3dfb57a35e
OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
883 lines
27 KiB
C
883 lines
27 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2012, 2014 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/kstat.h>
|
|
|
|
/*
|
|
* ZFS I/O Scheduler
|
|
* ---------------
|
|
*
|
|
* ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
|
|
* I/O scheduler determines when and in what order those operations are
|
|
* issued. The I/O scheduler divides operations into five I/O classes
|
|
* prioritized in the following order: sync read, sync write, async read,
|
|
* async write, and scrub/resilver. Each queue defines the minimum and
|
|
* maximum number of concurrent operations that may be issued to the device.
|
|
* In addition, the device has an aggregate maximum. Note that the sum of the
|
|
* per-queue minimums must not exceed the aggregate maximum. If the
|
|
* sum of the per-queue maximums exceeds the aggregate maximum, then the
|
|
* number of active i/os may reach zfs_vdev_max_active, in which case no
|
|
* further i/os will be issued regardless of whether all per-queue
|
|
* minimums have been met.
|
|
*
|
|
* For many physical devices, throughput increases with the number of
|
|
* concurrent operations, but latency typically suffers. Further, physical
|
|
* devices typically have a limit at which more concurrent operations have no
|
|
* effect on throughput or can actually cause it to decrease.
|
|
*
|
|
* The scheduler selects the next operation to issue by first looking for an
|
|
* I/O class whose minimum has not been satisfied. Once all are satisfied and
|
|
* the aggregate maximum has not been hit, the scheduler looks for classes
|
|
* whose maximum has not been satisfied. Iteration through the I/O classes is
|
|
* done in the order specified above. No further operations are issued if the
|
|
* aggregate maximum number of concurrent operations has been hit or if there
|
|
* are no operations queued for an I/O class that has not hit its maximum.
|
|
* Every time an i/o is queued or an operation completes, the I/O scheduler
|
|
* looks for new operations to issue.
|
|
*
|
|
* All I/O classes have a fixed maximum number of outstanding operations
|
|
* except for the async write class. Asynchronous writes represent the data
|
|
* that is committed to stable storage during the syncing stage for
|
|
* transaction groups (see txg.c). Transaction groups enter the syncing state
|
|
* periodically so the number of queued async writes will quickly burst up and
|
|
* then bleed down to zero. Rather than servicing them as quickly as possible,
|
|
* the I/O scheduler changes the maximum number of active async write i/os
|
|
* according to the amount of dirty data in the pool (see dsl_pool.c). Since
|
|
* both throughput and latency typically increase with the number of
|
|
* concurrent operations issued to physical devices, reducing the burstiness
|
|
* in the number of concurrent operations also stabilizes the response time of
|
|
* operations from other -- and in particular synchronous -- queues. In broad
|
|
* strokes, the I/O scheduler will issue more concurrent operations from the
|
|
* async write queue as there's more dirty data in the pool.
|
|
*
|
|
* Async Writes
|
|
*
|
|
* The number of concurrent operations issued for the async write I/O class
|
|
* follows a piece-wise linear function defined by a few adjustable points.
|
|
*
|
|
* | o---------| <-- zfs_vdev_async_write_max_active
|
|
* ^ | /^ |
|
|
* | | / | |
|
|
* active | / | |
|
|
* I/O | / | |
|
|
* count | / | |
|
|
* | / | |
|
|
* |------------o | | <-- zfs_vdev_async_write_min_active
|
|
* 0|____________^______|_________|
|
|
* 0% | | 100% of zfs_dirty_data_max
|
|
* | |
|
|
* | `-- zfs_vdev_async_write_active_max_dirty_percent
|
|
* `--------- zfs_vdev_async_write_active_min_dirty_percent
|
|
*
|
|
* Until the amount of dirty data exceeds a minimum percentage of the dirty
|
|
* data allowed in the pool, the I/O scheduler will limit the number of
|
|
* concurrent operations to the minimum. As that threshold is crossed, the
|
|
* number of concurrent operations issued increases linearly to the maximum at
|
|
* the specified maximum percentage of the dirty data allowed in the pool.
|
|
*
|
|
* Ideally, the amount of dirty data on a busy pool will stay in the sloped
|
|
* part of the function between zfs_vdev_async_write_active_min_dirty_percent
|
|
* and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
|
|
* maximum percentage, this indicates that the rate of incoming data is
|
|
* greater than the rate that the backend storage can handle. In this case, we
|
|
* must further throttle incoming writes (see dmu_tx_delay() for details).
|
|
*/
|
|
|
|
/*
|
|
* The maximum number of i/os active to each device. Ideally, this will be >=
|
|
* the sum of each queue's max_active. It must be at least the sum of each
|
|
* queue's min_active.
|
|
*/
|
|
uint32_t zfs_vdev_max_active = 1000;
|
|
|
|
/*
|
|
* Per-queue limits on the number of i/os active to each device. If the
|
|
* number of active i/os is < zfs_vdev_max_active, then the min_active comes
|
|
* into play. We will send min_active from each queue, and then select from
|
|
* queues in the order defined by zio_priority_t.
|
|
*
|
|
* In general, smaller max_active's will lead to lower latency of synchronous
|
|
* operations. Larger max_active's may lead to higher overall throughput,
|
|
* depending on underlying storage.
|
|
*
|
|
* The ratio of the queues' max_actives determines the balance of performance
|
|
* between reads, writes, and scrubs. E.g., increasing
|
|
* zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
|
|
* more quickly, but reads and writes to have higher latency and lower
|
|
* throughput.
|
|
*/
|
|
uint32_t zfs_vdev_sync_read_min_active = 10;
|
|
uint32_t zfs_vdev_sync_read_max_active = 10;
|
|
uint32_t zfs_vdev_sync_write_min_active = 10;
|
|
uint32_t zfs_vdev_sync_write_max_active = 10;
|
|
uint32_t zfs_vdev_async_read_min_active = 1;
|
|
uint32_t zfs_vdev_async_read_max_active = 3;
|
|
uint32_t zfs_vdev_async_write_min_active = 1;
|
|
uint32_t zfs_vdev_async_write_max_active = 10;
|
|
uint32_t zfs_vdev_scrub_min_active = 1;
|
|
uint32_t zfs_vdev_scrub_max_active = 2;
|
|
|
|
/*
|
|
* When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
|
|
* dirty data, use zfs_vdev_async_write_min_active. When it has more than
|
|
* zfs_vdev_async_write_active_max_dirty_percent, use
|
|
* zfs_vdev_async_write_max_active. The value is linearly interpolated
|
|
* between min and max.
|
|
*/
|
|
int zfs_vdev_async_write_active_min_dirty_percent = 30;
|
|
int zfs_vdev_async_write_active_max_dirty_percent = 60;
|
|
|
|
/*
|
|
* To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
|
|
* For read I/Os, we also aggregate across small adjacency gaps; for writes
|
|
* we include spans of optional I/Os to aid aggregation at the disk even when
|
|
* they aren't able to help us aggregate at this level.
|
|
*/
|
|
int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
|
|
int zfs_vdev_read_gap_limit = 32 << 10;
|
|
int zfs_vdev_write_gap_limit = 4 << 10;
|
|
|
|
/*
|
|
* Define the queue depth percentage for each top-level. This percentage is
|
|
* used in conjunction with zfs_vdev_async_max_active to determine how many
|
|
* allocations a specific top-level vdev should handle. Once the queue depth
|
|
* reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
|
|
* then allocator will stop allocating blocks on that top-level device.
|
|
* The default kernel setting is 1000% which will yield 100 allocations per
|
|
* device. For userland testing, the default setting is 300% which equates
|
|
* to 30 allocations per device.
|
|
*/
|
|
#ifdef _KERNEL
|
|
int zfs_vdev_queue_depth_pct = 1000;
|
|
#else
|
|
int zfs_vdev_queue_depth_pct = 300;
|
|
#endif
|
|
|
|
|
|
int
|
|
vdev_queue_offset_compare(const void *x1, const void *x2)
|
|
{
|
|
const zio_t *z1 = (const zio_t *)x1;
|
|
const zio_t *z2 = (const zio_t *)x2;
|
|
|
|
int cmp = AVL_CMP(z1->io_offset, z2->io_offset);
|
|
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
return (AVL_PCMP(z1, z2));
|
|
}
|
|
|
|
static inline avl_tree_t *
|
|
vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
|
|
{
|
|
return (&vq->vq_class[p].vqc_queued_tree);
|
|
}
|
|
|
|
static inline avl_tree_t *
|
|
vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
|
|
{
|
|
ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE);
|
|
if (t == ZIO_TYPE_READ)
|
|
return (&vq->vq_read_offset_tree);
|
|
else
|
|
return (&vq->vq_write_offset_tree);
|
|
}
|
|
|
|
int
|
|
vdev_queue_timestamp_compare(const void *x1, const void *x2)
|
|
{
|
|
const zio_t *z1 = (const zio_t *)x1;
|
|
const zio_t *z2 = (const zio_t *)x2;
|
|
|
|
int cmp = AVL_CMP(z1->io_timestamp, z2->io_timestamp);
|
|
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
return (AVL_PCMP(z1, z2));
|
|
}
|
|
|
|
static int
|
|
vdev_queue_class_min_active(zio_priority_t p)
|
|
{
|
|
switch (p) {
|
|
case ZIO_PRIORITY_SYNC_READ:
|
|
return (zfs_vdev_sync_read_min_active);
|
|
case ZIO_PRIORITY_SYNC_WRITE:
|
|
return (zfs_vdev_sync_write_min_active);
|
|
case ZIO_PRIORITY_ASYNC_READ:
|
|
return (zfs_vdev_async_read_min_active);
|
|
case ZIO_PRIORITY_ASYNC_WRITE:
|
|
return (zfs_vdev_async_write_min_active);
|
|
case ZIO_PRIORITY_SCRUB:
|
|
return (zfs_vdev_scrub_min_active);
|
|
default:
|
|
panic("invalid priority %u", p);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
static int
|
|
vdev_queue_max_async_writes(spa_t *spa)
|
|
{
|
|
int writes;
|
|
uint64_t dirty = 0;
|
|
dsl_pool_t *dp = spa_get_dsl(spa);
|
|
uint64_t min_bytes = zfs_dirty_data_max *
|
|
zfs_vdev_async_write_active_min_dirty_percent / 100;
|
|
uint64_t max_bytes = zfs_dirty_data_max *
|
|
zfs_vdev_async_write_active_max_dirty_percent / 100;
|
|
|
|
/*
|
|
* Async writes may occur before the assignment of the spa's
|
|
* dsl_pool_t if a self-healing zio is issued prior to the
|
|
* completion of dmu_objset_open_impl().
|
|
*/
|
|
if (dp == NULL)
|
|
return (zfs_vdev_async_write_max_active);
|
|
|
|
/*
|
|
* Sync tasks correspond to interactive user actions. To reduce the
|
|
* execution time of those actions we push data out as fast as possible.
|
|
*/
|
|
if (spa_has_pending_synctask(spa))
|
|
return (zfs_vdev_async_write_max_active);
|
|
|
|
dirty = dp->dp_dirty_total;
|
|
if (dirty < min_bytes)
|
|
return (zfs_vdev_async_write_min_active);
|
|
if (dirty > max_bytes)
|
|
return (zfs_vdev_async_write_max_active);
|
|
|
|
/*
|
|
* linear interpolation:
|
|
* slope = (max_writes - min_writes) / (max_bytes - min_bytes)
|
|
* move right by min_bytes
|
|
* move up by min_writes
|
|
*/
|
|
writes = (dirty - min_bytes) *
|
|
(zfs_vdev_async_write_max_active -
|
|
zfs_vdev_async_write_min_active) /
|
|
(max_bytes - min_bytes) +
|
|
zfs_vdev_async_write_min_active;
|
|
ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
|
|
ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
|
|
return (writes);
|
|
}
|
|
|
|
static int
|
|
vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
|
|
{
|
|
switch (p) {
|
|
case ZIO_PRIORITY_SYNC_READ:
|
|
return (zfs_vdev_sync_read_max_active);
|
|
case ZIO_PRIORITY_SYNC_WRITE:
|
|
return (zfs_vdev_sync_write_max_active);
|
|
case ZIO_PRIORITY_ASYNC_READ:
|
|
return (zfs_vdev_async_read_max_active);
|
|
case ZIO_PRIORITY_ASYNC_WRITE:
|
|
return (vdev_queue_max_async_writes(spa));
|
|
case ZIO_PRIORITY_SCRUB:
|
|
return (zfs_vdev_scrub_max_active);
|
|
default:
|
|
panic("invalid priority %u", p);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
|
|
* there is no eligible class.
|
|
*/
|
|
static zio_priority_t
|
|
vdev_queue_class_to_issue(vdev_queue_t *vq)
|
|
{
|
|
spa_t *spa = vq->vq_vdev->vdev_spa;
|
|
zio_priority_t p;
|
|
|
|
if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
|
|
return (ZIO_PRIORITY_NUM_QUEUEABLE);
|
|
|
|
/* find a queue that has not reached its minimum # outstanding i/os */
|
|
for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
|
|
if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
|
|
vq->vq_class[p].vqc_active <
|
|
vdev_queue_class_min_active(p))
|
|
return (p);
|
|
}
|
|
|
|
/*
|
|
* If we haven't found a queue, look for one that hasn't reached its
|
|
* maximum # outstanding i/os.
|
|
*/
|
|
for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
|
|
if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
|
|
vq->vq_class[p].vqc_active <
|
|
vdev_queue_class_max_active(spa, p))
|
|
return (p);
|
|
}
|
|
|
|
/* No eligible queued i/os */
|
|
return (ZIO_PRIORITY_NUM_QUEUEABLE);
|
|
}
|
|
|
|
void
|
|
vdev_queue_init(vdev_t *vd)
|
|
{
|
|
vdev_queue_t *vq = &vd->vdev_queue;
|
|
zio_priority_t p;
|
|
|
|
mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
vq->vq_vdev = vd;
|
|
taskq_init_ent(&vd->vdev_queue.vq_io_search.io_tqent);
|
|
|
|
avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
|
|
sizeof (zio_t), offsetof(struct zio, io_queue_node));
|
|
avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
|
|
vdev_queue_offset_compare, sizeof (zio_t),
|
|
offsetof(struct zio, io_offset_node));
|
|
avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
|
|
vdev_queue_offset_compare, sizeof (zio_t),
|
|
offsetof(struct zio, io_offset_node));
|
|
|
|
for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
|
|
int (*compfn) (const void *, const void *);
|
|
|
|
/*
|
|
* The synchronous i/o queues are dispatched in FIFO rather
|
|
* than LBA order. This provides more consistent latency for
|
|
* these i/os.
|
|
*/
|
|
if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
|
|
compfn = vdev_queue_timestamp_compare;
|
|
else
|
|
compfn = vdev_queue_offset_compare;
|
|
avl_create(vdev_queue_class_tree(vq, p), compfn,
|
|
sizeof (zio_t), offsetof(struct zio, io_queue_node));
|
|
}
|
|
|
|
vq->vq_lastoffset = 0;
|
|
}
|
|
|
|
void
|
|
vdev_queue_fini(vdev_t *vd)
|
|
{
|
|
vdev_queue_t *vq = &vd->vdev_queue;
|
|
zio_priority_t p;
|
|
|
|
for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
|
|
avl_destroy(vdev_queue_class_tree(vq, p));
|
|
avl_destroy(&vq->vq_active_tree);
|
|
avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
|
|
avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
|
|
|
|
mutex_destroy(&vq->vq_lock);
|
|
}
|
|
|
|
static void
|
|
vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
spa_stats_history_t *ssh = &spa->spa_stats.io_history;
|
|
|
|
ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
|
|
avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
|
|
avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
|
|
|
|
if (ssh->kstat != NULL) {
|
|
mutex_enter(&ssh->lock);
|
|
kstat_waitq_enter(ssh->kstat->ks_data);
|
|
mutex_exit(&ssh->lock);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
spa_stats_history_t *ssh = &spa->spa_stats.io_history;
|
|
|
|
ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
|
|
avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
|
|
avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
|
|
|
|
if (ssh->kstat != NULL) {
|
|
mutex_enter(&ssh->lock);
|
|
kstat_waitq_exit(ssh->kstat->ks_data);
|
|
mutex_exit(&ssh->lock);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
spa_stats_history_t *ssh = &spa->spa_stats.io_history;
|
|
|
|
ASSERT(MUTEX_HELD(&vq->vq_lock));
|
|
ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
|
|
vq->vq_class[zio->io_priority].vqc_active++;
|
|
avl_add(&vq->vq_active_tree, zio);
|
|
|
|
if (ssh->kstat != NULL) {
|
|
mutex_enter(&ssh->lock);
|
|
kstat_runq_enter(ssh->kstat->ks_data);
|
|
mutex_exit(&ssh->lock);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
spa_stats_history_t *ssh = &spa->spa_stats.io_history;
|
|
|
|
ASSERT(MUTEX_HELD(&vq->vq_lock));
|
|
ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
|
|
vq->vq_class[zio->io_priority].vqc_active--;
|
|
avl_remove(&vq->vq_active_tree, zio);
|
|
|
|
if (ssh->kstat != NULL) {
|
|
kstat_io_t *ksio = ssh->kstat->ks_data;
|
|
|
|
mutex_enter(&ssh->lock);
|
|
kstat_runq_exit(ksio);
|
|
if (zio->io_type == ZIO_TYPE_READ) {
|
|
ksio->reads++;
|
|
ksio->nread += zio->io_size;
|
|
} else if (zio->io_type == ZIO_TYPE_WRITE) {
|
|
ksio->writes++;
|
|
ksio->nwritten += zio->io_size;
|
|
}
|
|
mutex_exit(&ssh->lock);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_queue_agg_io_done(zio_t *aio)
|
|
{
|
|
if (aio->io_type == ZIO_TYPE_READ) {
|
|
zio_t *pio;
|
|
zio_link_t *zl = NULL;
|
|
while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
|
|
bcopy((char *)aio->io_data + (pio->io_offset -
|
|
aio->io_offset), pio->io_data, pio->io_size);
|
|
}
|
|
}
|
|
|
|
zio_buf_free(aio->io_data, aio->io_size);
|
|
}
|
|
|
|
/*
|
|
* Compute the range spanned by two i/os, which is the endpoint of the last
|
|
* (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
|
|
* Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
|
|
* thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
|
|
*/
|
|
#define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
|
|
#define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
|
|
|
|
static zio_t *
|
|
vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
|
|
{
|
|
zio_t *first, *last, *aio, *dio, *mandatory, *nio;
|
|
uint64_t maxgap = 0;
|
|
uint64_t size;
|
|
uint64_t limit;
|
|
boolean_t stretch = B_FALSE;
|
|
avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
|
|
enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
|
|
void *buf;
|
|
|
|
limit = MAX(MIN(zfs_vdev_aggregation_limit,
|
|
spa_maxblocksize(vq->vq_vdev->vdev_spa)), 0);
|
|
|
|
if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE || limit == 0)
|
|
return (NULL);
|
|
|
|
first = last = zio;
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ)
|
|
maxgap = zfs_vdev_read_gap_limit;
|
|
|
|
/*
|
|
* We can aggregate I/Os that are sufficiently adjacent and of
|
|
* the same flavor, as expressed by the AGG_INHERIT flags.
|
|
* The latter requirement is necessary so that certain
|
|
* attributes of the I/O, such as whether it's a normal I/O
|
|
* or a scrub/resilver, can be preserved in the aggregate.
|
|
* We can include optional I/Os, but don't allow them
|
|
* to begin a range as they add no benefit in that situation.
|
|
*/
|
|
|
|
/*
|
|
* We keep track of the last non-optional I/O.
|
|
*/
|
|
mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
|
|
|
|
/*
|
|
* Walk backwards through sufficiently contiguous I/Os
|
|
* recording the last non-option I/O.
|
|
*/
|
|
while ((dio = AVL_PREV(t, first)) != NULL &&
|
|
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
|
|
IO_SPAN(dio, last) <= limit &&
|
|
IO_GAP(dio, first) <= maxgap) {
|
|
first = dio;
|
|
if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
|
|
mandatory = first;
|
|
}
|
|
|
|
/*
|
|
* Skip any initial optional I/Os.
|
|
*/
|
|
while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
|
|
first = AVL_NEXT(t, first);
|
|
ASSERT(first != NULL);
|
|
}
|
|
|
|
|
|
/*
|
|
* Walk forward through sufficiently contiguous I/Os.
|
|
*/
|
|
while ((dio = AVL_NEXT(t, last)) != NULL &&
|
|
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
|
|
IO_SPAN(first, dio) <= limit &&
|
|
IO_GAP(last, dio) <= maxgap) {
|
|
last = dio;
|
|
if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
|
|
mandatory = last;
|
|
}
|
|
|
|
/*
|
|
* Now that we've established the range of the I/O aggregation
|
|
* we must decide what to do with trailing optional I/Os.
|
|
* For reads, there's nothing to do. While we are unable to
|
|
* aggregate further, it's possible that a trailing optional
|
|
* I/O would allow the underlying device to aggregate with
|
|
* subsequent I/Os. We must therefore determine if the next
|
|
* non-optional I/O is close enough to make aggregation
|
|
* worthwhile.
|
|
*/
|
|
if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
|
|
zio_t *nio = last;
|
|
while ((dio = AVL_NEXT(t, nio)) != NULL &&
|
|
IO_GAP(nio, dio) == 0 &&
|
|
IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
|
|
nio = dio;
|
|
if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
|
|
stretch = B_TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (stretch) {
|
|
/* This may be a no-op. */
|
|
dio = AVL_NEXT(t, last);
|
|
dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
|
|
} else {
|
|
while (last != mandatory && last != first) {
|
|
ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
|
|
last = AVL_PREV(t, last);
|
|
ASSERT(last != NULL);
|
|
}
|
|
}
|
|
|
|
if (first == last)
|
|
return (NULL);
|
|
|
|
size = IO_SPAN(first, last);
|
|
ASSERT3U(size, <=, limit);
|
|
|
|
buf = zio_buf_alloc_flags(size, KM_NOSLEEP);
|
|
if (buf == NULL)
|
|
return (NULL);
|
|
|
|
aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
|
|
buf, size, first->io_type, zio->io_priority,
|
|
flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
|
|
vdev_queue_agg_io_done, NULL);
|
|
aio->io_timestamp = first->io_timestamp;
|
|
|
|
nio = first;
|
|
do {
|
|
dio = nio;
|
|
nio = AVL_NEXT(t, dio);
|
|
ASSERT3U(dio->io_type, ==, aio->io_type);
|
|
|
|
if (dio->io_flags & ZIO_FLAG_NODATA) {
|
|
ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
|
|
bzero((char *)aio->io_data + (dio->io_offset -
|
|
aio->io_offset), dio->io_size);
|
|
} else if (dio->io_type == ZIO_TYPE_WRITE) {
|
|
bcopy(dio->io_data, (char *)aio->io_data +
|
|
(dio->io_offset - aio->io_offset),
|
|
dio->io_size);
|
|
}
|
|
|
|
zio_add_child(dio, aio);
|
|
vdev_queue_io_remove(vq, dio);
|
|
zio_vdev_io_bypass(dio);
|
|
zio_execute(dio);
|
|
} while (dio != last);
|
|
|
|
return (aio);
|
|
}
|
|
|
|
static zio_t *
|
|
vdev_queue_io_to_issue(vdev_queue_t *vq)
|
|
{
|
|
zio_t *zio, *aio;
|
|
zio_priority_t p;
|
|
avl_index_t idx;
|
|
avl_tree_t *tree;
|
|
|
|
again:
|
|
ASSERT(MUTEX_HELD(&vq->vq_lock));
|
|
|
|
p = vdev_queue_class_to_issue(vq);
|
|
|
|
if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
|
|
/* No eligible queued i/os */
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* For LBA-ordered queues (async / scrub), issue the i/o which follows
|
|
* the most recently issued i/o in LBA (offset) order.
|
|
*
|
|
* For FIFO queues (sync), issue the i/o with the lowest timestamp.
|
|
*/
|
|
tree = vdev_queue_class_tree(vq, p);
|
|
vq->vq_io_search.io_timestamp = 0;
|
|
vq->vq_io_search.io_offset = vq->vq_last_offset + 1;
|
|
VERIFY3P(avl_find(tree, &vq->vq_io_search,
|
|
&idx), ==, NULL);
|
|
zio = avl_nearest(tree, idx, AVL_AFTER);
|
|
if (zio == NULL)
|
|
zio = avl_first(tree);
|
|
ASSERT3U(zio->io_priority, ==, p);
|
|
|
|
aio = vdev_queue_aggregate(vq, zio);
|
|
if (aio != NULL)
|
|
zio = aio;
|
|
else
|
|
vdev_queue_io_remove(vq, zio);
|
|
|
|
/*
|
|
* If the I/O is or was optional and therefore has no data, we need to
|
|
* simply discard it. We need to drop the vdev queue's lock to avoid a
|
|
* deadlock that we could encounter since this I/O will complete
|
|
* immediately.
|
|
*/
|
|
if (zio->io_flags & ZIO_FLAG_NODATA) {
|
|
mutex_exit(&vq->vq_lock);
|
|
zio_vdev_io_bypass(zio);
|
|
zio_execute(zio);
|
|
mutex_enter(&vq->vq_lock);
|
|
goto again;
|
|
}
|
|
|
|
vdev_queue_pending_add(vq, zio);
|
|
vq->vq_last_offset = zio->io_offset;
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
vdev_queue_io(zio_t *zio)
|
|
{
|
|
vdev_queue_t *vq = &zio->io_vd->vdev_queue;
|
|
zio_t *nio;
|
|
|
|
if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
|
|
return (zio);
|
|
|
|
/*
|
|
* Children i/os inherent their parent's priority, which might
|
|
* not match the child's i/o type. Fix it up here.
|
|
*/
|
|
if (zio->io_type == ZIO_TYPE_READ) {
|
|
if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
|
|
zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
|
|
zio->io_priority != ZIO_PRIORITY_SCRUB)
|
|
zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
|
|
} else {
|
|
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
|
|
if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
|
|
zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
|
|
zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
|
|
}
|
|
|
|
zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
|
|
|
|
mutex_enter(&vq->vq_lock);
|
|
zio->io_timestamp = gethrtime();
|
|
vdev_queue_io_add(vq, zio);
|
|
nio = vdev_queue_io_to_issue(vq);
|
|
mutex_exit(&vq->vq_lock);
|
|
|
|
if (nio == NULL)
|
|
return (NULL);
|
|
|
|
if (nio->io_done == vdev_queue_agg_io_done) {
|
|
zio_nowait(nio);
|
|
return (NULL);
|
|
}
|
|
|
|
return (nio);
|
|
}
|
|
|
|
void
|
|
vdev_queue_io_done(zio_t *zio)
|
|
{
|
|
vdev_queue_t *vq = &zio->io_vd->vdev_queue;
|
|
zio_t *nio;
|
|
|
|
mutex_enter(&vq->vq_lock);
|
|
|
|
vdev_queue_pending_remove(vq, zio);
|
|
|
|
zio->io_delta = gethrtime() - zio->io_timestamp;
|
|
vq->vq_io_complete_ts = gethrtime();
|
|
vq->vq_io_delta_ts = vq->vq_io_complete_ts - zio->io_timestamp;
|
|
|
|
while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
|
|
mutex_exit(&vq->vq_lock);
|
|
if (nio->io_done == vdev_queue_agg_io_done) {
|
|
zio_nowait(nio);
|
|
} else {
|
|
zio_vdev_io_reissue(nio);
|
|
zio_execute(nio);
|
|
}
|
|
mutex_enter(&vq->vq_lock);
|
|
}
|
|
|
|
mutex_exit(&vq->vq_lock);
|
|
}
|
|
|
|
/*
|
|
* As these three methods are only used for load calculations we're not
|
|
* concerned if we get an incorrect value on 32bit platforms due to lack of
|
|
* vq_lock mutex use here, instead we prefer to keep it lock free for
|
|
* performance.
|
|
*/
|
|
int
|
|
vdev_queue_length(vdev_t *vd)
|
|
{
|
|
return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
|
|
}
|
|
|
|
uint64_t
|
|
vdev_queue_lastoffset(vdev_t *vd)
|
|
{
|
|
return (vd->vdev_queue.vq_lastoffset);
|
|
}
|
|
|
|
void
|
|
vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio)
|
|
{
|
|
vd->vdev_queue.vq_lastoffset = zio->io_offset + zio->io_size;
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
module_param(zfs_vdev_aggregation_limit, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_aggregation_limit, "Max vdev I/O aggregation size");
|
|
|
|
module_param(zfs_vdev_read_gap_limit, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_read_gap_limit, "Aggregate read I/O over gap");
|
|
|
|
module_param(zfs_vdev_write_gap_limit, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_write_gap_limit, "Aggregate write I/O over gap");
|
|
|
|
module_param(zfs_vdev_max_active, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_max_active, "Maximum number of active I/Os per vdev");
|
|
|
|
module_param(zfs_vdev_async_write_active_max_dirty_percent, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_async_write_active_max_dirty_percent,
|
|
"Async write concurrency max threshold");
|
|
|
|
module_param(zfs_vdev_async_write_active_min_dirty_percent, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_async_write_active_min_dirty_percent,
|
|
"Async write concurrency min threshold");
|
|
|
|
module_param(zfs_vdev_async_read_max_active, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_async_read_max_active,
|
|
"Max active async read I/Os per vdev");
|
|
|
|
module_param(zfs_vdev_async_read_min_active, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_async_read_min_active,
|
|
"Min active async read I/Os per vdev");
|
|
|
|
module_param(zfs_vdev_async_write_max_active, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_async_write_max_active,
|
|
"Max active async write I/Os per vdev");
|
|
|
|
module_param(zfs_vdev_async_write_min_active, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_async_write_min_active,
|
|
"Min active async write I/Os per vdev");
|
|
|
|
module_param(zfs_vdev_scrub_max_active, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_scrub_max_active, "Max active scrub I/Os per vdev");
|
|
|
|
module_param(zfs_vdev_scrub_min_active, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_scrub_min_active, "Min active scrub I/Os per vdev");
|
|
|
|
module_param(zfs_vdev_sync_read_max_active, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_sync_read_max_active,
|
|
"Max active sync read I/Os per vdev");
|
|
|
|
module_param(zfs_vdev_sync_read_min_active, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_sync_read_min_active,
|
|
"Min active sync read I/Os per vdev");
|
|
|
|
module_param(zfs_vdev_sync_write_max_active, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_sync_write_max_active,
|
|
"Max active sync write I/Os per vdev");
|
|
|
|
module_param(zfs_vdev_sync_write_min_active, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_sync_write_min_active,
|
|
"Min active sync write I/Os per vdev");
|
|
|
|
module_param(zfs_vdev_queue_depth_pct, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_queue_depth_pct,
|
|
"Queue depth percentage for each top-level vdev");
|
|
#endif
|