f0b2a0beb6
o destroy mutex's on detach (was missing)
2752 lines
75 KiB
C
2752 lines
75 KiB
C
/*-
|
|
* Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
* redistribution must be conditioned upon including a substantially
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
* 3. Neither the names of the above-listed copyright holders nor the names
|
|
* of any contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
* Software Foundation.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Driver for the Atheros Wireless LAN controller.
|
|
*
|
|
* This software is derived from work of Atsushi Onoe; his contribution
|
|
* is greatly appreciated.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_llc.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#define AR_DEBUG
|
|
#include <dev/ath/if_athvar.h>
|
|
#include <contrib/dev/ath/ah_desc.h>
|
|
|
|
/* unalligned little endian access */
|
|
#define LE_READ_2(p) \
|
|
((u_int16_t) \
|
|
((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
|
|
#define LE_READ_4(p) \
|
|
((u_int32_t) \
|
|
((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
|
|
(((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
|
|
|
|
static void ath_init(void *);
|
|
static void ath_stop(struct ifnet *);
|
|
static void ath_start(struct ifnet *);
|
|
static void ath_reset(struct ath_softc *);
|
|
static int ath_media_change(struct ifnet *);
|
|
static void ath_watchdog(struct ifnet *);
|
|
static int ath_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void ath_fatal_proc(void *, int);
|
|
static void ath_rxorn_proc(void *, int);
|
|
static void ath_bmiss_proc(void *, int);
|
|
static void ath_initkeytable(struct ath_softc *);
|
|
static void ath_mode_init(struct ath_softc *);
|
|
static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
|
|
static void ath_beacon_proc(void *, int);
|
|
static void ath_beacon_free(struct ath_softc *);
|
|
static void ath_beacon_config(struct ath_softc *);
|
|
static int ath_desc_alloc(struct ath_softc *);
|
|
static void ath_desc_free(struct ath_softc *);
|
|
static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
|
|
static void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
|
|
static void ath_node_copy(struct ieee80211com *,
|
|
struct ieee80211_node *, const struct ieee80211_node *);
|
|
static u_int8_t ath_node_getrssi(struct ieee80211com *,
|
|
struct ieee80211_node *);
|
|
static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
|
|
static void ath_rx_proc(void *, int);
|
|
static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
|
|
struct ath_buf *, struct mbuf *);
|
|
static void ath_tx_proc(void *, int);
|
|
static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
|
|
static void ath_draintxq(struct ath_softc *);
|
|
static void ath_stoprecv(struct ath_softc *);
|
|
static int ath_startrecv(struct ath_softc *);
|
|
static void ath_next_scan(void *);
|
|
static void ath_calibrate(void *);
|
|
static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
|
|
static void ath_newassoc(struct ieee80211com *,
|
|
struct ieee80211_node *, int);
|
|
static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
|
|
|
|
static int ath_rate_setup(struct ath_softc *sc, u_int mode);
|
|
static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
|
|
static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
|
|
static void ath_rate_ctl(void *, struct ieee80211_node *);
|
|
|
|
SYSCTL_DECL(_hw_ath);
|
|
|
|
/* XXX validate sysctl values */
|
|
static int ath_dwelltime = 200; /* 5 channels/second */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
|
|
0, "channel dwell time (ms) for AP/station scanning");
|
|
static int ath_calinterval = 30; /* calibrate every 30 secs */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
|
|
0, "chip calibration interval (secs)");
|
|
static int ath_outdoor = AH_TRUE; /* outdoor operation */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
|
|
0, "enable/disable outdoor operation");
|
|
static int ath_countrycode = CTRY_DEFAULT; /* country code */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
|
|
0, "country code");
|
|
static int ath_regdomain = 0; /* regulatory domain */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
|
|
0, "regulatory domain");
|
|
|
|
#ifdef AR_DEBUG
|
|
int ath_debug = 0;
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
|
|
0, "control debugging printfs");
|
|
#define IFF_DUMPPKTS(_ifp) \
|
|
(ath_debug || \
|
|
((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
|
|
static void ath_printrxbuf(struct ath_buf *bf, int);
|
|
static void ath_printtxbuf(struct ath_buf *bf, int);
|
|
#define DPRINTF(X) if (ath_debug) printf X
|
|
#define DPRINTF2(X) if (ath_debug > 1) printf X
|
|
#else
|
|
#define IFF_DUMPPKTS(_ifp) \
|
|
(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
|
|
#define DPRINTF(X)
|
|
#define DPRINTF2(X)
|
|
#endif
|
|
|
|
int
|
|
ath_attach(u_int16_t devid, struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_hal *ah;
|
|
HAL_STATUS status;
|
|
int error = 0;
|
|
|
|
DPRINTF(("ath_attach: devid 0x%x\n", devid));
|
|
|
|
/* set these up early for if_printf use */
|
|
ifp->if_unit = device_get_unit(sc->sc_dev);
|
|
ifp->if_name = "ath";
|
|
|
|
ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
|
|
if (ah == NULL) {
|
|
if_printf(ifp, "unable to attach hardware; HAL status %u\n",
|
|
status);
|
|
error = ENXIO;
|
|
goto bad;
|
|
}
|
|
sc->sc_ah = ah;
|
|
sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
|
|
|
|
/*
|
|
* Collect the channel list using the default country
|
|
* code and including outdoor channels. The 802.11 layer
|
|
* is resposible for filtering this list based on settings
|
|
* like the phy mode.
|
|
*/
|
|
error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
|
|
if (error != 0)
|
|
goto bad;
|
|
/*
|
|
* Copy these back; they are set as a side effect
|
|
* of constructing the channel list.
|
|
*/
|
|
ath_regdomain = ath_hal_getregdomain(ah);
|
|
ath_countrycode = ath_hal_getcountrycode(ah);
|
|
|
|
/*
|
|
* Setup rate tables for all potential media types.
|
|
*/
|
|
ath_rate_setup(sc, IEEE80211_MODE_11A);
|
|
ath_rate_setup(sc, IEEE80211_MODE_11B);
|
|
ath_rate_setup(sc, IEEE80211_MODE_11G);
|
|
ath_rate_setup(sc, IEEE80211_MODE_TURBO);
|
|
|
|
error = ath_desc_alloc(sc);
|
|
if (error != 0) {
|
|
if_printf(ifp, "failed to allocate descriptors: %d\n", error);
|
|
goto bad;
|
|
}
|
|
callout_init(&sc->sc_scan_ch, CALLOUT_MPSAFE);
|
|
callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
|
|
|
|
ATH_TXBUF_LOCK_INIT(sc);
|
|
ATH_TXQ_LOCK_INIT(sc);
|
|
|
|
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
|
|
TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
|
|
TASK_INIT(&sc->sc_swbatask, 0, ath_beacon_proc, sc);
|
|
TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
|
|
TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
|
|
TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
|
|
|
|
/*
|
|
* For now just pre-allocate one data queue and one
|
|
* beacon queue. Note that the HAL handles resetting
|
|
* them at the needed time. Eventually we'll want to
|
|
* allocate more tx queues for splitting management
|
|
* frames and for QOS support.
|
|
*/
|
|
sc->sc_txhalq = ath_hal_setuptxqueue(ah,
|
|
HAL_TX_QUEUE_DATA,
|
|
AH_TRUE /* enable interrupts */
|
|
);
|
|
if (sc->sc_txhalq == (u_int) -1) {
|
|
if_printf(ifp, "unable to setup a data xmit queue!\n");
|
|
goto bad;
|
|
}
|
|
sc->sc_bhalq = ath_hal_setuptxqueue(ah,
|
|
HAL_TX_QUEUE_BEACON,
|
|
AH_TRUE /* enable interrupts */
|
|
);
|
|
if (sc->sc_bhalq == (u_int) -1) {
|
|
if_printf(ifp, "unable to setup a beacon xmit queue!\n");
|
|
goto bad;
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
|
|
ifp->if_start = ath_start;
|
|
ifp->if_watchdog = ath_watchdog;
|
|
ifp->if_ioctl = ath_ioctl;
|
|
ifp->if_init = ath_init;
|
|
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
|
|
|
|
ic->ic_softc = sc;
|
|
ic->ic_newassoc = ath_newassoc;
|
|
/* XXX not right but it's not used anywhere important */
|
|
ic->ic_phytype = IEEE80211_T_OFDM;
|
|
ic->ic_opmode = IEEE80211_M_STA;
|
|
ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_IBSS | IEEE80211_C_HOSTAP
|
|
| IEEE80211_C_MONITOR | IEEE80211_C_SHPREAMBLE;
|
|
|
|
/* get mac address from hardware */
|
|
ath_hal_getmac(ah, ic->ic_myaddr);
|
|
|
|
/* call MI attach routine. */
|
|
ieee80211_ifattach(ifp);
|
|
/* override default methods */
|
|
ic->ic_node_alloc = ath_node_alloc;
|
|
ic->ic_node_free = ath_node_free;
|
|
ic->ic_node_copy = ath_node_copy;
|
|
ic->ic_node_getrssi = ath_node_getrssi;
|
|
sc->sc_newstate = ic->ic_newstate;
|
|
ic->ic_newstate = ath_newstate;
|
|
/* complete initialization */
|
|
ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
|
|
|
|
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
|
|
sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
|
|
&sc->sc_drvbpf);
|
|
/*
|
|
* Initialize constant fields.
|
|
*
|
|
* NB: the channel is setup each time we transition to the
|
|
* RUN state to avoid filling it in for each frame.
|
|
*/
|
|
sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
|
|
sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
|
|
|
|
sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
|
|
sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
|
|
|
|
if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
|
|
|
|
return 0;
|
|
bad:
|
|
if (ah)
|
|
ath_hal_detach(ah);
|
|
sc->sc_invalid = 1;
|
|
return error;
|
|
}
|
|
|
|
int
|
|
ath_detach(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
|
|
DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
|
|
|
|
ath_stop(ifp);
|
|
bpfdetach(ifp);
|
|
ath_desc_free(sc);
|
|
ath_hal_detach(sc->sc_ah);
|
|
ieee80211_ifdetach(ifp);
|
|
|
|
ATH_TXBUF_LOCK_DESTROY(sc);
|
|
ATH_TXQ_LOCK_DESTROY(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ath_suspend(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
|
|
DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
|
|
|
|
ath_stop(ifp);
|
|
}
|
|
|
|
void
|
|
ath_resume(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
|
|
DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
|
|
|
|
if (ifp->if_flags & IFF_UP) {
|
|
ath_init(ifp);
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
ath_start(ifp);
|
|
}
|
|
}
|
|
|
|
void
|
|
ath_shutdown(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
|
|
DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
|
|
|
|
ath_stop(ifp);
|
|
}
|
|
|
|
void
|
|
ath_intr(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_INT status;
|
|
|
|
if (sc->sc_invalid) {
|
|
/*
|
|
* The hardware is not ready/present, don't touch anything.
|
|
* Note this can happen early on if the IRQ is shared.
|
|
*/
|
|
DPRINTF(("ath_intr: invalid; ignored\n"));
|
|
return;
|
|
}
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
|
|
DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
|
|
ath_hal_getisr(ah, &status); /* clear ISR */
|
|
ath_hal_intrset(ah, 0); /* disable further intr's */
|
|
return;
|
|
}
|
|
ath_hal_getisr(ah, &status); /* NB: clears ISR too */
|
|
DPRINTF2(("ath_intr: status 0x%x\n", status));
|
|
#ifdef AR_DEBUG
|
|
if (ath_debug &&
|
|
(status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
|
|
if_printf(ifp, "ath_intr: status 0x%x\n", status);
|
|
ath_hal_dumpstate(ah);
|
|
}
|
|
#endif /* AR_DEBUG */
|
|
status &= sc->sc_imask; /* discard unasked for bits */
|
|
if (status & HAL_INT_FATAL) {
|
|
sc->sc_stats.ast_hardware++;
|
|
ath_hal_intrset(ah, 0); /* disable intr's until reset */
|
|
taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
|
|
} else if (status & HAL_INT_RXORN) {
|
|
sc->sc_stats.ast_rxorn++;
|
|
ath_hal_intrset(ah, 0); /* disable intr's until reset */
|
|
taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
|
|
} else {
|
|
if (status & HAL_INT_RXEOL) {
|
|
/*
|
|
* NB: the hardware should re-read the link when
|
|
* RXE bit is written, but it doesn't work at
|
|
* least on older hardware revs.
|
|
*/
|
|
sc->sc_stats.ast_rxeol++;
|
|
sc->sc_rxlink = NULL;
|
|
}
|
|
if (status & HAL_INT_TXURN) {
|
|
sc->sc_stats.ast_txurn++;
|
|
/* bump tx trigger level */
|
|
ath_hal_updatetxtriglevel(ah, AH_TRUE);
|
|
}
|
|
if (status & HAL_INT_RX)
|
|
taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
|
|
if (status & HAL_INT_TX)
|
|
taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
|
|
if (status & HAL_INT_SWBA)
|
|
taskqueue_enqueue(taskqueue_swi, &sc->sc_swbatask);
|
|
if (status & HAL_INT_BMISS) {
|
|
sc->sc_stats.ast_bmiss++;
|
|
taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_fatal_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
|
|
device_printf(sc->sc_dev, "hardware error; resetting\n");
|
|
ath_reset(sc);
|
|
}
|
|
|
|
static void
|
|
ath_rxorn_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
|
|
device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
|
|
ath_reset(sc);
|
|
}
|
|
|
|
static void
|
|
ath_bmiss_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
|
|
KASSERT(ic->ic_opmode == IEEE80211_M_STA,
|
|
("unexpect operating mode %u", ic->ic_opmode));
|
|
if (ic->ic_state == IEEE80211_S_RUN)
|
|
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
|
|
}
|
|
|
|
static u_int
|
|
ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
|
|
{
|
|
static const u_int modeflags[] = {
|
|
0, /* IEEE80211_MODE_AUTO */
|
|
CHANNEL_A, /* IEEE80211_MODE_11A */
|
|
CHANNEL_B, /* IEEE80211_MODE_11B */
|
|
CHANNEL_PUREG, /* IEEE80211_MODE_11G */
|
|
CHANNEL_T /* IEEE80211_MODE_TURBO */
|
|
};
|
|
return modeflags[ieee80211_chan2mode(ic, chan)];
|
|
}
|
|
|
|
static void
|
|
ath_init(void *arg)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *) arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ieee80211_node *ni;
|
|
enum ieee80211_phymode mode;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
HAL_CHANNEL hchan;
|
|
|
|
DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
|
|
|
|
ATH_LOCK(sc);
|
|
/*
|
|
* Stop anything previously setup. This is safe
|
|
* whether this is the first time through or not.
|
|
*/
|
|
ath_stop(ifp);
|
|
|
|
/*
|
|
* The basic interface to setting the hardware in a good
|
|
* state is ``reset''. On return the hardware is known to
|
|
* be powered up and with interrupts disabled. This must
|
|
* be followed by initialization of the appropriate bits
|
|
* and then setup of the interrupt mask.
|
|
*/
|
|
hchan.channel = ic->ic_ibss_chan->ic_freq;
|
|
hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
|
|
if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
|
|
if_printf(ifp, "unable to reset hardware; hal status %u\n",
|
|
status);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Setup the hardware after reset: the key cache
|
|
* is filled as needed and the receive engine is
|
|
* set going. Frame transmit is handled entirely
|
|
* in the frame output path; there's nothing to do
|
|
* here except setup the interrupt mask.
|
|
*/
|
|
if (ic->ic_flags & IEEE80211_F_WEPON)
|
|
ath_initkeytable(sc);
|
|
if (ath_startrecv(sc) != 0) {
|
|
if_printf(ifp, "unable to start recv logic\n");
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
sc->sc_imask = HAL_INT_RX | HAL_INT_TX
|
|
| HAL_INT_RXEOL | HAL_INT_RXORN
|
|
| HAL_INT_FATAL | HAL_INT_GLOBAL;
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ic->ic_state = IEEE80211_S_INIT;
|
|
|
|
/*
|
|
* The hardware should be ready to go now so it's safe
|
|
* to kick the 802.11 state machine as it's likely to
|
|
* immediately call back to us to send mgmt frames.
|
|
*/
|
|
ni = ic->ic_bss;
|
|
ni->ni_chan = ic->ic_ibss_chan;
|
|
mode = ieee80211_chan2mode(ic, ni->ni_chan);
|
|
if (mode != sc->sc_curmode)
|
|
ath_setcurmode(sc, mode);
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR)
|
|
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
|
|
else
|
|
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
|
|
done:
|
|
ATH_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
ath_stop(struct ifnet *ifp)
|
|
{
|
|
struct ieee80211com *ic = (struct ieee80211com *) ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
|
|
sc->sc_invalid, ifp->if_flags));
|
|
|
|
ATH_LOCK(sc);
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
/*
|
|
* Shutdown the hardware and driver:
|
|
* disable interrupts
|
|
* turn off timers
|
|
* clear transmit machinery
|
|
* clear receive machinery
|
|
* drain and release tx queues
|
|
* reclaim beacon resources
|
|
* reset 802.11 state machine
|
|
* power down hardware
|
|
*
|
|
* Note that some of this work is not possible if the
|
|
* hardware is gone (invalid).
|
|
*/
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
ifp->if_timer = 0;
|
|
if (!sc->sc_invalid)
|
|
ath_hal_intrset(ah, 0);
|
|
ath_draintxq(sc);
|
|
if (!sc->sc_invalid)
|
|
ath_stoprecv(sc);
|
|
else
|
|
sc->sc_rxlink = NULL;
|
|
IF_DRAIN(&ifp->if_snd);
|
|
ath_beacon_free(sc);
|
|
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
|
|
if (!sc->sc_invalid)
|
|
ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
|
|
}
|
|
ATH_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Reset the hardware w/o losing operational state. This is
|
|
* basically a more efficient way of doing ath_stop, ath_init,
|
|
* followed by state transitions to the current 802.11
|
|
* operational state. Used to recover from errors rx overrun
|
|
* and to reset the hardware when rf gain settings must be reset.
|
|
*/
|
|
static void
|
|
ath_reset(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211_channel *c;
|
|
HAL_STATUS status;
|
|
HAL_CHANNEL hchan;
|
|
|
|
/*
|
|
* Convert to a HAL channel description with the flags
|
|
* constrained to reflect the current operating mode.
|
|
*/
|
|
c = ic->ic_ibss_chan;
|
|
hchan.channel = c->ic_freq;
|
|
hchan.channelFlags = ath_chan2flags(ic, c);
|
|
|
|
ath_hal_intrset(ah, 0); /* disable interrupts */
|
|
ath_draintxq(sc); /* stop xmit side */
|
|
ath_stoprecv(sc); /* stop recv side */
|
|
/* NB: indicate channel change so we do a full reset */
|
|
if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
|
|
if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
|
|
__func__, status);
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
if (ath_startrecv(sc) != 0) /* restart recv */
|
|
if_printf(ifp, "%s: unable to start recv logic\n", __func__);
|
|
ath_start(ifp); /* restart xmit */
|
|
if (ic->ic_state == IEEE80211_S_RUN)
|
|
ath_beacon_config(sc); /* restart beacons */
|
|
}
|
|
|
|
static void
|
|
ath_start(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni;
|
|
struct ath_buf *bf;
|
|
struct mbuf *m;
|
|
struct ieee80211_frame *wh;
|
|
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
|
|
return;
|
|
for (;;) {
|
|
/*
|
|
* Grab a TX buffer and associated resources.
|
|
*/
|
|
ATH_TXBUF_LOCK(sc);
|
|
bf = TAILQ_FIRST(&sc->sc_txbuf);
|
|
if (bf != NULL)
|
|
TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
if (bf == NULL) {
|
|
DPRINTF(("ath_start: out of xmit buffers\n"));
|
|
sc->sc_stats.ast_tx_qstop++;
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
/*
|
|
* Poll the management queue for frames; they
|
|
* have priority over normal data frames.
|
|
*/
|
|
IF_DEQUEUE(&ic->ic_mgtq, m);
|
|
if (m == NULL) {
|
|
/*
|
|
* No data frames go out unless we're associated.
|
|
*/
|
|
if (ic->ic_state != IEEE80211_S_RUN) {
|
|
DPRINTF(("ath_start: ignore data packet, "
|
|
"state %u\n", ic->ic_state));
|
|
sc->sc_stats.ast_tx_discard++;
|
|
ATH_TXBUF_LOCK(sc);
|
|
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
break;
|
|
}
|
|
IF_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == NULL) {
|
|
ATH_TXBUF_LOCK(sc);
|
|
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
break;
|
|
}
|
|
ifp->if_opackets++;
|
|
BPF_MTAP(ifp, m);
|
|
/*
|
|
* Encapsulate the packet in prep for transmission.
|
|
*/
|
|
m = ieee80211_encap(ifp, m, &ni);
|
|
if (m == NULL) {
|
|
DPRINTF(("ath_start: encapsulation failure\n"));
|
|
sc->sc_stats.ast_tx_encap++;
|
|
goto bad;
|
|
}
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
if (ic->ic_flags & IEEE80211_F_WEPON)
|
|
wh->i_fc[1] |= IEEE80211_FC1_WEP;
|
|
} else {
|
|
/*
|
|
* Hack! The referenced node pointer is in the
|
|
* rcvif field of the packet header. This is
|
|
* placed there by ieee80211_mgmt_output because
|
|
* we need to hold the reference with the frame
|
|
* and there's no other way (other than packet
|
|
* tags which we consider too expensive to use)
|
|
* to pass it along.
|
|
*/
|
|
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
|
|
m->m_pkthdr.rcvif = NULL;
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
|
|
IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
|
|
/* fill time stamp */
|
|
u_int64_t tsf;
|
|
u_int32_t *tstamp;
|
|
|
|
tsf = ath_hal_gettsf64(ah);
|
|
/* XXX: adjust 100us delay to xmit */
|
|
tsf += 100;
|
|
tstamp = (u_int32_t *)&wh[1];
|
|
tstamp[0] = htole32(tsf & 0xffffffff);
|
|
tstamp[1] = htole32(tsf >> 32);
|
|
}
|
|
sc->sc_stats.ast_tx_mgmt++;
|
|
}
|
|
if (ic->ic_rawbpf)
|
|
bpf_mtap(ic->ic_rawbpf, m);
|
|
|
|
if (sc->sc_drvbpf) {
|
|
struct mbuf *mb;
|
|
|
|
MGETHDR(mb, M_DONTWAIT, m->m_type);
|
|
if (mb != NULL) {
|
|
sc->sc_tx_th.wt_rate =
|
|
ni->ni_rates.rs_rates[ni->ni_txrate];
|
|
|
|
mb->m_next = m;
|
|
mb->m_data = (caddr_t)&sc->sc_tx_th;
|
|
mb->m_len = sizeof(sc->sc_tx_th);
|
|
mb->m_pkthdr.len += mb->m_len;
|
|
bpf_mtap(sc->sc_drvbpf, mb);
|
|
m_free(mb);
|
|
}
|
|
}
|
|
|
|
if (ath_tx_start(sc, ni, bf, m)) {
|
|
bad:
|
|
ATH_TXBUF_LOCK(sc);
|
|
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
ifp->if_oerrors++;
|
|
if (ni && ni != ic->ic_bss)
|
|
ieee80211_free_node(ic, ni);
|
|
continue;
|
|
}
|
|
|
|
sc->sc_tx_timer = 5;
|
|
ifp->if_timer = 1;
|
|
}
|
|
}
|
|
|
|
static int
|
|
ath_media_change(struct ifnet *ifp)
|
|
{
|
|
int error;
|
|
|
|
error = ieee80211_media_change(ifp);
|
|
if (error == ENETRESET) {
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
|
|
(IFF_RUNNING|IFF_UP))
|
|
ath_init(ifp); /* XXX lose error */
|
|
error = 0;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
ath_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
ifp->if_timer = 0;
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
|
|
return;
|
|
if (sc->sc_tx_timer) {
|
|
if (--sc->sc_tx_timer == 0) {
|
|
if_printf(ifp, "device timeout\n");
|
|
#ifdef AR_DEBUG
|
|
if (ath_debug)
|
|
ath_hal_dumpstate(sc->sc_ah);
|
|
#endif /* AR_DEBUG */
|
|
ath_init(ifp); /* XXX ath_reset??? */
|
|
ifp->if_oerrors++;
|
|
sc->sc_stats.ast_watchdog++;
|
|
return;
|
|
}
|
|
ifp->if_timer = 1;
|
|
}
|
|
if (ic->ic_fixed_rate == -1) {
|
|
/*
|
|
* Run the rate control algorithm if we're not
|
|
* locked at a fixed rate.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_STA)
|
|
ath_rate_ctl(sc, ic->ic_bss);
|
|
else
|
|
ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
|
|
}
|
|
ieee80211_watchdog(ifp);
|
|
}
|
|
|
|
static int
|
|
ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int error = 0;
|
|
|
|
ATH_LOCK(sc);
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
/*
|
|
* To avoid rescanning another access point,
|
|
* do not call ath_init() here. Instead,
|
|
* only reflect promisc mode settings.
|
|
*/
|
|
ath_mode_init(sc);
|
|
} else {
|
|
/*
|
|
* Beware of being called during detach to
|
|
* reset promiscuous mode. In that case we
|
|
* will still be marked UP but not RUNNING.
|
|
* However trying to re-init the interface
|
|
* is the wrong thing to do as we've already
|
|
* torn down much of our state. There's
|
|
* probably a better way to deal with this.
|
|
*/
|
|
if (!sc->sc_invalid)
|
|
ath_init(ifp); /* XXX lose error */
|
|
}
|
|
} else
|
|
ath_stop(ifp);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
/*
|
|
* The upper layer has already installed/removed
|
|
* the multicast address(es), just recalculate the
|
|
* multicast filter for the card.
|
|
*/
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
ath_mode_init(sc);
|
|
break;
|
|
case SIOCGATHSTATS:
|
|
copyout(&sc->sc_stats, ifr->ifr_data, sizeof (sc->sc_stats));
|
|
break;
|
|
default:
|
|
error = ieee80211_ioctl(ifp, cmd, data);
|
|
if (error == ENETRESET) {
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
|
|
(IFF_RUNNING|IFF_UP))
|
|
ath_init(ifp); /* XXX lose error */
|
|
error = 0;
|
|
}
|
|
break;
|
|
}
|
|
ATH_UNLOCK(sc);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Fill the hardware key cache with key entries.
|
|
*/
|
|
static void
|
|
ath_initkeytable(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int i;
|
|
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
|
|
struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
|
|
if (k->wk_len == 0)
|
|
ath_hal_keyreset(ah, i);
|
|
else
|
|
/* XXX return value */
|
|
/* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
|
|
ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_mode_init(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
u_int32_t rfilt, mfilt[2], val;
|
|
u_int8_t pos;
|
|
struct ifmultiaddr *ifma;
|
|
|
|
/* configure operational mode */
|
|
ath_hal_setopmode(ah, ic->ic_opmode);
|
|
|
|
/* receive filter */
|
|
rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
|
|
| HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
|
|
if (ic->ic_opmode != IEEE80211_M_STA)
|
|
rfilt |= HAL_RX_FILTER_PROBEREQ;
|
|
if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
|
|
(ifp->if_flags & IFF_PROMISC))
|
|
rfilt |= HAL_RX_FILTER_PROM;
|
|
if (ic->ic_opmode == IEEE80211_M_STA ||
|
|
ic->ic_state == IEEE80211_S_SCAN)
|
|
rfilt |= HAL_RX_FILTER_BEACON;
|
|
ath_hal_setrxfilter(ah, rfilt);
|
|
|
|
/* calculate and install multicast filter */
|
|
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
|
|
mfilt[0] = mfilt[1] = 0;
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
caddr_t dl;
|
|
|
|
/* calculate XOR of eight 6bit values */
|
|
dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
|
|
val = LE_READ_4(dl + 0);
|
|
pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
|
|
val = LE_READ_4(dl + 3);
|
|
pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
|
|
pos &= 0x3f;
|
|
mfilt[pos / 32] |= (1 << (pos % 32));
|
|
}
|
|
} else {
|
|
mfilt[0] = mfilt[1] = ~0;
|
|
}
|
|
ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
|
|
DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
|
|
rfilt, mfilt[0], mfilt[1]));
|
|
}
|
|
|
|
static void
|
|
ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
|
|
{
|
|
struct ath_buf *bf = arg;
|
|
|
|
KASSERT(nseg <= ATH_MAX_SCATTER,
|
|
("ath_mbuf_load_cb: too many DMA segments %u", nseg));
|
|
bf->bf_mapsize = mapsize;
|
|
bf->bf_nseg = nseg;
|
|
bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
|
|
}
|
|
|
|
static int
|
|
ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211_frame *wh;
|
|
struct ath_buf *bf;
|
|
struct ath_desc *ds;
|
|
struct mbuf *m;
|
|
int error, pktlen;
|
|
u_int8_t *frm, rate;
|
|
u_int16_t capinfo;
|
|
struct ieee80211_rateset *rs;
|
|
const HAL_RATE_TABLE *rt;
|
|
|
|
bf = sc->sc_bcbuf;
|
|
if (bf->bf_m != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
}
|
|
/*
|
|
* NB: the beacon data buffer must be 32-bit aligned;
|
|
* we assume the mbuf routines will return us something
|
|
* with this alignment (perhaps should assert).
|
|
*/
|
|
rs = &ni->ni_rates;
|
|
pktlen = sizeof (struct ieee80211_frame)
|
|
+ 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
|
|
if (rs->rs_nrates > IEEE80211_RATE_SIZE)
|
|
pktlen += 2;
|
|
if (pktlen <= MHLEN)
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
else
|
|
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL) {
|
|
DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
|
|
pktlen));
|
|
sc->sc_stats.ast_be_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
|
|
IEEE80211_FC0_SUBTYPE_BEACON;
|
|
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
|
|
*(u_int16_t *)wh->i_dur = 0;
|
|
memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
|
|
memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
|
|
memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
|
|
*(u_int16_t *)wh->i_seq = 0;
|
|
|
|
/*
|
|
* beacon frame format
|
|
* [8] time stamp
|
|
* [2] beacon interval
|
|
* [2] cabability information
|
|
* [tlv] ssid
|
|
* [tlv] supported rates
|
|
* [tlv] parameter set (IBSS)
|
|
* [tlv] extended supported rates
|
|
*/
|
|
frm = (u_int8_t *)&wh[1];
|
|
memset(frm, 0, 8); /* timestamp is set by hardware */
|
|
frm += 8;
|
|
*(u_int16_t *)frm = htole16(ni->ni_intval);
|
|
frm += 2;
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS)
|
|
capinfo = IEEE80211_CAPINFO_IBSS;
|
|
else
|
|
capinfo = IEEE80211_CAPINFO_ESS;
|
|
if (ic->ic_flags & IEEE80211_F_WEPON)
|
|
capinfo |= IEEE80211_CAPINFO_PRIVACY;
|
|
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
|
|
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
|
|
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
|
|
if (ic->ic_flags & IEEE80211_F_SHSLOT)
|
|
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
|
|
*(u_int16_t *)frm = htole16(capinfo);
|
|
frm += 2;
|
|
*frm++ = IEEE80211_ELEMID_SSID;
|
|
*frm++ = ni->ni_esslen;
|
|
memcpy(frm, ni->ni_essid, ni->ni_esslen);
|
|
frm += ni->ni_esslen;
|
|
frm = ieee80211_add_rates(frm, rs);
|
|
*frm++ = IEEE80211_ELEMID_DSPARMS;
|
|
*frm++ = 1;
|
|
*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS) {
|
|
*frm++ = IEEE80211_ELEMID_IBSSPARMS;
|
|
*frm++ = 2;
|
|
*frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
|
|
} else {
|
|
/* TODO: TIM */
|
|
*frm++ = IEEE80211_ELEMID_TIM;
|
|
*frm++ = 4; /* length */
|
|
*frm++ = 0; /* DTIM count */
|
|
*frm++ = 1; /* DTIM period */
|
|
*frm++ = 0; /* bitmap control */
|
|
*frm++ = 0; /* Partial Virtual Bitmap (variable length) */
|
|
}
|
|
frm = ieee80211_add_xrates(frm, rs);
|
|
m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
|
|
KASSERT(m->m_pkthdr.len <= pktlen,
|
|
("beacon bigger than expected, len %u calculated %u",
|
|
m->m_pkthdr.len, pktlen));
|
|
|
|
DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
|
|
ath_mbuf_load_cb, bf,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
KASSERT(bf->bf_nseg == 1,
|
|
("ath_beacon_alloc: multi-segment packet; nseg %u",
|
|
bf->bf_nseg));
|
|
bf->bf_m = m;
|
|
|
|
/* setup descriptors */
|
|
ds = bf->bf_desc;
|
|
|
|
ds->ds_link = 0;
|
|
ds->ds_data = bf->bf_segs[0].ds_addr;
|
|
/*
|
|
* Calculate rate code.
|
|
* XXX everything at min xmit rate
|
|
*/
|
|
rt = sc->sc_currates;
|
|
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
|
|
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
|
|
rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
|
|
else
|
|
rate = rt->info[0].rateCode;
|
|
ath_hal_setuptxdesc(ah, ds
|
|
, m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
|
|
, sizeof(struct ieee80211_frame) /* header length */
|
|
, HAL_PKT_TYPE_BEACON /* Atheros packet type */
|
|
, 0x20 /* txpower XXX */
|
|
, rate, 1 /* series 0 rate/tries */
|
|
, HAL_TXKEYIX_INVALID /* no encryption */
|
|
, 0 /* antenna mode */
|
|
, HAL_TXDESC_NOACK /* no ack for beacons */
|
|
, 0 /* rts/cts rate */
|
|
, 0 /* rts/cts duration */
|
|
);
|
|
/* NB: beacon's BufLen must be a multiple of 4 bytes */
|
|
/* XXX verify mbuf data area covers this roundup */
|
|
ath_hal_filltxdesc(ah, ds
|
|
, roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
|
|
, AH_TRUE /* first segment */
|
|
, AH_TRUE /* last segment */
|
|
);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ath_beacon_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_buf *bf = sc->sc_bcbuf;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
DPRINTF2(("%s: pending %u\n", __func__, pending));
|
|
if (ic->ic_opmode == IEEE80211_M_STA ||
|
|
bf == NULL || bf->bf_m == NULL) {
|
|
DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
|
|
__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
|
|
return;
|
|
}
|
|
/* TODO: update beacon to reflect PS poll state */
|
|
if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
|
|
DPRINTF(("%s: beacon queue %u did not stop?",
|
|
__func__, sc->sc_bhalq));
|
|
return; /* busy, XXX is this right? */
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
|
|
|
|
ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
|
|
ath_hal_txstart(ah, sc->sc_bhalq);
|
|
DPRINTF2(("%s: TXDP%u = %p (%p)\n", __func__,
|
|
sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
|
|
}
|
|
|
|
static void
|
|
ath_beacon_free(struct ath_softc *sc)
|
|
{
|
|
struct ath_buf *bf = sc->sc_bcbuf;
|
|
|
|
if (bf->bf_m != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Configure the beacon and sleep timers.
|
|
*
|
|
* When operating as an AP this resets the TSF and sets
|
|
* up the hardware to notify us when we need to issue beacons.
|
|
*
|
|
* When operating in station mode this sets up the beacon
|
|
* timers according to the timestamp of the last received
|
|
* beacon and the current TSF, configures PCF and DTIM
|
|
* handling, programs the sleep registers so the hardware
|
|
* will wakeup in time to receive beacons, and configures
|
|
* the beacon miss handling so we'll receive a BMISS
|
|
* interrupt when we stop seeing beacons from the AP
|
|
* we've associated with.
|
|
*/
|
|
static void
|
|
ath_beacon_config(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
u_int32_t nexttbtt;
|
|
|
|
nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
|
|
(LE_READ_4(ni->ni_tstamp) >> 10);
|
|
DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
|
|
nexttbtt += ni->ni_intval;
|
|
if (ic->ic_opmode == IEEE80211_M_STA) {
|
|
HAL_BEACON_STATE bs;
|
|
u_int32_t bmisstime;
|
|
|
|
/* NB: no PCF support right now */
|
|
memset(&bs, 0, sizeof(bs));
|
|
bs.bs_intval = ni->ni_intval;
|
|
bs.bs_nexttbtt = nexttbtt;
|
|
bs.bs_dtimperiod = bs.bs_intval;
|
|
bs.bs_nextdtim = nexttbtt;
|
|
/*
|
|
* Calculate the number of consecutive beacons to miss
|
|
* before taking a BMISS interrupt. The configuration
|
|
* is specified in ms, so we need to convert that to
|
|
* TU's and then calculate based on the beacon interval.
|
|
* Note that we clamp the result to at most 10 beacons.
|
|
*/
|
|
bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
|
|
bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
|
|
if (bs.bs_bmissthreshold > 10)
|
|
bs.bs_bmissthreshold = 10;
|
|
else if (bs.bs_bmissthreshold <= 0)
|
|
bs.bs_bmissthreshold = 1;
|
|
|
|
/*
|
|
* Calculate sleep duration. The configuration is
|
|
* given in ms. We insure a multiple of the beacon
|
|
* period is used. Also, if the sleep duration is
|
|
* greater than the DTIM period then it makes senses
|
|
* to make it a multiple of that.
|
|
*
|
|
* XXX fixed at 100ms
|
|
*/
|
|
bs.bs_sleepduration =
|
|
roundup((100 * 1000) / 1024, bs.bs_intval);
|
|
if (bs.bs_sleepduration > bs.bs_dtimperiod)
|
|
bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
|
|
|
|
DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
|
|
, __func__
|
|
, bs.bs_intval
|
|
, bs.bs_nexttbtt
|
|
, bs.bs_dtimperiod
|
|
, bs.bs_nextdtim
|
|
, bs.bs_bmissthreshold
|
|
, bs.bs_sleepduration
|
|
));
|
|
ath_hal_intrset(ah, 0);
|
|
/*
|
|
* Reset our tsf so the hardware will update the
|
|
* tsf register to reflect timestamps found in
|
|
* received beacons.
|
|
*/
|
|
ath_hal_resettsf(ah);
|
|
ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
|
|
sc->sc_imask |= HAL_INT_BMISS;
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
} else {
|
|
DPRINTF(("%s: intval %u nexttbtt %u\n",
|
|
__func__, ni->ni_intval, nexttbtt));
|
|
ath_hal_intrset(ah, 0);
|
|
ath_hal_beaconinit(ah, ic->ic_opmode,
|
|
nexttbtt, ni->ni_intval);
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR)
|
|
sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
bus_addr_t *paddr = (bus_addr_t*) arg;
|
|
*paddr = segs->ds_addr;
|
|
}
|
|
|
|
static int
|
|
ath_desc_alloc(struct ath_softc *sc)
|
|
{
|
|
int i, bsize, error;
|
|
struct ath_desc *ds;
|
|
struct ath_buf *bf;
|
|
|
|
/* allocate descriptors */
|
|
sc->sc_desc_len = sizeof(struct ath_desc) *
|
|
(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
|
|
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
|
|
BUS_DMA_NOWAIT, &sc->sc_ddmamap);
|
|
if (error != 0)
|
|
goto fail0;
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
|
|
sc->sc_desc, sc->sc_desc_len,
|
|
ath_load_cb, &sc->sc_desc_paddr,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0)
|
|
goto fail1;
|
|
|
|
ds = sc->sc_desc;
|
|
DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
|
|
ds, sc->sc_desc_len,
|
|
(caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
|
|
|
|
/* allocate buffers */
|
|
bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
|
|
bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (bf == NULL)
|
|
goto fail2;
|
|
sc->sc_bufptr = bf;
|
|
|
|
TAILQ_INIT(&sc->sc_rxbuf);
|
|
for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = sc->sc_desc_paddr +
|
|
((caddr_t)ds - (caddr_t)sc->sc_desc);
|
|
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
|
|
&bf->bf_dmamap);
|
|
if (error != 0)
|
|
break;
|
|
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
|
|
}
|
|
|
|
TAILQ_INIT(&sc->sc_txbuf);
|
|
for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = sc->sc_desc_paddr +
|
|
((caddr_t)ds - (caddr_t)sc->sc_desc);
|
|
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
|
|
&bf->bf_dmamap);
|
|
if (error != 0)
|
|
break;
|
|
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
}
|
|
TAILQ_INIT(&sc->sc_txq);
|
|
|
|
/* beacon buffer */
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
|
|
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
|
|
if (error != 0)
|
|
return error;
|
|
sc->sc_bcbuf = bf;
|
|
return 0;
|
|
|
|
fail2:
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
|
|
fail1:
|
|
bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
|
|
fail0:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
|
|
sc->sc_ddmamap = NULL;
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
ath_desc_free(struct ath_softc *sc)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
|
|
bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
|
|
|
|
TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
}
|
|
TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
|
|
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
|
|
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
|
|
if (bf->bf_m) {
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
}
|
|
}
|
|
if (sc->sc_bcbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
|
|
sc->sc_bcbuf = NULL;
|
|
}
|
|
|
|
TAILQ_INIT(&sc->sc_rxbuf);
|
|
TAILQ_INIT(&sc->sc_txbuf);
|
|
TAILQ_INIT(&sc->sc_txq);
|
|
free(sc->sc_bufptr, M_DEVBUF);
|
|
sc->sc_bufptr = NULL;
|
|
}
|
|
|
|
static struct ieee80211_node *
|
|
ath_node_alloc(struct ieee80211com *ic)
|
|
{
|
|
struct ath_node *an =
|
|
malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (an) {
|
|
int i;
|
|
for (i = 0; i < ATH_RHIST_SIZE; i++)
|
|
an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
|
|
an->an_rx_hist_next = ATH_RHIST_SIZE-1;
|
|
return &an->an_node;
|
|
} else
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
|
|
{
|
|
struct ath_softc *sc = ic->ic_if.if_softc;
|
|
struct ath_buf *bf;
|
|
|
|
TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
|
|
if (bf->bf_node == ni)
|
|
bf->bf_node = NULL;
|
|
}
|
|
free(ni, M_DEVBUF);
|
|
}
|
|
|
|
static void
|
|
ath_node_copy(struct ieee80211com *ic,
|
|
struct ieee80211_node *dst, const struct ieee80211_node *src)
|
|
{
|
|
*(struct ath_node *)dst = *(const struct ath_node *)src;
|
|
}
|
|
|
|
|
|
static u_int8_t
|
|
ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
|
|
{
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int i, now, nsamples, rssi;
|
|
|
|
/*
|
|
* Calculate the average over the last second of sampled data.
|
|
*/
|
|
now = ticks;
|
|
nsamples = 0;
|
|
rssi = 0;
|
|
i = an->an_rx_hist_next;
|
|
do {
|
|
struct ath_recv_hist *rh = &an->an_rx_hist[i];
|
|
if (rh->arh_ticks == ATH_RHIST_NOTIME)
|
|
goto done;
|
|
if (now - rh->arh_ticks > hz)
|
|
goto done;
|
|
rssi += rh->arh_rssi;
|
|
nsamples++;
|
|
if (i == 0)
|
|
i = ATH_RHIST_SIZE-1;
|
|
else
|
|
i--;
|
|
} while (i != an->an_rx_hist_next);
|
|
done:
|
|
/*
|
|
* Return either the average or the last known
|
|
* value if there is no recent data.
|
|
*/
|
|
return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
|
|
}
|
|
|
|
static int
|
|
ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int error;
|
|
struct mbuf *m;
|
|
struct ath_desc *ds;
|
|
|
|
m = bf->bf_m;
|
|
if (m == NULL) {
|
|
/*
|
|
* NB: by assigning a page to the rx dma buffer we
|
|
* implicitly satisfy the Atheros requirement that
|
|
* this buffer be cache-line-aligned and sized to be
|
|
* multiple of the cache line size. Not doing this
|
|
* causes weird stuff to happen (for the 5210 at least).
|
|
*/
|
|
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL) {
|
|
DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
|
|
sc->sc_stats.ast_rx_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
bf->bf_m = m;
|
|
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
|
|
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
|
|
ath_mbuf_load_cb, bf,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
DPRINTF(("ath_rxbuf_init: bus_dmamap_load_mbuf failed;"
|
|
" error %d\n", error));
|
|
sc->sc_stats.ast_rx_busdma++;
|
|
return error;
|
|
}
|
|
KASSERT(bf->bf_nseg == 1,
|
|
("ath_rxbuf_init: multi-segment packet; nseg %u",
|
|
bf->bf_nseg));
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
|
|
|
|
/* setup descriptors */
|
|
ds = bf->bf_desc;
|
|
ds->ds_link = 0;
|
|
ds->ds_data = bf->bf_segs[0].ds_addr;
|
|
ath_hal_setuprxdesc(ah, ds
|
|
, m->m_len /* buffer size */
|
|
, 0
|
|
);
|
|
|
|
if (sc->sc_rxlink != NULL)
|
|
*sc->sc_rxlink = bf->bf_daddr;
|
|
sc->sc_rxlink = &ds->ds_link;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ath_rx_proc(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_buf *bf;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_desc *ds;
|
|
struct mbuf *m;
|
|
struct ieee80211_frame *wh, whbuf;
|
|
struct ieee80211_node *ni;
|
|
struct ath_node *an;
|
|
struct ath_recv_hist *rh;
|
|
int len;
|
|
u_int phyerr;
|
|
HAL_STATUS status;
|
|
|
|
DPRINTF2(("ath_rx_proc: pending %u\n", npending));
|
|
do {
|
|
bf = TAILQ_FIRST(&sc->sc_rxbuf);
|
|
if (bf == NULL) { /* NB: shouldn't happen */
|
|
if_printf(ifp, "ath_rx_proc: no buffer!\n");
|
|
break;
|
|
}
|
|
m = bf->bf_m;
|
|
if (m == NULL) { /* NB: shouldn't happen */
|
|
if_printf(ifp, "ath_rx_proc: no mbuf!\n");
|
|
continue;
|
|
}
|
|
ds = bf->bf_desc;
|
|
status = ath_hal_rxprocdesc(ah, ds);
|
|
#ifdef AR_DEBUG
|
|
if (ath_debug > 1)
|
|
ath_printrxbuf(bf, status == HAL_OK);
|
|
#endif
|
|
if (status == HAL_EINPROGRESS)
|
|
break;
|
|
TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
|
|
if (ds->ds_rxstat.rs_status != 0) {
|
|
ifp->if_ierrors++;
|
|
if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
|
|
sc->sc_stats.ast_rx_crcerr++;
|
|
if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
|
|
sc->sc_stats.ast_rx_fifoerr++;
|
|
if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
|
|
sc->sc_stats.ast_rx_badcrypt++;
|
|
if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
|
|
sc->sc_stats.ast_rx_phyerr++;
|
|
phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
|
|
sc->sc_stats.ast_rx_phy[phyerr]++;
|
|
}
|
|
goto rx_next;
|
|
}
|
|
|
|
len = ds->ds_rxstat.rs_datalen;
|
|
if (len < IEEE80211_MIN_LEN) {
|
|
DPRINTF(("ath_rx_proc: short packet %d\n", len));
|
|
sc->sc_stats.ast_rx_tooshort++;
|
|
goto rx_next;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
bf->bf_m = NULL;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
if (sc->sc_drvbpf) {
|
|
struct mbuf *mb;
|
|
|
|
/* XXX pre-allocate space when setting up recv's */
|
|
MGETHDR(mb, M_DONTWAIT, m->m_type);
|
|
if (mb != NULL) {
|
|
sc->sc_rx_th.wr_rate =
|
|
sc->sc_hwmap[ds->ds_rxstat.rs_rate];
|
|
sc->sc_rx_th.wr_antsignal =
|
|
ds->ds_rxstat.rs_rssi;
|
|
sc->sc_rx_th.wr_antenna =
|
|
ds->ds_rxstat.rs_antenna;
|
|
/* XXX TSF */
|
|
|
|
(void) m_dup_pkthdr(mb, m, M_DONTWAIT);
|
|
mb->m_next = m;
|
|
mb->m_data = (caddr_t)&sc->sc_rx_th;
|
|
mb->m_len = sizeof(sc->sc_rx_th);
|
|
mb->m_pkthdr.len += mb->m_len;
|
|
bpf_mtap(sc->sc_drvbpf, mb);
|
|
m_free(mb);
|
|
}
|
|
}
|
|
|
|
m_adj(m, -IEEE80211_CRC_LEN);
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
|
|
/*
|
|
* WEP is decrypted by hardware. Clear WEP bit
|
|
* and trim WEP header for ieee80211_input().
|
|
*/
|
|
wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
|
|
memcpy(&whbuf, wh, sizeof(whbuf));
|
|
m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
|
|
memcpy(mtod(m, caddr_t), &whbuf, sizeof(whbuf));
|
|
/*
|
|
* Also trim WEP ICV from the tail.
|
|
*/
|
|
m_adj(m, -IEEE80211_WEP_CRCLEN);
|
|
}
|
|
|
|
/*
|
|
* Locate the node for sender, track state, and
|
|
* then pass this node (referenced) up to the 802.11
|
|
* layer for its use. We are required to pass
|
|
* something so we fall back to ic_bss when this frame
|
|
* is from an unknown sender.
|
|
*/
|
|
if (ic->ic_opmode != IEEE80211_M_STA) {
|
|
ni = ieee80211_find_node(ic, wh->i_addr2);
|
|
if (ni == NULL)
|
|
ni = ieee80211_ref_node(ic->ic_bss);
|
|
} else
|
|
ni = ieee80211_ref_node(ic->ic_bss);
|
|
|
|
/*
|
|
* Record driver-specific state.
|
|
*/
|
|
an = ATH_NODE(ni);
|
|
if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
|
|
an->an_rx_hist_next = 0;
|
|
rh = &an->an_rx_hist[an->an_rx_hist_next];
|
|
rh->arh_ticks = ticks;
|
|
rh->arh_rssi = ds->ds_rxstat.rs_rssi;
|
|
rh->arh_antenna = ds->ds_rxstat.rs_antenna;
|
|
|
|
/*
|
|
* Send frame up for processing.
|
|
*/
|
|
ieee80211_input(ifp, m, ni,
|
|
ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
|
|
|
|
/*
|
|
* The frame may have caused the node to be marked for
|
|
* reclamation (e.g. in response to a DEAUTH message)
|
|
* so use free_node here instead of unref_node.
|
|
*/
|
|
if (ni == ic->ic_bss)
|
|
ieee80211_unref_node(&ni);
|
|
else
|
|
ieee80211_free_node(ic, ni);
|
|
rx_next:
|
|
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
|
|
} while (ath_rxbuf_init(sc, bf) == 0);
|
|
|
|
ath_hal_rxmonitor(ah); /* rx signal state monitoring */
|
|
ath_hal_rxena(ah); /* in case of RXEOL */
|
|
}
|
|
|
|
/*
|
|
* XXX Size of an ACK control frame in bytes.
|
|
*/
|
|
#define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
|
|
|
|
static int
|
|
ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
|
|
struct mbuf *m0)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
int i, error, iswep, hdrlen, pktlen;
|
|
u_int8_t rix, cix, txrate, ctsrate;
|
|
struct ath_desc *ds;
|
|
struct mbuf *m;
|
|
struct ieee80211_frame *wh;
|
|
u_int32_t iv;
|
|
u_int8_t *ivp;
|
|
u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
|
|
IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
|
|
u_int subtype, flags, ctsduration, antenna;
|
|
HAL_PKT_TYPE atype;
|
|
const HAL_RATE_TABLE *rt;
|
|
HAL_BOOL shortPreamble;
|
|
struct ath_node *an;
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
|
|
hdrlen = sizeof(struct ieee80211_frame);
|
|
pktlen = m0->m_pkthdr.len;
|
|
|
|
if (iswep) {
|
|
memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
|
|
m_adj(m0, hdrlen);
|
|
M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
|
|
if (m0 == NULL) {
|
|
sc->sc_stats.ast_tx_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
ivp = hdrbuf + hdrlen;
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
/*
|
|
* XXX
|
|
* IV must not duplicate during the lifetime of the key.
|
|
* But no mechanism to renew keys is defined in IEEE 802.11
|
|
* WEP. And IV may be duplicated between other stations
|
|
* because of the session key itself is shared.
|
|
* So we use pseudo random IV for now, though it is not the
|
|
* right way.
|
|
*/
|
|
iv = ic->ic_iv;
|
|
/*
|
|
* Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
|
|
* (B, 255, N) with 3 <= B < 8
|
|
*/
|
|
if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
|
|
iv += 0x000100;
|
|
ic->ic_iv = iv + 1;
|
|
for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
|
|
ivp[i] = iv;
|
|
iv >>= 8;
|
|
}
|
|
ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */
|
|
memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
|
|
/*
|
|
* The ICV length must be included into hdrlen and pktlen.
|
|
*/
|
|
hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
|
|
pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
|
|
}
|
|
pktlen += IEEE80211_CRC_LEN;
|
|
|
|
/*
|
|
* Load the DMA map so any coalescing is done. This
|
|
* also calculates the number of descriptors we need.
|
|
*/
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
|
|
ath_mbuf_load_cb, bf,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
sc->sc_stats.ast_tx_busdma++;
|
|
m_freem(m0);
|
|
return error;
|
|
}
|
|
/*
|
|
* Discard null packets and check for packets that
|
|
* require too many TX descriptors. We try to convert
|
|
* the latter to a cluster.
|
|
*/
|
|
if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
|
|
sc->sc_stats.ast_tx_linear++;
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
sc->sc_stats.ast_tx_nombuf++;
|
|
m_freem(m0);
|
|
return ENOMEM;
|
|
}
|
|
M_MOVE_PKTHDR(m, m0);
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
sc->sc_stats.ast_tx_nomcl++;
|
|
m_freem(m0);
|
|
m_free(m);
|
|
return ENOMEM;
|
|
}
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
|
|
m_freem(m0);
|
|
m->m_len = m->m_pkthdr.len;
|
|
m0 = m;
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
|
|
ath_mbuf_load_cb, bf,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
sc->sc_stats.ast_tx_busdma++;
|
|
m_freem(m0);
|
|
return error;
|
|
}
|
|
KASSERT(bf->bf_nseg == 1,
|
|
("ath_tx_start: packet not one segment; nseg %u",
|
|
bf->bf_nseg));
|
|
} else if (bf->bf_nseg == 0) { /* null packet, discard */
|
|
sc->sc_stats.ast_tx_nodata++;
|
|
m_freem(m0);
|
|
return EIO;
|
|
}
|
|
DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
|
|
bf->bf_m = m0;
|
|
bf->bf_node = ni; /* NB: held reference */
|
|
|
|
/* setup descriptors */
|
|
ds = bf->bf_desc;
|
|
rt = sc->sc_currates;
|
|
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
|
|
|
|
/*
|
|
* Calculate Atheros packet type from IEEE80211 packet header
|
|
* and setup for rate calculations.
|
|
*/
|
|
atype = HAL_PKT_TYPE_NORMAL; /* default */
|
|
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
|
|
case IEEE80211_FC0_TYPE_MGT:
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
|
|
atype = HAL_PKT_TYPE_BEACON;
|
|
else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
|
|
atype = HAL_PKT_TYPE_PROBE_RESP;
|
|
else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
|
|
atype = HAL_PKT_TYPE_ATIM;
|
|
rix = 0; /* XXX lowest rate */
|
|
break;
|
|
case IEEE80211_FC0_TYPE_CTL:
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
|
|
atype = HAL_PKT_TYPE_PSPOLL;
|
|
rix = 0; /* XXX lowest rate */
|
|
break;
|
|
default:
|
|
rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
|
|
IEEE80211_RATE_VAL];
|
|
if (rix == 0xff) {
|
|
if_printf(ifp, "bogus xmit rate 0x%x\n",
|
|
ni->ni_rates.rs_rates[ni->ni_txrate]);
|
|
sc->sc_stats.ast_tx_badrate++;
|
|
m_freem(m0);
|
|
return EIO;
|
|
}
|
|
break;
|
|
}
|
|
/*
|
|
* NB: the 802.11 layer marks whether or not we should
|
|
* use short preamble based on the current mode and
|
|
* negotiated parameters.
|
|
*/
|
|
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
|
|
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
|
|
txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
|
|
shortPreamble = AH_TRUE;
|
|
sc->sc_stats.ast_tx_shortpre++;
|
|
} else {
|
|
txrate = rt->info[rix].rateCode;
|
|
shortPreamble = AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Calculate miscellaneous flags.
|
|
*/
|
|
flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
|
|
sc->sc_stats.ast_tx_noack++;
|
|
} else if (pktlen > ic->ic_rtsthreshold) {
|
|
flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
|
|
sc->sc_stats.ast_tx_rts++;
|
|
}
|
|
|
|
/*
|
|
* Calculate duration. This logically belongs in the 802.11
|
|
* layer but it lacks sufficient information to calculate it.
|
|
*/
|
|
if ((flags & HAL_TXDESC_NOACK) == 0 &&
|
|
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
|
|
u_int16_t dur;
|
|
/*
|
|
* XXX not right with fragmentation.
|
|
*/
|
|
dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
|
|
rix, shortPreamble);
|
|
*((u_int16_t*) wh->i_dur) = htole16(dur);
|
|
}
|
|
|
|
/*
|
|
* Calculate RTS/CTS rate and duration if needed.
|
|
*/
|
|
ctsduration = 0;
|
|
if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
|
|
/*
|
|
* CTS transmit rate is derived from the transmit rate
|
|
* by looking in the h/w rate table. We must also factor
|
|
* in whether or not a short preamble is to be used.
|
|
*/
|
|
cix = rt->info[rix].controlRate;
|
|
ctsrate = rt->info[cix].rateCode;
|
|
if (shortPreamble)
|
|
ctsrate |= rt->info[cix].shortPreamble;
|
|
/*
|
|
* Compute the transmit duration based on the size
|
|
* of an ACK frame. We call into the HAL to do the
|
|
* computation since it depends on the characteristics
|
|
* of the actual PHY being used.
|
|
*/
|
|
if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
|
|
}
|
|
/* SIFS + data */
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, pktlen, rix, shortPreamble);
|
|
if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
|
|
}
|
|
} else
|
|
ctsrate = 0;
|
|
|
|
/*
|
|
* For now use the antenna on which the last good
|
|
* frame was received on. We assume this field is
|
|
* initialized to 0 which gives us ``auto'' or the
|
|
* ``default'' antenna.
|
|
*/
|
|
an = (struct ath_node *) ni;
|
|
if (an->an_tx_antenna)
|
|
antenna = an->an_tx_antenna;
|
|
else
|
|
antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
|
|
|
|
/*
|
|
* Formulate first tx descriptor with tx controls.
|
|
*/
|
|
/* XXX check return value? */
|
|
ath_hal_setuptxdesc(ah, ds
|
|
, pktlen /* packet length */
|
|
, hdrlen /* header length */
|
|
, atype /* Atheros packet type */
|
|
, 60 /* txpower XXX */
|
|
, txrate, 1+10 /* series 0 rate/tries */
|
|
, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
|
|
, antenna /* antenna mode */
|
|
, flags /* flags */
|
|
, ctsrate /* rts/cts rate */
|
|
, ctsduration /* rts/cts duration */
|
|
);
|
|
#ifdef notyet
|
|
ath_hal_setupxtxdesc(ah, ds
|
|
, AH_FALSE /* short preamble */
|
|
, 0, 0 /* series 1 rate/tries */
|
|
, 0, 0 /* series 2 rate/tries */
|
|
, 0, 0 /* series 3 rate/tries */
|
|
);
|
|
#endif
|
|
/*
|
|
* Fillin the remainder of the descriptor info.
|
|
*/
|
|
for (i = 0; i < bf->bf_nseg; i++, ds++) {
|
|
ds->ds_data = bf->bf_segs[i].ds_addr;
|
|
if (i == bf->bf_nseg - 1)
|
|
ds->ds_link = 0;
|
|
else
|
|
ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
|
|
ath_hal_filltxdesc(ah, ds
|
|
, bf->bf_segs[i].ds_len /* segment length */
|
|
, i == 0 /* first segment */
|
|
, i == bf->bf_nseg - 1 /* last segment */
|
|
);
|
|
DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
|
|
i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
|
|
ds->ds_hw[0], ds->ds_hw[1]));
|
|
}
|
|
|
|
/*
|
|
* Insert the frame on the outbound list and
|
|
* pass it on to the hardware.
|
|
*/
|
|
ATH_TXQ_LOCK(sc);
|
|
TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
|
|
if (sc->sc_txlink == NULL) {
|
|
ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
|
|
DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
|
|
(caddr_t)bf->bf_daddr, bf->bf_desc));
|
|
} else {
|
|
*sc->sc_txlink = bf->bf_daddr;
|
|
DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
|
|
sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
|
|
}
|
|
sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
|
|
ATH_TXQ_UNLOCK(sc);
|
|
|
|
ath_hal_txstart(ah, sc->sc_txhalq);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ath_tx_proc(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_desc *ds;
|
|
struct ieee80211_node *ni;
|
|
struct ath_node *an;
|
|
int sr, lr;
|
|
HAL_STATUS status;
|
|
|
|
DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
|
|
npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
|
|
sc->sc_txlink));
|
|
for (;;) {
|
|
ATH_TXQ_LOCK(sc);
|
|
bf = TAILQ_FIRST(&sc->sc_txq);
|
|
if (bf == NULL) {
|
|
sc->sc_txlink = NULL;
|
|
ATH_TXQ_UNLOCK(sc);
|
|
break;
|
|
}
|
|
/* only the last descriptor is needed */
|
|
ds = &bf->bf_desc[bf->bf_nseg - 1];
|
|
status = ath_hal_txprocdesc(ah, ds);
|
|
#ifdef AR_DEBUG
|
|
if (ath_debug > 1)
|
|
ath_printtxbuf(bf, status == HAL_OK);
|
|
#endif
|
|
if (status == HAL_EINPROGRESS) {
|
|
ATH_TXQ_UNLOCK(sc);
|
|
break;
|
|
}
|
|
TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
|
|
ATH_TXQ_UNLOCK(sc);
|
|
|
|
ni = bf->bf_node;
|
|
if (ni != NULL) {
|
|
an = (struct ath_node *) ni;
|
|
if (ds->ds_txstat.ts_status == 0) {
|
|
an->an_tx_ok++;
|
|
an->an_tx_antenna = ds->ds_txstat.ts_antenna;
|
|
} else {
|
|
an->an_tx_err++;
|
|
ifp->if_oerrors++;
|
|
if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
|
|
sc->sc_stats.ast_tx_xretries++;
|
|
if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
|
|
sc->sc_stats.ast_tx_fifoerr++;
|
|
if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
|
|
sc->sc_stats.ast_tx_filtered++;
|
|
an->an_tx_antenna = 0; /* invalidate */
|
|
}
|
|
sr = ds->ds_txstat.ts_shortretry;
|
|
lr = ds->ds_txstat.ts_longretry;
|
|
sc->sc_stats.ast_tx_shortretry += sr;
|
|
sc->sc_stats.ast_tx_longretry += lr;
|
|
if (sr + lr)
|
|
an->an_tx_retr++;
|
|
/*
|
|
* Reclaim reference to node.
|
|
*
|
|
* NB: the node may be reclaimed here if, for example
|
|
* this is a DEAUTH message that was sent and the
|
|
* node was timed out due to inactivity.
|
|
*/
|
|
if (ni != ic->ic_bss)
|
|
ieee80211_free_node(ic, ni);
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
|
|
ATH_TXBUF_LOCK(sc);
|
|
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
}
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
sc->sc_tx_timer = 0;
|
|
|
|
ath_start(ifp);
|
|
}
|
|
|
|
/*
|
|
* Drain the transmit queue and reclaim resources.
|
|
*/
|
|
static void
|
|
ath_draintxq(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
struct ath_buf *bf;
|
|
|
|
/* XXX return value */
|
|
if (!sc->sc_invalid) {
|
|
/* don't touch the hardware if marked invalid */
|
|
(void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
|
|
DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
|
|
(caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
|
|
sc->sc_txlink));
|
|
(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
|
|
DPRINTF(("ath_draintxq: beacon queue %p\n",
|
|
(caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
|
|
}
|
|
for (;;) {
|
|
ATH_TXQ_LOCK(sc);
|
|
bf = TAILQ_FIRST(&sc->sc_txq);
|
|
if (bf == NULL) {
|
|
sc->sc_txlink = NULL;
|
|
ATH_TXQ_UNLOCK(sc);
|
|
break;
|
|
}
|
|
TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
|
|
ATH_TXQ_UNLOCK(sc);
|
|
#ifdef AR_DEBUG
|
|
if (ath_debug)
|
|
ath_printtxbuf(bf,
|
|
ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
|
|
#endif /* AR_DEBUG */
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
ATH_TXBUF_LOCK(sc);
|
|
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
}
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
sc->sc_tx_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* Disable the receive h/w in preparation for a reset.
|
|
*/
|
|
static void
|
|
ath_stoprecv(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
ath_hal_stoppcurecv(ah); /* disable PCU */
|
|
ath_hal_setrxfilter(ah, 0); /* clear recv filter */
|
|
ath_hal_stopdmarecv(ah); /* disable DMA engine */
|
|
DELAY(3000); /* long enough for 1 frame */
|
|
#ifdef AR_DEBUG
|
|
if (ath_debug) {
|
|
struct ath_buf *bf;
|
|
|
|
DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
|
|
(caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
|
|
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
|
|
if (ath_hal_rxprocdesc(ah, bf->bf_desc) == HAL_OK)
|
|
ath_printrxbuf(bf, 1);
|
|
}
|
|
}
|
|
#endif
|
|
sc->sc_rxlink = NULL; /* just in case */
|
|
}
|
|
|
|
/*
|
|
* Enable the receive h/w following a reset.
|
|
*/
|
|
static int
|
|
ath_startrecv(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
|
|
sc->sc_rxlink = NULL;
|
|
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
|
|
int error = ath_rxbuf_init(sc, bf);
|
|
if (error != 0) {
|
|
DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
|
|
error));
|
|
return error;
|
|
}
|
|
}
|
|
|
|
bf = TAILQ_FIRST(&sc->sc_rxbuf);
|
|
ath_hal_putrxbuf(ah, bf->bf_daddr);
|
|
ath_hal_rxena(ah); /* enable recv descriptors */
|
|
ath_mode_init(sc); /* set filters, etc. */
|
|
ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set/change channels. If the channel is really being changed,
|
|
* it's done by resetting the chip. To accomplish this we must
|
|
* first cleanup any pending DMA, then restart stuff after a la
|
|
* ath_init.
|
|
*/
|
|
static int
|
|
ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
|
|
ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
|
|
ic->ic_ibss_chan->ic_freq,
|
|
ieee80211_chan2ieee(ic, chan), chan->ic_freq));
|
|
if (chan != ic->ic_ibss_chan) {
|
|
HAL_STATUS status;
|
|
HAL_CHANNEL hchan;
|
|
enum ieee80211_phymode mode;
|
|
|
|
/*
|
|
* To switch channels clear any pending DMA operations;
|
|
* wait long enough for the RX fifo to drain, reset the
|
|
* hardware at the new frequency, and then re-enable
|
|
* the relevant bits of the h/w.
|
|
*/
|
|
ath_hal_intrset(ah, 0); /* disable interrupts */
|
|
ath_draintxq(sc); /* clear pending tx frames */
|
|
ath_stoprecv(sc); /* turn off frame recv */
|
|
/*
|
|
* Convert to a HAL channel description with
|
|
* the flags constrained to reflect the current
|
|
* operating mode.
|
|
*/
|
|
hchan.channel = chan->ic_freq;
|
|
hchan.channelFlags = ath_chan2flags(ic, chan);
|
|
if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
|
|
if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
|
|
"channel %u (%u Mhz)\n",
|
|
ieee80211_chan2ieee(ic, chan), chan->ic_freq);
|
|
return EIO;
|
|
}
|
|
/*
|
|
* Re-enable rx framework.
|
|
*/
|
|
if (ath_startrecv(sc) != 0) {
|
|
if_printf(&ic->ic_if,
|
|
"ath_chan_set: unable to restart recv logic\n");
|
|
return EIO;
|
|
}
|
|
|
|
/*
|
|
* Update BPF state.
|
|
*/
|
|
sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
|
|
htole16(chan->ic_freq);
|
|
sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
|
|
htole16(chan->ic_flags);
|
|
|
|
/*
|
|
* Change channels and update the h/w rate map
|
|
* if we're switching; e.g. 11a to 11b/g.
|
|
*/
|
|
ic->ic_ibss_chan = chan;
|
|
mode = ieee80211_chan2mode(ic, chan);
|
|
if (mode != sc->sc_curmode)
|
|
ath_setcurmode(sc, mode);
|
|
|
|
/*
|
|
* Re-enable interrupts.
|
|
*/
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ath_next_scan(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
|
|
if (ic->ic_state == IEEE80211_S_SCAN)
|
|
ieee80211_next_scan(ifp);
|
|
}
|
|
|
|
/*
|
|
* Periodically recalibrate the PHY to account
|
|
* for temperature/environment changes.
|
|
*/
|
|
static void
|
|
ath_calibrate(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_channel *c;
|
|
HAL_CHANNEL hchan;
|
|
|
|
sc->sc_stats.ast_per_cal++;
|
|
|
|
/*
|
|
* Convert to a HAL channel description with the flags
|
|
* constrained to reflect the current operating mode.
|
|
*/
|
|
c = ic->ic_ibss_chan;
|
|
hchan.channel = c->ic_freq;
|
|
hchan.channelFlags = ath_chan2flags(ic, c);
|
|
|
|
DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
|
|
|
|
if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
|
|
/*
|
|
* Rfgain is out of bounds, reset the chip
|
|
* to load new gain values.
|
|
*/
|
|
sc->sc_stats.ast_per_rfgain++;
|
|
ath_reset(sc);
|
|
}
|
|
if (!ath_hal_calibrate(ah, &hchan)) {
|
|
DPRINTF(("%s: calibration of channel %u failed\n",
|
|
__func__, c->ic_freq));
|
|
sc->sc_stats.ast_per_calfail++;
|
|
}
|
|
callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
|
|
}
|
|
|
|
static int
|
|
ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211_node *ni;
|
|
int i, error;
|
|
u_int8_t *bssid;
|
|
u_int32_t rfilt;
|
|
static const HAL_LED_STATE leds[] = {
|
|
HAL_LED_INIT, /* IEEE80211_S_INIT */
|
|
HAL_LED_SCAN, /* IEEE80211_S_SCAN */
|
|
HAL_LED_AUTH, /* IEEE80211_S_AUTH */
|
|
HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
|
|
HAL_LED_RUN, /* IEEE80211_S_RUN */
|
|
};
|
|
|
|
DPRINTF(("%s: %s -> %s\n", __func__,
|
|
ieee80211_state_name[ic->ic_state],
|
|
ieee80211_state_name[nstate]));
|
|
|
|
ath_hal_setledstate(ah, leds[nstate]); /* set LED */
|
|
|
|
if (nstate == IEEE80211_S_INIT) {
|
|
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
callout_stop(&sc->sc_scan_ch);
|
|
callout_stop(&sc->sc_cal_ch);
|
|
return (*sc->sc_newstate)(ic, nstate, arg);
|
|
}
|
|
ni = ic->ic_bss;
|
|
error = ath_chan_set(sc, ni->ni_chan);
|
|
if (error != 0)
|
|
goto bad;
|
|
rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
|
|
| HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
|
|
if (ic->ic_opmode != IEEE80211_M_STA)
|
|
rfilt |= HAL_RX_FILTER_PROBEREQ;
|
|
if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
|
|
(ifp->if_flags & IFF_PROMISC))
|
|
rfilt |= HAL_RX_FILTER_PROM;
|
|
if (ic->ic_opmode == IEEE80211_M_STA ||
|
|
ic->ic_state == IEEE80211_S_SCAN)
|
|
rfilt |= HAL_RX_FILTER_BEACON;
|
|
if (nstate == IEEE80211_S_SCAN) {
|
|
callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
|
|
ath_next_scan, sc);
|
|
bssid = ifp->if_broadcastaddr;
|
|
} else {
|
|
callout_stop(&sc->sc_scan_ch);
|
|
bssid = ni->ni_bssid;
|
|
}
|
|
ath_hal_setrxfilter(ah, rfilt);
|
|
DPRINTF(("%s: RX filter 0x%x bssid %s\n",
|
|
__func__, rfilt, ether_sprintf(bssid)));
|
|
|
|
if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
|
|
ath_hal_setassocid(ah, bssid, ni->ni_associd);
|
|
else
|
|
ath_hal_setassocid(ah, bssid, 0);
|
|
if (ic->ic_flags & IEEE80211_F_WEPON) {
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++)
|
|
if (ath_hal_keyisvalid(ah, i))
|
|
ath_hal_keysetmac(ah, i, bssid);
|
|
}
|
|
|
|
if (nstate == IEEE80211_S_RUN) {
|
|
DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
|
|
"capinfo=0x%04x chan=%d\n"
|
|
, __func__
|
|
, ic->ic_flags
|
|
, ni->ni_intval
|
|
, ether_sprintf(ni->ni_bssid)
|
|
, ni->ni_capinfo
|
|
, ieee80211_chan2ieee(ic, ni->ni_chan)));
|
|
|
|
/*
|
|
* Allocate and setup the beacon frame for AP or adhoc mode.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
|
|
ic->ic_opmode == IEEE80211_M_IBSS) {
|
|
error = ath_beacon_alloc(sc, ni);
|
|
if (error != 0)
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Configure the beacon and sleep timers.
|
|
*/
|
|
ath_beacon_config(sc);
|
|
|
|
/* start periodic recalibration timer */
|
|
callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
|
|
ath_calibrate, sc);
|
|
} else {
|
|
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
callout_stop(&sc->sc_cal_ch); /* no calibration */
|
|
}
|
|
/*
|
|
* Reset the rate control state.
|
|
*/
|
|
ath_rate_ctl_reset(sc, nstate);
|
|
/*
|
|
* Invoke the parent method to complete the work.
|
|
*/
|
|
return (*sc->sc_newstate)(ic, nstate, arg);
|
|
bad:
|
|
callout_stop(&sc->sc_scan_ch);
|
|
callout_stop(&sc->sc_cal_ch);
|
|
/* NB: do not invoke the parent */
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Setup driver-specific state for a newly associated node.
|
|
* Note that we're called also on a re-associate, the isnew
|
|
* param tells us if this is the first time or not.
|
|
*/
|
|
static void
|
|
ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
|
|
{
|
|
if (isnew) {
|
|
struct ath_node *an = (struct ath_node *) ni;
|
|
|
|
an->an_tx_ok = an->an_tx_err =
|
|
an->an_tx_retr = an->an_tx_upper = 0;
|
|
/* start with highest negotiated rate */
|
|
/*
|
|
* XXX should do otherwise but only when
|
|
* the rate control algorithm is better.
|
|
*/
|
|
KASSERT(ni->ni_rates.rs_nrates > 0,
|
|
("new association w/ no rates!"));
|
|
ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
|
|
}
|
|
}
|
|
|
|
static int
|
|
ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_CHANNEL *chans;
|
|
int i, ix, nchan;
|
|
|
|
chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
|
|
M_TEMP, M_NOWAIT);
|
|
if (chans == NULL) {
|
|
if_printf(ifp, "unable to allocate channel table\n");
|
|
return ENOMEM;
|
|
}
|
|
if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
|
|
cc, HAL_MODE_ALL, outdoor)) {
|
|
if_printf(ifp, "unable to collect channel list from hal\n");
|
|
free(chans, M_TEMP);
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Convert HAL channels to ieee80211 ones and insert
|
|
* them in the table according to their channel number.
|
|
*/
|
|
for (i = 0; i < nchan; i++) {
|
|
HAL_CHANNEL *c = &chans[i];
|
|
ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
|
|
if (ix > IEEE80211_CHAN_MAX) {
|
|
if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
|
|
ix, c->channel, c->channelFlags);
|
|
continue;
|
|
}
|
|
/* NB: flags are known to be compatible */
|
|
if (ic->ic_channels[ix].ic_freq == 0) {
|
|
ic->ic_channels[ix].ic_freq = c->channel;
|
|
ic->ic_channels[ix].ic_flags = c->channelFlags;
|
|
} else {
|
|
/* channels overlap; e.g. 11g and 11b */
|
|
ic->ic_channels[ix].ic_flags |= c->channelFlags;
|
|
}
|
|
}
|
|
free(chans, M_TEMP);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_rate_setup(struct ath_softc *sc, u_int mode)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
const HAL_RATE_TABLE *rt;
|
|
struct ieee80211_rateset *rs;
|
|
int i, maxrates;
|
|
|
|
switch (mode) {
|
|
case IEEE80211_MODE_11A:
|
|
sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
|
|
break;
|
|
case IEEE80211_MODE_11B:
|
|
sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
|
|
break;
|
|
case IEEE80211_MODE_11G:
|
|
sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
|
|
break;
|
|
case IEEE80211_MODE_TURBO:
|
|
sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
|
|
break;
|
|
default:
|
|
DPRINTF(("%s: invalid mode %u\n", __func__, mode));
|
|
return 0;
|
|
}
|
|
rt = sc->sc_rates[mode];
|
|
if (rt == NULL)
|
|
return 0;
|
|
if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
|
|
DPRINTF(("%s: rate table too small (%u > %u)\n",
|
|
__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
|
|
maxrates = IEEE80211_RATE_MAXSIZE;
|
|
} else
|
|
maxrates = rt->rateCount;
|
|
rs = &ic->ic_sup_rates[mode];
|
|
for (i = 0; i < maxrates; i++)
|
|
rs->rs_rates[i] = rt->info[i].dot11Rate;
|
|
rs->rs_nrates = maxrates;
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
|
|
{
|
|
const HAL_RATE_TABLE *rt;
|
|
int i;
|
|
|
|
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
|
|
rt = sc->sc_rates[mode];
|
|
KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
|
|
for (i = 0; i < rt->rateCount; i++)
|
|
sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
|
|
memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
|
|
for (i = 0; i < 32; i++)
|
|
sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
|
|
sc->sc_currates = rt;
|
|
sc->sc_curmode = mode;
|
|
}
|
|
|
|
/*
|
|
* Reset the rate control state for each 802.11 state transition.
|
|
*/
|
|
static void
|
|
ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni;
|
|
struct ath_node *an;
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_STA) {
|
|
/*
|
|
* When operating as a station the node table holds
|
|
* the AP's that were discovered during scanning.
|
|
* For any other operating mode we want to reset the
|
|
* tx rate state of each node.
|
|
*/
|
|
TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
|
|
ni->ni_txrate = 0; /* use lowest rate */
|
|
an = (struct ath_node *) ni;
|
|
an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
|
|
an->an_tx_upper = 0;
|
|
}
|
|
}
|
|
/*
|
|
* Reset local xmit state; this is really only meaningful
|
|
* when operating in station or adhoc mode.
|
|
*/
|
|
ni = ic->ic_bss;
|
|
an = (struct ath_node *) ni;
|
|
an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
|
|
if (state == IEEE80211_S_RUN) {
|
|
/* start with highest negotiated rate */
|
|
KASSERT(ni->ni_rates.rs_nrates > 0,
|
|
("transition to RUN state w/ no rates!"));
|
|
ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
|
|
} else {
|
|
/* use lowest rate */
|
|
ni->ni_txrate = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Examine and potentially adjust the transmit rate.
|
|
*/
|
|
static void
|
|
ath_rate_ctl(void *arg, struct ieee80211_node *ni)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_node *an = (struct ath_node *) ni;
|
|
struct ieee80211_rateset *rs = &ni->ni_rates;
|
|
int mod = 0, orate, enough;
|
|
|
|
/*
|
|
* Rate control
|
|
* XXX: very primitive version.
|
|
*/
|
|
sc->sc_stats.ast_rate_calls++;
|
|
|
|
enough = (an->an_tx_ok + an->an_tx_err >= 10);
|
|
|
|
/* no packet reached -> down */
|
|
if (an->an_tx_err > 0 && an->an_tx_ok == 0)
|
|
mod = -1;
|
|
|
|
/* all packets needs retry in average -> down */
|
|
if (enough && an->an_tx_ok < an->an_tx_retr)
|
|
mod = -1;
|
|
|
|
/* no error and less than 10% of packets needs retry -> up */
|
|
if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
|
|
mod = 1;
|
|
|
|
orate = ni->ni_txrate;
|
|
switch (mod) {
|
|
case 0:
|
|
if (enough && an->an_tx_upper > 0)
|
|
an->an_tx_upper--;
|
|
break;
|
|
case -1:
|
|
if (ni->ni_txrate > 0) {
|
|
ni->ni_txrate--;
|
|
sc->sc_stats.ast_rate_drop++;
|
|
}
|
|
an->an_tx_upper = 0;
|
|
break;
|
|
case 1:
|
|
if (++an->an_tx_upper < 2)
|
|
break;
|
|
an->an_tx_upper = 0;
|
|
if (ni->ni_txrate + 1 < rs->rs_nrates) {
|
|
ni->ni_txrate++;
|
|
sc->sc_stats.ast_rate_raise++;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (ni->ni_txrate != orate) {
|
|
printf("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
|
|
__func__,
|
|
(rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
|
|
(rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
|
|
an->an_tx_ok, an->an_tx_err, an->an_tx_retr);
|
|
}
|
|
if (ni->ni_txrate != orate || enough)
|
|
an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
|
|
}
|
|
|
|
#ifdef AR_DEBUG
|
|
static int
|
|
sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
char dmode[64];
|
|
int error;
|
|
|
|
strncpy(dmode, "", sizeof(dmode) - 1);
|
|
dmode[sizeof(dmode) - 1] = '\0';
|
|
error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
|
|
|
|
if (error == 0 && req->newptr != NULL) {
|
|
struct ifnet *ifp;
|
|
struct ath_softc *sc;
|
|
|
|
ifp = ifunit("ath0"); /* XXX */
|
|
if (!ifp)
|
|
return EINVAL;
|
|
sc = ifp->if_softc;
|
|
if (strcmp(dmode, "hal") == 0)
|
|
ath_hal_dumpstate(sc->sc_ah);
|
|
else if (strcmp(dmode, "eeprom") == 0)
|
|
ath_hal_dumpeeprom(sc->sc_ah);
|
|
else if (strcmp(dmode, "rfgain") == 0)
|
|
ath_hal_dumprfgain(sc->sc_ah);
|
|
else if (strcmp(dmode, "ani") == 0)
|
|
ath_hal_dumpani(sc->sc_ah);
|
|
else
|
|
return EINVAL;
|
|
}
|
|
return error;
|
|
}
|
|
SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
|
|
0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
|
|
|
|
static void
|
|
ath_printrxbuf(struct ath_buf *bf, int done)
|
|
{
|
|
struct ath_desc *ds;
|
|
int i;
|
|
|
|
for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
|
|
printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
|
|
i, ds, (struct ath_desc *)bf->bf_daddr + i,
|
|
ds->ds_link, ds->ds_data,
|
|
ds->ds_ctl0, ds->ds_ctl1,
|
|
ds->ds_hw[0], ds->ds_hw[1],
|
|
!done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_printtxbuf(struct ath_buf *bf, int done)
|
|
{
|
|
struct ath_desc *ds;
|
|
int i;
|
|
|
|
for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
|
|
printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
|
|
i, ds, (struct ath_desc *)bf->bf_daddr + i,
|
|
ds->ds_link, ds->ds_data,
|
|
ds->ds_ctl0, ds->ds_ctl1,
|
|
ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
|
|
!done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
|
|
}
|
|
}
|
|
#endif /* AR_DEBUG */
|