
tl1_dmmu_prot_patch_tsb_mask_2:
sethi %hi(TSB_KERNEL_MASK), %g6
or %g6, %lo(TSB_KERNEL_MASK), %g6
and %g5, %g6, %g5
sllx %g5, TTE_SHIFT, %g5
add %g5, %g7, %g5
/*
* Set the hardware write bit.
*/
.globl tl1_dmmu_prot_patch_asi_1
tl1_dmmu_prot_patch_asi_1:
wr %g0, TSB_ASI, %asi
TTE_SET_W(%g5, %g6, %g7, a, %asi)
/*
* May have become invalid during casxa, in which case start over.
*/
brgez,pn %g6, 1f
or %g6, TD_W, %g6
/*
* Load the TTE data into the TLB and retry the instruction.
*/
stxa %g6, [%g0] ASI_DTLB_DATA_IN_REG
1: retry
END(tl1_dmmu_prot_1)
ENTRY(tl1_dmmu_prot_trap)
/*
* Switch to alternate globals.
*/
wrpr %g0, PSTATE_ALT, %pstate
/*
* Load the SFAR, SFSR and TAR. Clear the SFSR.
*/
ldxa [%g0 + AA_DMMU_TAR] %asi, %g2
ldxa [%g0 + AA_DMMU_SFAR] %asi, %g3
ldxa [%g0 + AA_DMMU_SFSR] %asi, %g4
stxa %g0, [%g0 + AA_DMMU_SFSR] %asi
membar #Sync
tl1_split
clr %o1
set trap, %o2
mov %g2, %o3
mov %g3, %o4
mov %g4, %o5
ba %xcc, tl1_trap
mov T_DATA_PROTECTION | T_KERNEL, %o0
END(tl1_dmmu_prot_trap)
.macro tl1_spill_0_n
SPILL(stx, %sp + SPOFF, 8, EMPTY)
saved
retry
.align 32
RSF_FATAL(T_SPILL)
RSF_FATAL(T_SPILL)
.endm
.macro tl1_spill_2_n
wr %g0, ASI_AIUP, %asi
SPILL(stxa, %sp + SPOFF, 8, %asi)
saved
retry
.align 32
RSF_SPILL_TOPCB
RSF_SPILL_TOPCB
.endm
.macro tl1_spill_3_n
wr %g0, ASI_AIUP, %asi
SPILL(stwa, %sp, 4, %asi)
saved
retry
.align 32
RSF_SPILL_TOPCB
RSF_SPILL_TOPCB
.endm
.macro tl1_spill_7_n
btst 1, %sp
bnz,a,pn %xcc, tl1_spill_0_n
nop
srl %sp, 0, %sp
SPILL(stw, %sp, 4, EMPTY)
saved
retry
.align 32
RSF_FATAL(T_SPILL)
RSF_FATAL(T_SPILL)
.endm
.macro tl1_spill_0_o
wr %g0, ASI_AIUP, %asi
SPILL(stxa, %sp + SPOFF, 8, %asi)
saved
retry
.align 32
RSF_SPILL_TOPCB
RSF_SPILL_TOPCB
.endm
.macro tl1_spill_1_o
wr %g0, ASI_AIUP, %asi
SPILL(stwa, %sp, 4, %asi)
saved
retry
.align 32
RSF_SPILL_TOPCB
RSF_SPILL_TOPCB
.endm
.macro tl1_spill_2_o
RSF_SPILL_TOPCB
.align 128
.endm
.macro tl1_fill_0_n
FILL(ldx, %sp + SPOFF, 8, EMPTY)
restored
retry
.align 32
RSF_FATAL(T_FILL)
RSF_FATAL(T_FILL)
.endm
.macro tl1_fill_2_n
wr %g0, ASI_AIUP, %asi
FILL(ldxa, %sp + SPOFF, 8, %asi)
restored
retry
.align 32
RSF_FILL_MAGIC
RSF_FILL_MAGIC
.endm
.macro tl1_fill_3_n
wr %g0, ASI_AIUP, %asi
FILL(lduwa, %sp, 4, %asi)
restored
retry
.align 32
RSF_FILL_MAGIC
RSF_FILL_MAGIC
.endm
.macro tl1_fill_7_n
btst 1, %sp
bnz,a,pt %xcc, tl1_fill_0_n
nop
srl %sp, 0, %sp
FILL(lduw, %sp, 4, EMPTY)
restored
retry
.align 32
RSF_FATAL(T_FILL)
RSF_FATAL(T_FILL)
.endm
/*
* This is used to spill windows that are still occupied with user
* data on kernel entry to the pcb.
*/
ENTRY(tl1_spill_topcb)
wrpr %g0, PSTATE_ALT, %pstate
/* Free some globals for our use. */
dec 24, ASP_REG
stx %g1, [ASP_REG + 0]
stx %g2, [ASP_REG + 8]
stx %g3, [ASP_REG + 16]
ldx [PCB_REG + PCB_NSAVED], %g1
sllx %g1, PTR_SHIFT, %g2
add %g2, PCB_REG, %g2
stx %sp, [%g2 + PCB_RWSP]
sllx %g1, RW_SHIFT, %g2
add %g2, PCB_REG, %g2
SPILL(stx, %g2 + PCB_RW, 8, EMPTY)
inc %g1
stx %g1, [PCB_REG + PCB_NSAVED]
#if KTR_COMPILE & KTR_TRAP
CATR(KTR_TRAP, "tl1_spill_topcb: pc=%#lx npc=%#lx sp=%#lx nsaved=%d"
, %g1, %g2, %g3, 7, 8, 9)
rdpr %tpc, %g2
stx %g2, [%g1 + KTR_PARM1]
rdpr %tnpc, %g2
stx %g2, [%g1 + KTR_PARM2]
stx %sp, [%g1 + KTR_PARM3]
ldx [PCB_REG + PCB_NSAVED], %g2
stx %g2, [%g1 + KTR_PARM4]
9:
#endif
saved
ldx [ASP_REG + 16], %g3
ldx [ASP_REG + 8], %g2
ldx [ASP_REG + 0], %g1
inc 24, ASP_REG
retry
END(tl1_spill_topcb)
.macro tl1_spill_bad count
.rept \count
sir
.align 128
.endr
.endm
.macro tl1_fill_bad count
.rept \count
sir
.align 128
.endr
.endm
.macro tl1_soft count
.rept \count
tl1_gen T_SOFT | T_KERNEL
.endr
.endm
.sect .trap
.globl tl_trap_begin
tl_trap_begin:
nop
.align 0x8000
.globl tl0_base
tl0_base:
tl0_reserved 8 ! 0x0-0x7
tl0_insn_excptn:
tl0_insn_excptn ! 0x8
tl0_reserved 1 ! 0x9
tl0_insn_error:
tl0_gen T_INSTRUCTION_ERROR ! 0xa
tl0_reserved 5 ! 0xb-0xf
tl0_insn_illegal:
tl0_gen T_ILLEGAL_INSTRUCTION ! 0x10
tl0_priv_opcode:
tl0_gen T_PRIVILEGED_OPCODE ! 0x11
tl0_reserved 14 ! 0x12-0x1f
tl0_fp_disabled:
tl0_gen T_FP_DISABLED ! 0x20
tl0_fp_ieee:
tl0_gen T_FP_EXCEPTION_IEEE_754 ! 0x21
tl0_fp_other:
tl0_gen T_FP_EXCEPTION_OTHER ! 0x22
tl0_tag_ovflw:
tl0_gen T_TAG_OVERFLOW ! 0x23
tl0_clean_window:
clean_window ! 0x24
tl0_divide:
tl0_gen T_DIVISION_BY_ZERO ! 0x28
tl0_reserved 7 ! 0x29-0x2f
tl0_data_excptn:
tl0_data_excptn ! 0x30
tl0_reserved 1 ! 0x31
tl0_data_error:
tl0_gen T_DATA_ERROR ! 0x32
tl0_reserved 1 ! 0x33
tl0_align:
tl0_align ! 0x34
tl0_align_lddf:
tl0_gen T_RESERVED ! 0x35
tl0_align_stdf:
tl0_gen T_RESERVED ! 0x36
tl0_priv_action:
tl0_gen T_PRIVILEGED_ACTION ! 0x37
tl0_reserved 9 ! 0x38-0x40
tl0_intr_level:
tl0_intr_level ! 0x41-0x4f
tl0_reserved 16 ! 0x50-0x5f
tl0_intr_vector:
intr_vector ! 0x60
tl0_watch_phys:
tl0_gen T_PA_WATCHPOINT ! 0x61
tl0_watch_virt:
tl0_gen T_VA_WATCHPOINT ! 0x62
tl0_ecc:
tl0_gen T_CORRECTED_ECC_ERROR ! 0x63
tl0_immu_miss:
tl0_immu_miss ! 0x64
tl0_dmmu_miss:
tl0_dmmu_miss ! 0x68
tl0_dmmu_prot:
tl0_dmmu_prot ! 0x6c
tl0_reserved 16 ! 0x70-0x7f
tl0_spill_0_n:
tl0_spill_0_n ! 0x80
tl0_spill_1_n:
tl0_spill_1_n ! 0x84
tl0_spill_bad 14 ! 0x88-0xbf
tl0_fill_0_n:
tl0_fill_0_n ! 0xc0
tl0_fill_1_n:
tl0_fill_1_n ! 0xc4
tl0_fill_bad 14 ! 0xc8-0xff
tl0_soft:
tl0_gen T_SYSCALL ! 0x100
tl0_gen T_BREAKPOINT ! 0x101
tl0_gen T_DIVISION_BY_ZERO ! 0x102
tl0_reserved 1 ! 0x103
tl0_gen T_CLEAN_WINDOW ! 0x104
tl0_gen T_RANGE_CHECK ! 0x105
tl0_gen T_FIX_ALIGNMENT ! 0x106
tl0_gen T_INTEGER_OVERFLOW ! 0x107
tl0_gen T_SYSCALL ! 0x108
tl0_gen T_SYSCALL ! 0x109
tl0_fp_restore ! 0x10a
tl0_reserved 5 ! 0x10b-0x10f
tl0_gen T_TRAP_INSTRUCTION_16 ! 0x110
tl0_gen T_TRAP_INSTRUCTION_17 ! 0x111
tl0_gen T_TRAP_INSTRUCTION_18 ! 0x112
tl0_gen T_TRAP_INSTRUCTION_19 ! 0x113
tl0_gen T_TRAP_INSTRUCTION_20 ! 0x114
tl0_gen T_TRAP_INSTRUCTION_21 ! 0x115
tl0_gen T_TRAP_INSTRUCTION_22 ! 0x116
tl0_gen T_TRAP_INSTRUCTION_23 ! 0x117
tl0_gen T_TRAP_INSTRUCTION_24 ! 0x118
tl0_gen T_TRAP_INSTRUCTION_25 ! 0x119
tl0_gen T_TRAP_INSTRUCTION_26 ! 0x11a
tl0_gen T_TRAP_INSTRUCTION_27 ! 0x11b
tl0_gen T_TRAP_INSTRUCTION_28 ! 0x11c
tl0_gen T_TRAP_INSTRUCTION_29 ! 0x11d
tl0_gen T_TRAP_INSTRUCTION_30 ! 0x11e
tl0_gen T_TRAP_INSTRUCTION_31 ! 0x11f
tl0_reserved 32 ! 0x120-0x13f
tl0_gen T_SYSCALL ! 0x140
tl0_syscall ! 0x141
tl0_gen T_SYSCALL ! 0x142
tl0_gen T_SYSCALL ! 0x143
tl0_reserved 188 ! 0x144-0x1ff
tl1_base:
tl1_reserved 8 ! 0x200-0x207
tl1_insn_excptn:
tl1_insn_excptn ! 0x208
tl1_reserved 1 ! 0x209
tl1_insn_error:
tl1_gen T_INSTRUCTION_ERROR ! 0x20a
tl1_reserved 5 ! 0x20b-0x20f
tl1_insn_illegal:
tl1_gen T_ILLEGAL_INSTRUCTION ! 0x210
tl1_priv_opcode:
tl1_gen T_PRIVILEGED_OPCODE ! 0x211
tl1_reserved 14 ! 0x212-0x21f
tl1_fp_disabled:
tl1_fp_disabled ! 0x220
tl1_fp_ieee:
tl1_gen T_FP_EXCEPTION_IEEE_754 ! 0x221
tl1_fp_other:
tl1_gen T_FP_EXCEPTION_OTHER ! 0x222
tl1_tag_ovflw:
tl1_gen T_TAG_OVERFLOW ! 0x223
tl1_clean_window:
clean_window ! 0x224
tl1_divide:
tl1_gen T_DIVISION_BY_ZERO ! 0x228
tl1_reserved 7 ! 0x229-0x22f
tl1_data_excptn:
tl1_data_excptn ! 0x230
tl1_reserved 1 ! 0x231
tl1_data_error:
tl1_gen T_DATA_ERROR ! 0x232
tl1_reserved 1 ! 0x233
tl1_align:
tl1_align ! 0x234
tl1_align_lddf:
tl1_gen T_RESERVED ! 0x235
tl1_align_stdf:
tl1_gen T_RESERVED ! 0x236
tl1_priv_action:
tl1_gen T_PRIVILEGED_ACTION ! 0x237
tl1_reserved 9 ! 0x238-0x240
tl1_intr_level:
tl1_intr_level ! 0x241-0x24f
tl1_reserved 16 ! 0x250-0x25f
tl1_intr_vector:
intr_vector ! 0x260
tl1_watch_phys:
tl1_gen T_PA_WATCHPOINT ! 0x261
tl1_watch_virt:
tl1_gen T_VA_WATCHPOINT ! 0x262
tl1_ecc:
tl1_gen T_CORRECTED_ECC_ERROR ! 0x263
tl1_immu_miss:
tl1_immu_miss ! 0x264
tl1_dmmu_miss:
tl1_dmmu_miss ! 0x268
tl1_dmmu_prot:
tl1_dmmu_prot ! 0x26c
tl1_reserved 16 ! 0x270-0x27f
tl1_spill_0_n:
tl1_spill_0_n ! 0x280
tl1_spill_bad 1 ! 0x284
tl1_spill_2_n:
tl1_spill_2_n ! 0x288
tl1_spill_3_n:
tl1_spill_3_n ! 0x28c
tl1_spill_bad 3 ! 0x290-0x29b
tl1_spill_7_n:
tl1_spill_7_n ! 0x29c
tl1_spill_0_o:
tl1_spill_0_o ! 0x2a0
tl1_spill_1_o:
tl1_spill_1_o ! 0x2a4
tl1_spill_2_o:
tl1_spill_2_o ! 0x2a8
tl1_spill_bad 5 ! 0x2ac-0x2bf
tl1_fill_0_n:
tl1_fill_0_n ! 0x2c0
tl1_fill_bad 1 ! 0x2c4
tl1_fill_2_n:
tl1_fill_2_n ! 0x2c8
tl1_fill_3_n:
tl1_fill_3_n ! 0x2cc
tl1_fill_bad 3 ! 0x2d0-0x2db
tl1_fill_7_n:
tl1_fill_7_n ! 0x2dc
tl1_fill_bad 8 ! 0x2e0-0x2ff
tl1_reserved 1 ! 0x300
tl1_breakpoint:
tl1_gen T_BREAKPOINT ! 0x301
tl1_gen T_RSTRWP_PHYS ! 0x302
tl1_gen T_RSTRWP_VIRT ! 0x303
tl1_reserved 252 ! 0x304-0x3ff
.globl tl_trap_end
tl_trap_end:
nop
/*
* User trap entry point
*
* void tl0_utrap(u_long type, u_long o1, u_long o2, u_long tar, u_long sfar,
* u_long sfsr)
*
* This handles redirecting a trap back to usermode as a user trap. The user
* program must have first registered a trap handler with the kernel using
* sysarch(SPARC_UTRAP_INSTALL). The trap handler is passed enough state
* for it to return to the trapping code directly, it will not return through
* the kernel. The trap type is passed in %o0, all out registers must be
* passed through to tl0_trap or to usermode untouched. Note that the
* parameters passed in out registers may be used by the user trap handler.
* Do not change the registers they are passed in or you will break the ABI.
*
* If the trap type allows user traps, setup state to execute the user trap
* handler and bounce back to usermode, otherwise branch to tl0_trap.
*/
ENTRY(tl0_utrap)
/*
* Check if the trap type allows user traps.
*/
cmp %o0, UT_MAX
bge,a,pt %xcc, tl0_trap
nop
/*
* Load the user trap handler from the utrap table.
*/
ldx [PCPU(CURTHREAD)], %l0
ldx [%l0 + TD_PROC], %l0
ldx [%l0 + P_MD + MD_UTRAP], %l0
brz,pt %l0, tl0_trap
sllx %o0, PTR_SHIFT, %l1
ldx [%l0 + %l1], %l0
brz,a,pt %l0, tl0_trap
nop
/*
* If the save we did on entry to the kernel had to spill a window
* to the pcb, pretend we took a spill trap instead. Any windows
* that are in the pcb must be copied out or the fill handler will
* not be able to find them, since the user trap handler returns
* directly to the trapping code. Note that we only support precise
* user traps, which implies that the condition that caused the trap
* in the first place is still valid, so it will occur again when we
* re-execute the trapping instruction.
*/
ldx [PCB_REG + PCB_NSAVED], %l1
brnz,a,pn %l1, tl0_trap
mov T_SPILL, %o0
/*
* Pass %fsr in %l4, %tstate in %l5, %tpc in %l6 and %tnpc in %l7.
* The ABI specifies only %l6 and %l7, but we need to pass %fsr or
* it may be clobbered by an interrupt before the user trap code
* can read it, and we must pass %tstate in order to restore %ccr
* and %asi. The %fsr must be stored to memory, so we use the
* temporary stack for that.
*/
rd %fprs, %l1
or %l1, FPRS_FEF, %l2
wr %l2, 0, %fprs
dec 8, ASP_REG
stx %fsr, [ASP_REG]
ldx [ASP_REG], %l4
inc 8, ASP_REG
wr %l1, 0, %fprs
rdpr %tstate, %l5
rdpr %tpc, %l6
rdpr %tnpc, %l7
/*
* Setup %tnpc to return to.
*/
wrpr %l0, 0, %tnpc
/*
* Setup %wstate for return, clear WSTATE_TRANSITION.
*/
rdpr %wstate, %l1
and %l1, WSTATE_NORMAL_MASK, %l1
wrpr %l1, 0, %wstate
/*
* Setup %tstate for return, change the saved cwp to point to the
* current window instead of the window at the time of the trap.
*/
andn %l5, TSTATE_CWP_MASK, %l1
rdpr %cwp, %l2
wrpr %l1, %l2, %tstate
/*
* Setup %sp. Userland processes will crash if this is not setup.
*/
sub %fp, CCFSZ, %sp
/*
* Execute the user trap handler.
*/
done
END(tl0_utrap)
/*
* (Real) User trap entry point
*
* void tl0_trap(u_int type, u_long o1, u_long o2, u_long tar, u_long sfsr,
* u_int sfsr)
*
* The following setup has been performed:
* - the windows have been split and the active user window has been saved
* (maybe just to the pcb)
* - we are on alternate globals and interrupts are disabled
*
* We switch to the kernel stack, build a trapframe, switch to normal
* globals, enable interrupts and call trap.
*
* NOTE: We must be very careful setting up the per-cpu pointer. We know that
* it has been pre-set in alternate globals, so we read it from there and setup
* the normal %g7 *before* enabling interrupts. This avoids any possibility
* of cpu migration and using the wrong pcpup.
*/
ENTRY(tl0_trap)
/*
* Force kernel store order.
*/
wrpr %g0, PSTATE_ALT, %pstate
rdpr %tstate, %l0
rdpr %tpc, %l1
rdpr %tnpc, %l2
rd %y, %l3
rd %fprs, %l4
rdpr %wstate, %l5
#if KTR_COMPILE & KTR_TRAP
CATR(KTR_TRAP,
"tl0_trap: td=%p type=%#x pil=%#lx pc=%#lx npc=%#lx sp=%#lx"
, %g1, %g2, %g3, 7, 8, 9)
ldx [PCPU(CURTHREAD)], %g2
stx %g2, [%g1 + KTR_PARM1]
stx %o0, [%g1 + KTR_PARM2]
rdpr %pil, %g2
stx %g2, [%g1 + KTR_PARM3]
stx %l1, [%g1 + KTR_PARM4]
stx %l2, [%g1 + KTR_PARM5]
stx %i6, [%g1 + KTR_PARM6]
9:
#endif
1: and %l5, WSTATE_NORMAL_MASK, %l5
sllx %l5, WSTATE_OTHER_SHIFT, %l5
wrpr %l5, WSTATE_KERNEL, %wstate
rdpr %canrestore, %l6
wrpr %l6, 0, %otherwin
wrpr %g0, 0, %canrestore
sub PCB_REG, SPOFF + CCFSZ + TF_SIZEOF, %sp
stx %o0, [%sp + SPOFF + CCFSZ + TF_TYPE]
stx %o1, [%sp + SPOFF + CCFSZ + TF_LEVEL]
stx %o3, [%sp + SPOFF + CCFSZ + TF_TAR]
stx %o4, [%sp + SPOFF + CCFSZ + TF_SFAR]
stx %o5, [%sp + SPOFF + CCFSZ + TF_SFSR]
stx %l0, [%sp + SPOFF + CCFSZ + TF_TSTATE]
stx %l1, [%sp + SPOFF + CCFSZ + TF_TPC]
stx %l2, [%sp + SPOFF + CCFSZ + TF_TNPC]
stx %l3, [%sp + SPOFF + CCFSZ + TF_Y]
stx %l4, [%sp + SPOFF + CCFSZ + TF_FPRS]
stx %l5, [%sp + SPOFF + CCFSZ + TF_WSTATE]
wr %g0, FPRS_FEF, %fprs
stx %fsr, [%sp + SPOFF + CCFSZ + TF_FSR]
rd %gsr, %l6
stx %l6, [%sp + SPOFF + CCFSZ + TF_GSR]
wr %g0, 0, %fprs
mov PCB_REG, %l0
mov PCPU_REG, %l1
wrpr %g0, PSTATE_NORMAL, %pstate
stx %g6, [%sp + SPOFF + CCFSZ + TF_G6]
stx %g7, [%sp + SPOFF + CCFSZ + TF_G7]
mov %l0, PCB_REG
mov %l1, PCPU_REG
wrpr %g0, PSTATE_KERNEL, %pstate
stx %i0, [%sp + SPOFF + CCFSZ + TF_O0]
stx %i1, [%sp + SPOFF + CCFSZ + TF_O1]
stx %i2, [%sp + SPOFF + CCFSZ + TF_O2]
stx %i3, [%sp + SPOFF + CCFSZ + TF_O3]
stx %i4, [%sp + SPOFF + CCFSZ + TF_O4]
stx %i5, [%sp + SPOFF + CCFSZ + TF_O5]
stx %i6, [%sp + SPOFF + CCFSZ + TF_O6]
stx %i7, [%sp + SPOFF + CCFSZ + TF_O7]
stx %g1, [%sp + SPOFF + CCFSZ + TF_G1]
stx %g2, [%sp + SPOFF + CCFSZ + TF_G2]
stx %g3, [%sp + SPOFF + CCFSZ + TF_G3]
stx %g4, [%sp + SPOFF + CCFSZ + TF_G4]
stx %g5, [%sp + SPOFF + CCFSZ + TF_G5]
set tl0_ret - 8, %o7
jmpl %o2, %g0
add %sp, CCFSZ + SPOFF, %o0
END(tl0_trap)
/*
* void tl0_intr(u_int level, u_int mask)
*/
ENTRY(tl0_intr)
/*
* Force kernel store order.
*/
wrpr %g0, PSTATE_ALT, %pstate
rdpr %tstate, %l0
rdpr %tpc, %l1
rdpr %tnpc, %l2
rd %y, %l3
rd %fprs, %l4
rdpr %wstate, %l5
#if KTR_COMPILE & KTR_INTR
CATR(KTR_INTR,
"tl0_intr: td=%p level=%#x pil=%#lx pc=%#lx npc=%#lx sp=%#lx"
, %g1, %g2, %g3, 7, 8, 9)
ldx [PCPU(CURTHREAD)], %g2
stx %g2, [%g1 + KTR_PARM1]
stx %o0, [%g1 + KTR_PARM2]
rdpr %pil, %g2
stx %g2, [%g1 + KTR_PARM3]
stx %l1, [%g1 + KTR_PARM4]
stx %l2, [%g1 + KTR_PARM5]
stx %i6, [%g1 + KTR_PARM6]
9:
#endif
wrpr %o0, 0, %pil
wr %o1, 0, %clear_softint
and %l5, WSTATE_NORMAL_MASK, %l5
sllx %l5, WSTATE_OTHER_SHIFT, %l5
wrpr %l5, WSTATE_KERNEL, %wstate
rdpr %canrestore, %l6
wrpr %l6, 0, %otherwin
wrpr %g0, 0, %canrestore
sub PCB_REG, SPOFF + CCFSZ + TF_SIZEOF, %sp
stx %l0, [%sp + SPOFF + CCFSZ + TF_TSTATE]
stx %l1, [%sp + SPOFF + CCFSZ + TF_TPC]
stx %l2, [%sp + SPOFF + CCFSZ + TF_TNPC]
stx %l3, [%sp + SPOFF + CCFSZ + TF_Y]
stx %l4, [%sp + SPOFF + CCFSZ + TF_FPRS]
stx %l5, [%sp + SPOFF + CCFSZ + TF_WSTATE]
wr %g0, FPRS_FEF, %fprs
stx %fsr, [%sp + SPOFF + CCFSZ + TF_FSR]
rd %gsr, %l6
stx %l6, [%sp + SPOFF + CCFSZ + TF_GSR]
wr %g0, 0, %fprs
mov %o0, %l3
mov T_INTERRUPT, %o1
stx %o0, [%sp + SPOFF + CCFSZ + TF_LEVEL]
stx %o1, [%sp + SPOFF + CCFSZ + TF_TYPE]
mov PCB_REG, %l0
mov PCPU_REG, %l1
wrpr %g0, PSTATE_NORMAL, %pstate
stx %g1, [%sp + SPOFF + CCFSZ + TF_G1]
stx %g2, [%sp + SPOFF + CCFSZ + TF_G2]
stx %g3, [%sp + SPOFF + CCFSZ + TF_G3]
stx %g4, [%sp + SPOFF + CCFSZ + TF_G4]
stx %g5, [%sp + SPOFF + CCFSZ + TF_G5]
stx %g6, [%sp + SPOFF + CCFSZ + TF_G6]
stx %g7, [%sp + SPOFF + CCFSZ + TF_G7]
mov %l0, PCB_REG
mov %l1, PCPU_REG
wrpr %g0, PSTATE_KERNEL, %pstate
stx %i0, [%sp + SPOFF + CCFSZ + TF_O0]
stx %i1, [%sp + SPOFF + CCFSZ + TF_O1]
stx %i2, [%sp + SPOFF + CCFSZ + TF_O2]
stx %i3, [%sp + SPOFF + CCFSZ + TF_O3]
stx %i4, [%sp + SPOFF + CCFSZ + TF_O4]
stx %i5, [%sp + SPOFF + CCFSZ + TF_O5]
stx %i6, [%sp + SPOFF + CCFSZ + TF_O6]
stx %i7, [%sp + SPOFF + CCFSZ + TF_O7]
SET(intr_handlers, %l1, %l0)
sllx %l3, IH_SHIFT, %l1
ldx [%l0 + %l1], %l1
KASSERT(%l1, "tl0_intr: ih null")
call %l1
add %sp, CCFSZ + SPOFF, %o0
/* %l3 contains PIL */
SET(intrcnt, %l1, %l2)
prefetcha [%l2] ASI_N, 1
SET(pil_countp, %l1, %l0)
sllx %l3, 1, %l1
lduh [%l0 + %l1], %l0
sllx %l0, 3, %l0
add %l0, %l2, %l0
ldx [%l0], %l1
inc %l1
stx %l1, [%l0]
call counter_intr_inc
nop
ba,a %xcc, tl0_ret
nop
END(tl0_intr)
/*
* Initiate return to usermode.
*
* Called with a trapframe on the stack. The window that was setup in
* tl0_trap may have been used by "fast" trap handlers that pretend to be
* leaf functions, so all ins and locals may have been clobbered since
* then.
*
* This code is rather long and complicated.
*/
ENTRY(tl0_ret)
/*
* Check for pending asts atomically with returning. We must raise
* the PIL before checking, and if no asts are found the PIL must
* remain raised until the retry is executed, or we risk missing asts
* caused by interrupts occurring after the test. If the PIL is
* lowered, as it is when we call ast, the check must be re-executed.
*/
wrpr %g0, PIL_TICK, %pil
ldx [PCPU(CURTHREAD)], %l0
lduw [%l0 + TD_FLAGS], %l1
set TDF_ASTPENDING | TDF_NEEDRESCHED, %l2
and %l1, %l2, %l1
brz,a,pt %l1, 1f
nop
/*
* We have an AST. Re-enable interrupts and handle it, then restart
* the return sequence.
*/
wrpr %g0, 0, %pil
call ast
add %sp, CCFSZ + SPOFF, %o0
ba,a %xcc, tl0_ret
nop
/*
* Check for windows that were spilled to the pcb and need to be
* copied out. This must be the last thing that is done before the
* return to usermode. If there are still user windows in the cpu
* and we call a nested function after this, which causes them to be
* spilled to the pcb, they will not be copied out and the stack will
* be inconsistent.
*/
1: ldx [PCB_REG + PCB_NSAVED], %l1
brz,a,pt %l1, 2f
nop
wrpr %g0, 0, %pil
mov T_SPILL, %o0
stx %o0, [%sp + SPOFF + CCFSZ + TF_TYPE]
call trap
add %sp, SPOFF + CCFSZ, %o0
ba,a %xcc, tl0_ret
nop
/*
* Restore the out and most global registers from the trapframe.
* The ins will become the outs when we restore below.
*/
2: ldx [%sp + SPOFF + CCFSZ + TF_O0], %i0
ldx [%sp + SPOFF + CCFSZ + TF_O1], %i1
ldx [%sp + SPOFF + CCFSZ + TF_O2], %i2
ldx [%sp + SPOFF + CCFSZ + TF_O3], %i3
ldx [%sp + SPOFF + CCFSZ + TF_O4], %i4
ldx [%sp + SPOFF + CCFSZ + TF_O5], %i5
ldx [%sp + SPOFF + CCFSZ + TF_O6], %i6
ldx [%sp + SPOFF + CCFSZ + TF_O7], %i7
ldx [%sp + SPOFF + CCFSZ + TF_G1], %g1
ldx [%sp + SPOFF + CCFSZ + TF_G2], %g2
ldx [%sp + SPOFF + CCFSZ + TF_G3], %g3
ldx [%sp + SPOFF + CCFSZ + TF_G4], %g4
ldx [%sp + SPOFF + CCFSZ + TF_G5], %g5
/*
* Load everything we need to restore below before disabling
* interrupts.
*/
ldx [%sp + SPOFF + CCFSZ + TF_FPRS], %l0
ldx [%sp + SPOFF + CCFSZ + TF_GSR], %l1
ldx [%sp + SPOFF + CCFSZ + TF_TNPC], %l2
ldx [%sp + SPOFF + CCFSZ + TF_TPC], %l3
ldx [%sp + SPOFF + CCFSZ + TF_TSTATE], %l4
ldx [%sp + SPOFF + CCFSZ + TF_Y], %l5
ldx [%sp + SPOFF + CCFSZ + TF_WSTATE], %l6
/*
* Disable interrupts to restore the special globals. They are not
* saved and restored for all kernel traps, so an interrupt at the
* wrong time would clobber them.
*/
wrpr %g0, PSTATE_NORMAL, %pstate
ldx [%sp + SPOFF + CCFSZ + TF_G6], %g6
ldx [%sp + SPOFF + CCFSZ + TF_G7], %g7
/*
* Switch to alternate globals. This frees up some registers we
* can use after the restore changes our window.
*/
wrpr %g0, PSTATE_ALT, %pstate
/*
* Drop %pil to zero. It must have been zero at the time of the
* trap, since we were in usermode, but it was raised above in
* order to check for asts atomically. We have interrupts disabled
* so any interrupts will not be serviced until we complete the
* return to usermode.
*/
wrpr %g0, 0, %pil
/*
* Save %fprs in an alternate global so it can be restored after the
* restore instruction below. If we restore it before the restore,
* and the restore traps we may run for a while with floating point
* enabled in the kernel, which we want to avoid.
*/
mov %l0, %g1
/*
* Restore %fsr and %gsr. These need floating point enabled in %fprs,
* so we set it temporarily and then clear it.
*/
wr %g0, FPRS_FEF, %fprs
ldx [%sp + SPOFF + CCFSZ + TF_FSR], %fsr
wr %l1, 0, %gsr
wr %g0, 0, %fprs
/*
* Restore program counters. This could be done after the restore
* but we're out of alternate globals to store them in...
*/
wrpr %l2, 0, %tnpc
wrpr %l3, 0, %tpc
/*
* Save %tstate in an alternate global and clear the %cwp field. %cwp
* will be affected by the restore below and we need to make sure it
* points to the current window at that time, not the window that was
* active at the time of the trap.
*/
andn %l4, TSTATE_CWP_MASK, %g2
/*
* Restore %y. Could also be below if we had more alternate globals.
*/
wr %l5, 0, %y
/*
* Setup %wstate for return. We need to restore the user window state
* which we saved in wstate.other when we trapped. We also need to
* set the transition bit so the restore will be handled specially
* if it traps, use the xor feature of wrpr to do that.
*/
srlx %l6, WSTATE_OTHER_SHIFT, %g3
wrpr %g3, WSTATE_TRANSITION, %wstate
/*
* Setup window management registers for return. If not all user
* windows were spilled in the kernel %otherwin will be non-zero,
* so we need to transfer it to %canrestore to correctly restore
* those windows. Otherwise everything gets set to zero and the
* restore below will fill a window directly from the user stack.
*/
rdpr %otherwin, %o0
wrpr %o0, 0, %canrestore
wrpr %g0, 0, %otherwin
wrpr %o0, 0, %cleanwin
/*
* Now do the restore. If this instruction causes a fill trap which
* fails to fill a window from the user stack, we will resume at
* tl0_ret_fill_end and call back into the kernel.
*/
restore
tl0_ret_fill:
/*
* We made it. We're back in the window that was active at the time
* of the trap, and ready to return to usermode.
*/
/*
* Restore %frps. This was saved in an alternate global above.
*/
wr %g1, 0, %fprs
/*
* Fixup %tstate so the saved %cwp points to the current window and
* restore it.
*/
rdpr %cwp, %g4
wrpr %g2, %g4, %tstate
/*
* Restore the user window state. The transition bit was set above
* for special handling of the restore, this clears it.
*/
wrpr %g3, 0, %wstate
#if KTR_COMPILE & KTR_TRAP
CATR(KTR_TRAP, "tl0_ret: td=%#lx pil=%#lx pc=%#lx npc=%#lx sp=%#lx"
, %g2, %g3, %g4, 7, 8, 9)
ldx [PCPU(CURTHREAD)], %g3
stx %g3, [%g2 + KTR_PARM1]
rdpr %pil, %g3
stx %g3, [%g2 + KTR_PARM2]
rdpr %tpc, %g3
stx %g3, [%g2 + KTR_PARM3]
rdpr %tnpc, %g3
stx %g3, [%g2 + KTR_PARM4]
stx %sp, [%g2 + KTR_PARM5]
9:
#endif
/*
* Return to usermode.
*/
retry
tl0_ret_fill_end:
#if KTR_COMPILE & KTR_TRAP
CATR(KTR_TRAP, "tl0_ret: fill magic ps=%#lx ws=%#lx sp=%#lx"
, %l0, %l1, %l2, 7, 8, 9)
rdpr %pstate, %l1
stx %l1, [%l0 + KTR_PARM1]
stx %l6, [%l0 + KTR_PARM2]
stx %sp, [%l0 + KTR_PARM3]
9:
#endif
/*
* The restore above caused a fill trap and the fill handler was
* unable to fill a window from the user stack. The special fill
* handler recognized this and punted, sending us here. We need
* to carefully undo any state that was restored before the restore
* was executed and call trap again. Trap will copyin a window
* from the user stack which will fault in the page we need so the
* restore above will succeed when we try again. If this fails
* the process has trashed its stack, so we kill it.
*/
/*
* Restore the kernel window state. This was saved in %l6 above, and
* since the restore failed we're back in the same window.
*/
wrpr %l6, 0, %wstate
/*
* Restore the normal globals which have predefined values in the
* kernel. We clobbered them above restoring the user's globals
* so this is very important.
* XXX PSTATE_ALT must already be set.
*/
wrpr %g0, PSTATE_ALT, %pstate
mov PCB_REG, %o0
mov PCPU_REG, %o1
wrpr %g0, PSTATE_NORMAL, %pstate
mov %o0, PCB_REG
mov %o1, PCPU_REG
wrpr %g0, PSTATE_KERNEL, %pstate
/*
* Simulate a fill trap and then start the whole return sequence over
* again. This is special because it only copies in 1 window, not 2
* as we would for a normal failed fill. This may be the first time
* the process has been run, so there may not be 2 windows worth of
* stack to copyin.
*/
mov T_FILL_RET, %o0
stx %o0, [%sp + SPOFF + CCFSZ + TF_TYPE]
call trap
add %sp, SPOFF + CCFSZ, %o0
ba,a %xcc, tl0_ret
nop
END(tl0_ret)
/*
* Kernel trap entry point
*
* void tl1_trap(u_int type, u_long o1, u_long o2, u_long tar, u_long sfar,
* u_int sfsr)
*
* This is easy because the stack is already setup and the windows don't need
* to be split. We build a trapframe and call trap(), the same as above, but
* the outs don't need to be saved.
*/
ENTRY(tl1_trap)
rdpr %tstate, %l0
rdpr %tpc, %l1
rdpr %tnpc, %l2
rdpr %pil, %l3
rd %y, %l4
rdpr %wstate, %l5
#if KTR_COMPILE & KTR_TRAP
CATR(KTR_TRAP, "tl1_trap: td=%p type=%#lx pil=%#lx pc=%#lx sp=%#lx"
, %g1, %g2, %g3, 7, 8, 9)
ldx [PCPU(CURTHREAD)], %g2
stx %g2, [%g1 + KTR_PARM1]
stx %o0, [%g1 + KTR_PARM2]
stx %l3, [%g1 + KTR_PARM3]
stx %l1, [%g1 + KTR_PARM4]
stx %i6, [%g1 + KTR_PARM5]
9:
#endif
wrpr %g0, 1, %tl
and %l5, WSTATE_OTHER_MASK, %l5
wrpr %l5, WSTATE_KERNEL, %wstate
stx %o0, [%sp + SPOFF + CCFSZ + TF_TYPE]
stx %o1, [%sp + SPOFF + CCFSZ + TF_LEVEL]
stx %o3, [%sp + SPOFF + CCFSZ + TF_TAR]
stx %o4, [%sp + SPOFF + CCFSZ + TF_SFAR]
stx %o5, [%sp + SPOFF + CCFSZ + TF_SFSR]
stx %l0, [%sp + SPOFF + CCFSZ + TF_TSTATE]
stx %l1, [%sp + SPOFF + CCFSZ + TF_TPC]
stx %l2, [%sp + SPOFF + CCFSZ + TF_TNPC]
stx %l3, [%sp + SPOFF + CCFSZ + TF_PIL]
stx %l4, [%sp + SPOFF + CCFSZ + TF_Y]
mov PCB_REG, %l0
mov PCPU_REG, %l1
wrpr %g0, PSTATE_NORMAL, %pstate
stx %g6, [%sp + SPOFF + CCFSZ + TF_G6]
stx %g7, [%sp + SPOFF + CCFSZ + TF_G7]
mov %l0, PCB_REG
mov %l1, PCPU_REG
wrpr %g0, PSTATE_KERNEL, %pstate
stx %i0, [%sp + SPOFF + CCFSZ + TF_O0]
stx %i1, [%sp + SPOFF + CCFSZ + TF_O1]
stx %i2, [%sp + SPOFF + CCFSZ + TF_O2]
stx %i3, [%sp + SPOFF + CCFSZ + TF_O3]
stx %i4, [%sp + SPOFF + CCFSZ + TF_O4]
stx %i5, [%sp + SPOFF + CCFSZ + TF_O5]
stx %i6, [%sp + SPOFF + CCFSZ + TF_O6]
stx %i7, [%sp + SPOFF + CCFSZ + TF_O7]
stx %g1, [%sp + SPOFF + CCFSZ + TF_G1]
stx %g2, [%sp + SPOFF + CCFSZ + TF_G2]
stx %g3, [%sp + SPOFF + CCFSZ + TF_G3]
stx %g4, [%sp + SPOFF + CCFSZ + TF_G4]
stx %g5, [%sp + SPOFF + CCFSZ + TF_G5]
set tl1_ret - 8, %o7
jmpl %o2, %g0
add %sp, CCFSZ + SPOFF, %o0
END(tl1_trap)
ENTRY(tl1_ret)
ldx [%sp + SPOFF + CCFSZ + TF_O0], %i0
ldx [%sp + SPOFF + CCFSZ + TF_O1], %i1
ldx [%sp + SPOFF + CCFSZ + TF_O2], %i2
ldx [%sp + SPOFF + CCFSZ + TF_O3], %i3
ldx [%sp + SPOFF + CCFSZ + TF_O4], %i4
ldx [%sp + SPOFF + CCFSZ + TF_O5], %i5
ldx [%sp + SPOFF + CCFSZ + TF_O6], %i6
ldx [%sp + SPOFF + CCFSZ + TF_O7], %i7
ldx [%sp + SPOFF + CCFSZ + TF_G1], %g1
ldx [%sp + SPOFF + CCFSZ + TF_G2], %g2
ldx [%sp + SPOFF + CCFSZ + TF_G3], %g3
ldx [%sp + SPOFF + CCFSZ + TF_G4], %g4
ldx [%sp + SPOFF + CCFSZ + TF_G5], %g5
ldx [%sp + SPOFF + CCFSZ + TF_TSTATE], %l0
ldx [%sp + SPOFF + CCFSZ + TF_TPC], %l1
ldx [%sp + SPOFF + CCFSZ + TF_TNPC], %l2
ldx [%sp + SPOFF + CCFSZ + TF_PIL], %l3
ldx [%sp + SPOFF + CCFSZ + TF_Y], %l4
set VM_MIN_PROM_ADDRESS, %l5
cmp %l1, %l5
bl,a,pt %xcc, 1f
nop
set VM_MAX_PROM_ADDRESS, %l5
cmp %l1, %l5
bg,a,pt %xcc, 1f
nop
wrpr %g0, PSTATE_NORMAL, %pstate
ldx [%sp + SPOFF + CCFSZ + TF_G6], %g6
ldx [%sp + SPOFF + CCFSZ + TF_G7], %g7
1: wrpr %g0, PSTATE_ALT, %pstate
andn %l0, TSTATE_CWP_MASK, %g1
mov %l1, %g2
mov %l2, %g3
wrpr %l3, 0, %pil
wr %l4, 0, %y
restore
wrpr %g0, 2, %tl
rdpr %cwp, %g4
wrpr %g1, %g4, %tstate
wrpr %g2, 0, %tpc
wrpr %g3, 0, %tnpc
#if KTR_COMPILE & KTR_TRAP
CATR(KTR_TRAP, "tl1_ret: td=%#lx pil=%#lx ts=%#lx pc=%#lx sp=%#lx"
, %g2, %g3, %g4, 7, 8, 9)
ldx [PCPU(CURTHREAD)], %g3
stx %g3, [%g2 + KTR_PARM1]
rdpr %pil, %g3
stx %g3, [%g2 + KTR_PARM2]
rdpr %tstate, %g3
stx %g3, [%g2 + KTR_PARM3]
rdpr %tpc, %g3
stx %g3, [%g2 + KTR_PARM4]
stx %sp, [%g2 + KTR_PARM5]
9:
#endif
retry
END(tl1_ret)
/*
* void tl1_intr(u_int level, u_int mask)
*/
ENTRY(tl1_intr)
rdpr %tstate, %l0
rdpr %tpc, %l1
rdpr %tnpc, %l2
rdpr %pil, %l3
rd %y, %l4
rdpr %wstate, %l5
#if KTR_COMPILE & KTR_INTR
CATR(KTR_INTR,
"tl1_intr: td=%p level=%#x pil=%#lx pc=%#lx sp=%#lx"
, %g1, %g2, %g3, 7, 8, 9)
ldx [PCPU(CURTHREAD)], %g2
stx %g2, [%g1 + KTR_PARM1]
stx %o0, [%g1 + KTR_PARM2]
stx %l3, [%g1 + KTR_PARM3]
stx %l1, [%g1 + KTR_PARM4]
stx %i6, [%g1 + KTR_PARM5]
9:
#endif
wrpr %o0, 0, %pil
wr %o1, 0, %clear_softint
wrpr %g0, 1, %tl
and %l5, WSTATE_OTHER_MASK, %l5
wrpr %l5, WSTATE_KERNEL, %wstate
stx %l0, [%sp + SPOFF + CCFSZ + TF_TSTATE]
stx %l1, [%sp + SPOFF + CCFSZ + TF_TPC]
stx %l2, [%sp + SPOFF + CCFSZ + TF_TNPC]
stx %l3, [%sp + SPOFF + CCFSZ + TF_PIL]
stx %l4, [%sp + SPOFF + CCFSZ + TF_Y]
mov %o0, %l7
mov T_INTERRUPT | T_KERNEL, %o1
stx %o0, [%sp + SPOFF + CCFSZ + TF_LEVEL]
stx %o1, [%sp + SPOFF + CCFSZ + TF_TYPE]
stx %i6, [%sp + SPOFF + CCFSZ + TF_O6]
stx %i7, [%sp + SPOFF + CCFSZ + TF_O7]
mov PCB_REG, %l4
mov PCPU_REG, %l5
wrpr %g0, PSTATE_NORMAL, %pstate
stx %g1, [%sp + SPOFF + CCFSZ + TF_G1]
stx %g2, [%sp + SPOFF + CCFSZ + TF_G2]
stx %g3, [%sp + SPOFF + CCFSZ + TF_G3]
stx %g4, [%sp + SPOFF + CCFSZ + TF_G4]
stx %g5, [%sp + SPOFF + CCFSZ + TF_G5]
mov %l4, PCB_REG
mov %l5, PCPU_REG
wrpr %g0, PSTATE_KERNEL, %pstate
SET(intr_handlers, %l5, %l4)
sllx %l7, IH_SHIFT, %l5
ldx [%l4 + %l5], %l5
KASSERT(%l5, "tl1_intr: ih null")
call %l5
add %sp, CCFSZ + SPOFF, %o0
/* %l7 contains PIL */
SET(intrcnt, %l5, %l4)
prefetcha [%l4] ASI_N, 1
SET(pil_countp, %l5, %l6)
sllx %l7, 1, %l5
lduh [%l5 + %l6], %l5
sllx %l5, 3, %l5
add %l5, %l4, %l4
ldx [%l4], %l5
inc %l5
call counter_intr_inc
stx %l5, [%l4]
ldx [%sp + SPOFF + CCFSZ + TF_Y], %l4
ldx [%sp + SPOFF + CCFSZ + TF_G1], %g1
ldx [%sp + SPOFF + CCFSZ + TF_G2], %g2
ldx [%sp + SPOFF + CCFSZ + TF_G3], %g3
ldx [%sp + SPOFF + CCFSZ + TF_G4], %g4
ldx [%sp + SPOFF + CCFSZ + TF_G5], %g5
wrpr %g0, PSTATE_ALT, %pstate
andn %l0, TSTATE_CWP_MASK, %g1
mov %l1, %g2
mov %l2, %g3
wrpr %l3, 0, %pil
wr %l4, 0, %y
restore
wrpr %g0, 2, %tl
rdpr %cwp, %g4
wrpr %g1, %g4, %tstate
wrpr %g2, 0, %tpc
wrpr %g3, 0, %tnpc
#if KTR_COMPILE & KTR_INTR
CATR(KTR_INTR, "tl1_intr: td=%#x pil=%#lx ts=%#lx pc=%#lx sp=%#lx"
, %g2, %g3, %g4, 7, 8, 9)
ldx [PCPU(CURTHREAD)], %g3
stx %g3, [%g2 + KTR_PARM1]
rdpr %pil, %g3
stx %g3, [%g2 + KTR_PARM2]
rdpr %tstate, %g3
stx %g3, [%g2 + KTR_PARM3]
rdpr %tpc, %g3
stx %g3, [%g2 + KTR_PARM4]
stx %sp, [%g2 + KTR_PARM5]
9:
#endif
retry
END(tl1_intr)
.globl tl_text_end
tl_text_end:
nop
/*
* Freshly forked processes come here when switched to for the first time.
* The arguments to fork_exit() have been setup in the locals, we must move
* them to the outs.
*/
ENTRY(fork_trampoline)
#if KTR_COMPILE & KTR_PROC
CATR(KTR_PROC, "fork_trampoline: td=%p (%s) cwp=%#lx"
, %g1, %g2, %g3, 7, 8, 9)
ldx [PCPU(CURTHREAD)], %g2
stx %g2, [%g1 + KTR_PARM1]
ldx [%g2 + TD_PROC], %g2
add %g2, P_COMM, %g2
stx %g2, [%g1 + KTR_PARM2]
rdpr %cwp, %g2
stx %g2, [%g1 + KTR_PARM3]
9:
#endif
mov %l0, %o0
mov %l1, %o1
call fork_exit
mov %l2, %o2
ba,a %xcc, tl0_ret
nop
END(fork_trampoline)