freebsd-dev/sys/x86/iommu/intel_utils.c
Ruslan Bukin c8597a1f9f o Don't include headers from iommu.h, include them from the header
consumers instead;
o Order includes properly.

Reviewed by:	kib
Sponsored by:	DARPA/AFRL
Differential Revision:	https://reviews.freebsd.org/D25878
2020-07-29 22:08:54 +00:00

670 lines
16 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/memdesc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/rman.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sf_buf.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/taskqueue.h>
#include <sys/time.h>
#include <sys/tree.h>
#include <sys/vmem.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_pageout.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr_machdep.h>
#include <x86/include/apicvar.h>
#include <x86/include/busdma_impl.h>
#include <dev/iommu/busdma_iommu.h>
#include <x86/iommu/intel_reg.h>
#include <x86/iommu/intel_dmar.h>
u_int
dmar_nd2mask(u_int nd)
{
static const u_int masks[] = {
0x000f, /* nd == 0 */
0x002f, /* nd == 1 */
0x00ff, /* nd == 2 */
0x02ff, /* nd == 3 */
0x0fff, /* nd == 4 */
0x2fff, /* nd == 5 */
0xffff, /* nd == 6 */
0x0000, /* nd == 7 reserved */
};
KASSERT(nd <= 6, ("number of domains %d", nd));
return (masks[nd]);
}
static const struct sagaw_bits_tag {
int agaw;
int cap;
int awlvl;
int pglvl;
} sagaw_bits[] = {
{.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL,
.pglvl = 2},
{.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL,
.pglvl = 3},
{.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL,
.pglvl = 4},
{.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL,
.pglvl = 5},
{.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL,
.pglvl = 6}
};
bool
dmar_pglvl_supported(struct dmar_unit *unit, int pglvl)
{
int i;
for (i = 0; i < nitems(sagaw_bits); i++) {
if (sagaw_bits[i].pglvl != pglvl)
continue;
if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
return (true);
}
return (false);
}
int
domain_set_agaw(struct dmar_domain *domain, int mgaw)
{
int sagaw, i;
domain->mgaw = mgaw;
sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap);
for (i = 0; i < nitems(sagaw_bits); i++) {
if (sagaw_bits[i].agaw >= mgaw) {
domain->agaw = sagaw_bits[i].agaw;
domain->pglvl = sagaw_bits[i].pglvl;
domain->awlvl = sagaw_bits[i].awlvl;
return (0);
}
}
device_printf(domain->dmar->dev,
"context request mgaw %d: no agaw found, sagaw %x\n",
mgaw, sagaw);
return (EINVAL);
}
/*
* Find a best fit mgaw for the given maxaddr:
* - if allow_less is false, must find sagaw which maps all requested
* addresses (used by identity mappings);
* - if allow_less is true, and no supported sagaw can map all requested
* address space, accept the biggest sagaw, whatever is it.
*/
int
dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr, bool allow_less)
{
int i;
for (i = 0; i < nitems(sagaw_bits); i++) {
if ((1ULL << sagaw_bits[i].agaw) >= maxaddr &&
(DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
break;
}
if (allow_less && i == nitems(sagaw_bits)) {
do {
i--;
} while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap)
== 0);
}
if (i < nitems(sagaw_bits))
return (sagaw_bits[i].agaw);
KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d",
(uintmax_t) maxaddr, allow_less));
return (-1);
}
/*
* Calculate the total amount of page table pages needed to map the
* whole bus address space on the context with the selected agaw.
*/
vm_pindex_t
pglvl_max_pages(int pglvl)
{
vm_pindex_t res;
int i;
for (res = 0, i = pglvl; i > 0; i--) {
res *= DMAR_NPTEPG;
res++;
}
return (res);
}
/*
* Return true if the page table level lvl supports the superpage for
* the context ctx.
*/
int
domain_is_sp_lvl(struct dmar_domain *domain, int lvl)
{
int alvl, cap_sps;
static const int sagaw_sp[] = {
DMAR_CAP_SPS_2M,
DMAR_CAP_SPS_1G,
DMAR_CAP_SPS_512G,
DMAR_CAP_SPS_1T
};
alvl = domain->pglvl - lvl - 1;
cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap);
return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0);
}
iommu_gaddr_t
pglvl_page_size(int total_pglvl, int lvl)
{
int rlvl;
static const iommu_gaddr_t pg_sz[] = {
(iommu_gaddr_t)DMAR_PAGE_SIZE,
(iommu_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT,
(iommu_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT),
(iommu_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT),
(iommu_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT),
(iommu_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT)
};
KASSERT(lvl >= 0 && lvl < total_pglvl,
("total %d lvl %d", total_pglvl, lvl));
rlvl = total_pglvl - lvl - 1;
KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl));
return (pg_sz[rlvl]);
}
iommu_gaddr_t
domain_page_size(struct dmar_domain *domain, int lvl)
{
return (pglvl_page_size(domain->pglvl, lvl));
}
int
calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size,
iommu_gaddr_t *isizep)
{
iommu_gaddr_t isize;
int am;
for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) {
isize = 1ULL << (am + DMAR_PAGE_SHIFT);
if ((base & (isize - 1)) == 0 && size >= isize)
break;
if (am == 0)
break;
}
*isizep = isize;
return (am);
}
iommu_haddr_t dmar_high;
int haw;
int dmar_tbl_pagecnt;
vm_page_t
dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags)
{
vm_page_t m;
int zeroed, aflags;
zeroed = (flags & IOMMU_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0;
aflags = zeroed | VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP |
((flags & IOMMU_PGF_WAITOK) != 0 ? VM_ALLOC_WAITFAIL :
VM_ALLOC_NOWAIT);
for (;;) {
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WLOCK(obj);
m = vm_page_lookup(obj, idx);
if ((flags & IOMMU_PGF_NOALLOC) != 0 || m != NULL) {
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WUNLOCK(obj);
break;
}
m = vm_page_alloc_contig(obj, idx, aflags, 1, 0,
dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WUNLOCK(obj);
if (m != NULL) {
if (zeroed && (m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
atomic_add_int(&dmar_tbl_pagecnt, 1);
break;
}
if ((flags & IOMMU_PGF_WAITOK) == 0)
break;
}
return (m);
}
void
dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags)
{
vm_page_t m;
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WLOCK(obj);
m = vm_page_grab(obj, idx, VM_ALLOC_NOCREAT);
if (m != NULL) {
vm_page_free(m);
atomic_subtract_int(&dmar_tbl_pagecnt, 1);
}
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WUNLOCK(obj);
}
void *
dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
struct sf_buf **sf)
{
vm_page_t m;
bool allocated;
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WLOCK(obj);
m = vm_page_lookup(obj, idx);
if (m == NULL && (flags & IOMMU_PGF_ALLOC) != 0) {
m = dmar_pgalloc(obj, idx, flags | IOMMU_PGF_OBJL);
allocated = true;
} else
allocated = false;
if (m == NULL) {
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WUNLOCK(obj);
return (NULL);
}
/* Sleepable allocations cannot fail. */
if ((flags & IOMMU_PGF_WAITOK) != 0)
VM_OBJECT_WUNLOCK(obj);
sched_pin();
*sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & IOMMU_PGF_WAITOK)
== 0 ? SFB_NOWAIT : 0));
if (*sf == NULL) {
sched_unpin();
if (allocated) {
VM_OBJECT_ASSERT_WLOCKED(obj);
dmar_pgfree(obj, m->pindex, flags | IOMMU_PGF_OBJL);
}
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WUNLOCK(obj);
return (NULL);
}
if ((flags & (IOMMU_PGF_WAITOK | IOMMU_PGF_OBJL)) ==
(IOMMU_PGF_WAITOK | IOMMU_PGF_OBJL))
VM_OBJECT_WLOCK(obj);
else if ((flags & (IOMMU_PGF_WAITOK | IOMMU_PGF_OBJL)) == 0)
VM_OBJECT_WUNLOCK(obj);
return ((void *)sf_buf_kva(*sf));
}
void
dmar_unmap_pgtbl(struct sf_buf *sf)
{
sf_buf_free(sf);
sched_unpin();
}
static void
dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz)
{
if (DMAR_IS_COHERENT(unit))
return;
/*
* If DMAR does not snoop paging structures accesses, flush
* CPU cache to memory.
*/
pmap_force_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz);
}
void
dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst)
{
dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
}
void
dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst)
{
dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
}
void
dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst)
{
dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
}
/*
* Load the root entry pointer into the hardware, busily waiting for
* the completion.
*/
int
dmar_load_root_entry_ptr(struct dmar_unit *unit)
{
vm_page_t root_entry;
int error;
/*
* Access to the GCMD register must be serialized while the
* command is submitted.
*/
DMAR_ASSERT_LOCKED(unit);
VM_OBJECT_RLOCK(unit->ctx_obj);
root_entry = vm_page_lookup(unit->ctx_obj, 0);
VM_OBJECT_RUNLOCK(unit->ctx_obj);
dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry));
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS)
!= 0));
return (error);
}
/*
* Globally invalidate the context entries cache, busily waiting for
* the completion.
*/
int
dmar_inv_ctx_glob(struct dmar_unit *unit)
{
int error;
/*
* Access to the CCMD register must be serialized while the
* command is submitted.
*/
DMAR_ASSERT_LOCKED(unit);
KASSERT(!unit->qi_enabled, ("QI enabled"));
/*
* The DMAR_CCMD_ICC bit in the upper dword should be written
* after the low dword write is completed. Amd64
* dmar_write8() does not have this issue, i386 dmar_write8()
* writes the upper dword last.
*/
dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32)
== 0));
return (error);
}
/*
* Globally invalidate the IOTLB, busily waiting for the completion.
*/
int
dmar_inv_iotlb_glob(struct dmar_unit *unit)
{
int error, reg;
DMAR_ASSERT_LOCKED(unit);
KASSERT(!unit->qi_enabled, ("QI enabled"));
reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap);
/* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */
dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW);
DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) &
DMAR_IOTLB_IVT32) == 0));
return (error);
}
/*
* Flush the chipset write buffers. See 11.1 "Write Buffer Flushing"
* in the architecture specification.
*/
int
dmar_flush_write_bufs(struct dmar_unit *unit)
{
int error;
DMAR_ASSERT_LOCKED(unit);
/*
* DMAR_GCMD_WBF is only valid when CAP_RWBF is reported.
*/
KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0,
("dmar%d: no RWBF", unit->iommu.unit));
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS)
!= 0));
return (error);
}
int
dmar_enable_translation(struct dmar_unit *unit)
{
int error;
DMAR_ASSERT_LOCKED(unit);
unit->hw_gcmd |= DMAR_GCMD_TE;
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
!= 0));
return (error);
}
int
dmar_disable_translation(struct dmar_unit *unit)
{
int error;
DMAR_ASSERT_LOCKED(unit);
unit->hw_gcmd &= ~DMAR_GCMD_TE;
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
== 0));
return (error);
}
int
dmar_load_irt_ptr(struct dmar_unit *unit)
{
uint64_t irta, s;
int error;
DMAR_ASSERT_LOCKED(unit);
irta = unit->irt_phys;
if (DMAR_X2APIC(unit))
irta |= DMAR_IRTA_EIME;
s = fls(unit->irte_cnt) - 2;
KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK &&
powerof2(unit->irte_cnt),
("IRTA_REG_S overflow %x", unit->irte_cnt));
irta |= s;
dmar_write8(unit, DMAR_IRTA_REG, irta);
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS)
!= 0));
return (error);
}
int
dmar_enable_ir(struct dmar_unit *unit)
{
int error;
DMAR_ASSERT_LOCKED(unit);
unit->hw_gcmd |= DMAR_GCMD_IRE;
unit->hw_gcmd &= ~DMAR_GCMD_CFI;
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
!= 0));
return (error);
}
int
dmar_disable_ir(struct dmar_unit *unit)
{
int error;
DMAR_ASSERT_LOCKED(unit);
unit->hw_gcmd &= ~DMAR_GCMD_IRE;
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
== 0));
return (error);
}
#define BARRIER_F \
u_int f_done, f_inproc, f_wakeup; \
\
f_done = 1 << (barrier_id * 3); \
f_inproc = 1 << (barrier_id * 3 + 1); \
f_wakeup = 1 << (barrier_id * 3 + 2)
bool
dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id)
{
BARRIER_F;
DMAR_LOCK(dmar);
if ((dmar->barrier_flags & f_done) != 0) {
DMAR_UNLOCK(dmar);
return (false);
}
if ((dmar->barrier_flags & f_inproc) != 0) {
while ((dmar->barrier_flags & f_inproc) != 0) {
dmar->barrier_flags |= f_wakeup;
msleep(&dmar->barrier_flags, &dmar->iommu.lock, 0,
"dmarb", 0);
}
KASSERT((dmar->barrier_flags & f_done) != 0,
("dmar%d barrier %d missing done", dmar->iommu.unit,
barrier_id));
DMAR_UNLOCK(dmar);
return (false);
}
dmar->barrier_flags |= f_inproc;
DMAR_UNLOCK(dmar);
return (true);
}
void
dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id)
{
BARRIER_F;
DMAR_ASSERT_LOCKED(dmar);
KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc,
("dmar%d barrier %d missed entry", dmar->iommu.unit, barrier_id));
dmar->barrier_flags |= f_done;
if ((dmar->barrier_flags & f_wakeup) != 0)
wakeup(&dmar->barrier_flags);
dmar->barrier_flags &= ~(f_inproc | f_wakeup);
DMAR_UNLOCK(dmar);
}
int dmar_batch_coalesce = 100;
struct timespec dmar_hw_timeout = {
.tv_sec = 0,
.tv_nsec = 1000000
};
static const uint64_t d = 1000000000;
void
dmar_update_timeout(uint64_t newval)
{
/* XXXKIB not atomic */
dmar_hw_timeout.tv_sec = newval / d;
dmar_hw_timeout.tv_nsec = newval % d;
}
uint64_t
dmar_get_timeout(void)
{
return ((uint64_t)dmar_hw_timeout.tv_sec * d +
dmar_hw_timeout.tv_nsec);
}
static int
dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS)
{
uint64_t val;
int error;
val = dmar_get_timeout();
error = sysctl_handle_long(oidp, &val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
dmar_update_timeout(val);
return (error);
}
static SYSCTL_NODE(_hw_iommu, OID_AUTO, dmar, CTLFLAG_RD | CTLFLAG_MPSAFE,
NULL, "");
SYSCTL_INT(_hw_iommu_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD,
&dmar_tbl_pagecnt, 0,
"Count of pages used for DMAR pagetables");
SYSCTL_INT(_hw_iommu_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN,
&dmar_batch_coalesce, 0,
"Number of qi batches between interrupt");
SYSCTL_PROC(_hw_iommu_dmar, OID_AUTO, timeout,
CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
dmar_timeout_sysctl, "QU",
"Timeout for command wait, in nanoseconds");