freebsd-dev/sys/boot/common/part.c
Andrey V. Elsukov c6e31e81e0 Add bootcamp support to the loader.
Tested by:	dchagin
MFC after:	1 week
2013-02-10 19:27:17 +00:00

848 lines
22 KiB
C

/*-
* Copyright (c) 2012 Andrey V. Elsukov <ae@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <stand.h>
#include <sys/param.h>
#include <sys/diskmbr.h>
#include <sys/disklabel.h>
#include <sys/endian.h>
#include <sys/gpt.h>
#include <sys/stddef.h>
#include <sys/queue.h>
#include <sys/vtoc.h>
#include <crc32.h>
#include <part.h>
#include <uuid.h>
#ifdef PART_DEBUG
#define DEBUG(fmt, args...) printf("%s: " fmt "\n" , __func__ , ## args)
#else
#define DEBUG(fmt, args...)
#endif
#ifdef LOADER_GPT_SUPPORT
#define MAXTBLSZ 64
static const uuid_t gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
static const uuid_t gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
static const uuid_t gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
static const uuid_t gpt_uuid_efi = GPT_ENT_TYPE_EFI;
static const uuid_t gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
static const uuid_t gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
static const uuid_t gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
static const uuid_t gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
static const uuid_t gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
#endif
struct pentry {
struct ptable_entry part;
uint64_t flags;
union {
uint8_t bsd;
uint8_t mbr;
uuid_t gpt;
uint16_t vtoc8;
} type;
STAILQ_ENTRY(pentry) entry;
};
struct ptable {
enum ptable_type type;
uint16_t sectorsize;
uint64_t sectors;
STAILQ_HEAD(, pentry) entries;
};
static struct parttypes {
enum partition_type type;
const char *desc;
} ptypes[] = {
{ PART_UNKNOWN, "Unknown" },
{ PART_EFI, "EFI" },
{ PART_FREEBSD, "FreeBSD" },
{ PART_FREEBSD_BOOT, "FreeBSD boot" },
{ PART_FREEBSD_NANDFS, "FreeBSD nandfs" },
{ PART_FREEBSD_UFS, "FreeBSD UFS" },
{ PART_FREEBSD_ZFS, "FreeBSD ZFS" },
{ PART_FREEBSD_SWAP, "FreeBSD swap" },
{ PART_FREEBSD_VINUM, "FreeBSD vinum" },
{ PART_LINUX, "Linux" },
{ PART_LINUX_SWAP, "Linux swap" },
{ PART_DOS, "DOS/Windows" },
};
const char *
parttype2str(enum partition_type type)
{
int i;
for (i = 0; i < sizeof(ptypes) / sizeof(ptypes[0]); i++)
if (ptypes[i].type == type)
return (ptypes[i].desc);
return (ptypes[0].desc);
}
#ifdef LOADER_GPT_SUPPORT
static void
uuid_letoh(uuid_t *uuid)
{
uuid->time_low = le32toh(uuid->time_low);
uuid->time_mid = le16toh(uuid->time_mid);
uuid->time_hi_and_version = le16toh(uuid->time_hi_and_version);
}
static enum partition_type
gpt_parttype(uuid_t type)
{
if (uuid_equal(&type, &gpt_uuid_efi, NULL))
return (PART_EFI);
else if (uuid_equal(&type, &gpt_uuid_ms_basic_data, NULL))
return (PART_DOS);
else if (uuid_equal(&type, &gpt_uuid_freebsd_boot, NULL))
return (PART_FREEBSD_BOOT);
else if (uuid_equal(&type, &gpt_uuid_freebsd_ufs, NULL))
return (PART_FREEBSD_UFS);
else if (uuid_equal(&type, &gpt_uuid_freebsd_zfs, NULL))
return (PART_FREEBSD_ZFS);
else if (uuid_equal(&type, &gpt_uuid_freebsd_swap, NULL))
return (PART_FREEBSD_SWAP);
else if (uuid_equal(&type, &gpt_uuid_freebsd_vinum, NULL))
return (PART_FREEBSD_VINUM);
else if (uuid_equal(&type, &gpt_uuid_freebsd_nandfs, NULL))
return (PART_FREEBSD_NANDFS);
return (PART_UNKNOWN);
}
static struct gpt_hdr*
gpt_checkhdr(struct gpt_hdr *hdr, uint64_t lba_self, uint64_t lba_last,
uint16_t sectorsize)
{
uint32_t sz, crc;
if (memcmp(hdr->hdr_sig, GPT_HDR_SIG, sizeof(hdr->hdr_sig)) != 0) {
DEBUG("no GPT signature");
return (NULL);
}
sz = le32toh(hdr->hdr_size);
if (sz < 92 || sz > sectorsize) {
DEBUG("invalid GPT header size: %d", sz);
return (NULL);
}
crc = le32toh(hdr->hdr_crc_self);
hdr->hdr_crc_self = 0;
if (crc32(hdr, sz) != crc) {
DEBUG("GPT header's CRC doesn't match");
return (NULL);
}
hdr->hdr_crc_self = crc;
hdr->hdr_revision = le32toh(hdr->hdr_revision);
if (hdr->hdr_revision < GPT_HDR_REVISION) {
DEBUG("unsupported GPT revision %d", hdr->hdr_revision);
return (NULL);
}
hdr->hdr_lba_self = le64toh(hdr->hdr_lba_self);
if (hdr->hdr_lba_self != lba_self) {
DEBUG("self LBA doesn't match");
return (NULL);
}
hdr->hdr_lba_alt = le64toh(hdr->hdr_lba_alt);
if (hdr->hdr_lba_alt == hdr->hdr_lba_self) {
DEBUG("invalid alternate LBA");
return (NULL);
}
hdr->hdr_entries = le32toh(hdr->hdr_entries);
hdr->hdr_entsz = le32toh(hdr->hdr_entsz);
if (hdr->hdr_entries < 128 ||
hdr->hdr_entsz < sizeof(struct gpt_ent) ||
sectorsize % hdr->hdr_entsz != 0) {
DEBUG("invalid entry size or number of entries");
return (NULL);
}
hdr->hdr_lba_start = le64toh(hdr->hdr_lba_start);
hdr->hdr_lba_end = le64toh(hdr->hdr_lba_end);
hdr->hdr_lba_table = le64toh(hdr->hdr_lba_table);
hdr->hdr_crc_table = le32toh(hdr->hdr_crc_table);
uuid_letoh(&hdr->hdr_uuid);
return (hdr);
}
static int
gpt_checktbl(const struct gpt_hdr *hdr, u_char *tbl, size_t size,
uint64_t lba_last)
{
struct gpt_ent *ent;
int i, cnt;
cnt = size / hdr->hdr_entsz;
/* Check CRC only when buffer size is enough for table. */
if (hdr->hdr_entries <= cnt &&
crc32(tbl, size) != hdr->hdr_crc_table) {
DEBUG("GPT table's CRC doesn't match");
return (-1);
}
ent = (struct gpt_ent *)tbl;
for (i = 0; i < cnt; i++, ent++) {
uuid_letoh(&ent->ent_type);
if (uuid_equal(&ent->ent_type, &gpt_uuid_unused, NULL))
continue;
ent->ent_lba_start = le64toh(ent->ent_lba_start);
ent->ent_lba_end = le64toh(ent->ent_lba_end);
}
return (0);
}
static struct ptable*
ptable_gptread(struct ptable *table, void *dev, diskread_t dread)
{
struct pentry *entry;
struct gpt_hdr *phdr, hdr;
struct gpt_ent *ent;
u_char *buf, *tbl;
uint64_t offset;
int pri, sec, i;
size_t size;
buf = malloc(table->sectorsize);
if (buf == NULL)
return (NULL);
tbl = malloc(table->sectorsize * MAXTBLSZ);
if (tbl == NULL) {
free(buf);
return (NULL);
}
/* Read the primary GPT header. */
if (dread(dev, buf, 1, 1) != 0) {
ptable_close(table);
table = NULL;
goto out;
}
pri = sec = 0;
/* Check the primary GPT header. */
phdr = gpt_checkhdr((struct gpt_hdr *)buf, 1, table->sectors - 1,
table->sectorsize);
if (phdr != NULL) {
/* Read the primary GPT table. */
size = MIN(MAXTBLSZ,
phdr->hdr_entries * phdr->hdr_entsz / table->sectorsize);
if (dread(dev, tbl, size, phdr->hdr_lba_table) == 0 &&
gpt_checktbl(phdr, tbl, size * table->sectorsize,
table->sectors - 1) == 0) {
memcpy(&hdr, phdr, sizeof(hdr));
pri = 1;
}
}
offset = pri ? hdr.hdr_lba_alt: table->sectors - 1;
/* Read the backup GPT header. */
if (dread(dev, buf, 1, offset) != 0)
phdr = NULL;
else
phdr = gpt_checkhdr((struct gpt_hdr *)buf, offset,
table->sectors - 1, table->sectorsize);
if (phdr != NULL) {
/*
* Compare primary and backup headers.
* If they are equal, then we do not need to read backup
* table. If they are different, then prefer backup header
* and try to read backup table.
*/
if (pri == 0 ||
uuid_equal(&hdr.hdr_uuid, &phdr->hdr_uuid, NULL) == 0 ||
hdr.hdr_revision != phdr->hdr_revision ||
hdr.hdr_size != phdr->hdr_size ||
hdr.hdr_lba_start != phdr->hdr_lba_start ||
hdr.hdr_lba_end != phdr->hdr_lba_end ||
hdr.hdr_entries != phdr->hdr_entries ||
hdr.hdr_entsz != phdr->hdr_entsz ||
hdr.hdr_crc_table != phdr->hdr_crc_table) {
/* Read the backup GPT table. */
size = MIN(MAXTBLSZ, phdr->hdr_entries *
phdr->hdr_entsz / table->sectorsize);
if (dread(dev, tbl, size, phdr->hdr_lba_table) == 0 &&
gpt_checktbl(phdr, tbl, size * table->sectorsize,
table->sectors - 1) == 0) {
memcpy(&hdr, phdr, sizeof(hdr));
sec = 1;
}
}
}
if (pri == 0 && sec == 0) {
/* Both primary and backup tables are invalid. */
table->type = PTABLE_NONE;
goto out;
}
ent = (struct gpt_ent *)tbl;
size = MIN(hdr.hdr_entries * hdr.hdr_entsz,
MAXTBLSZ * table->sectorsize);
for (i = 0; i < size / hdr.hdr_entsz; i++, ent++) {
if (uuid_equal(&ent->ent_type, &gpt_uuid_unused, NULL))
continue;
entry = malloc(sizeof(*entry));
if (entry == NULL)
break;
entry->part.start = ent->ent_lba_start;
entry->part.end = ent->ent_lba_end;
entry->part.index = i + 1;
entry->part.type = gpt_parttype(ent->ent_type);
entry->flags = le64toh(ent->ent_attr);
memcpy(&entry->type.gpt, &ent->ent_type, sizeof(uuid_t));
STAILQ_INSERT_TAIL(&table->entries, entry, entry);
DEBUG("new GPT partition added");
}
out:
free(buf);
free(tbl);
return (table);
}
#endif /* LOADER_GPT_SUPPORT */
#ifdef LOADER_MBR_SUPPORT
/* We do not need to support too many EBR partitions in the loader */
#define MAXEBRENTRIES 8
static enum partition_type
mbr_parttype(uint8_t type)
{
switch (type) {
case DOSPTYP_386BSD:
return (PART_FREEBSD);
case DOSPTYP_LINSWP:
return (PART_LINUX_SWAP);
case DOSPTYP_LINUX:
return (PART_LINUX);
case 0x01:
case 0x04:
case 0x06:
case 0x07:
case 0x0b:
case 0x0c:
case 0x0e:
return (PART_DOS);
}
return (PART_UNKNOWN);
}
struct ptable*
ptable_ebrread(struct ptable *table, void *dev, diskread_t dread)
{
struct dos_partition *dp;
struct pentry *e1, *entry;
uint32_t start, end, offset;
u_char *buf;
int i, index;
STAILQ_FOREACH(e1, &table->entries, entry) {
if (e1->type.mbr == DOSPTYP_EXT ||
e1->type.mbr == DOSPTYP_EXTLBA)
break;
}
if (e1 == NULL)
return (table);
index = 5;
offset = e1->part.start;
buf = malloc(table->sectorsize);
if (buf == NULL)
return (table);
for (i = 0; i < MAXEBRENTRIES; i++) {
#if 0 /* Some BIOSes return an incorrect number of sectors */
if (offset >= table->sectors)
break;
#endif
if (dread(dev, buf, 1, offset) != 0)
break;
dp = (struct dos_partition *)(buf + DOSPARTOFF);
if (dp[0].dp_typ == 0)
break;
start = le32toh(dp[0].dp_start);
if (dp[0].dp_typ == DOSPTYP_EXT &&
dp[1].dp_typ == 0) {
offset = e1->part.start + start;
continue;
}
end = le32toh(dp[0].dp_size);
entry = malloc(sizeof(*entry));
if (entry == NULL)
break;
entry->part.start = offset + start;
entry->part.end = entry->part.start + end - 1;
entry->part.index = index++;
entry->part.type = mbr_parttype(dp[0].dp_typ);
entry->flags = dp[0].dp_flag;
entry->type.mbr = dp[0].dp_typ;
STAILQ_INSERT_TAIL(&table->entries, entry, entry);
DEBUG("new EBR partition added");
if (dp[1].dp_typ == 0)
break;
offset = e1->part.start + le32toh(dp[1].dp_start);
}
free(buf);
return (table);
}
#endif /* LOADER_MBR_SUPPORT */
static enum partition_type
bsd_parttype(uint8_t type)
{
switch (type) {
case FS_NANDFS:
return (PART_FREEBSD_NANDFS);
case FS_SWAP:
return (PART_FREEBSD_SWAP);
case FS_BSDFFS:
return (PART_FREEBSD_UFS);
case FS_VINUM:
return (PART_FREEBSD_VINUM);
case FS_ZFS:
return (PART_FREEBSD_ZFS);
}
return (PART_UNKNOWN);
}
struct ptable*
ptable_bsdread(struct ptable *table, void *dev, diskread_t dread)
{
struct disklabel *dl;
struct partition *part;
struct pentry *entry;
u_char *buf;
uint32_t raw_offset;
int i;
if (table->sectorsize < sizeof(struct disklabel)) {
DEBUG("Too small sectorsize");
return (table);
}
buf = malloc(table->sectorsize);
if (buf == NULL)
return (table);
if (dread(dev, buf, 1, 1) != 0) {
DEBUG("read failed");
ptable_close(table);
table = NULL;
goto out;
}
dl = (struct disklabel *)buf;
if (le32toh(dl->d_magic) != DISKMAGIC &&
le32toh(dl->d_magic2) != DISKMAGIC)
goto out;
if (le32toh(dl->d_secsize) != table->sectorsize) {
DEBUG("unsupported sector size");
goto out;
}
dl->d_npartitions = le16toh(dl->d_npartitions);
if (dl->d_npartitions > 20 || dl->d_npartitions < 8) {
DEBUG("invalid number of partitions");
goto out;
}
part = &dl->d_partitions[0];
raw_offset = le32toh(part[RAW_PART].p_offset);
for (i = 0; i < dl->d_npartitions; i++, part++) {
if (i == RAW_PART)
continue;
if (part->p_size == 0)
continue;
entry = malloc(sizeof(*entry));
if (entry == NULL)
break;
entry->part.start = le32toh(part->p_offset) - raw_offset;
entry->part.end = entry->part.start +
le32toh(part->p_size) + 1;
entry->part.type = bsd_parttype(part->p_fstype);
entry->part.index = i; /* starts from zero */
entry->type.bsd = part->p_fstype;
STAILQ_INSERT_TAIL(&table->entries, entry, entry);
DEBUG("new BSD partition added");
}
table->type = PTABLE_BSD;
out:
free(buf);
return (table);
}
#ifdef LOADER_VTOC8_SUPPORT
static enum partition_type
vtoc8_parttype(uint16_t type)
{
switch (type) {
case VTOC_TAG_FREEBSD_NANDFS:
return (PART_FREEBSD_NANDFS);
case VTOC_TAG_FREEBSD_SWAP:
return (PART_FREEBSD_SWAP);
case VTOC_TAG_FREEBSD_UFS:
return (PART_FREEBSD_UFS);
case VTOC_TAG_FREEBSD_VINUM:
return (PART_FREEBSD_VINUM);
case VTOC_TAG_FREEBSD_ZFS:
return (PART_FREEBSD_ZFS);
};
return (PART_UNKNOWN);
}
static struct ptable*
ptable_vtoc8read(struct ptable *table, void *dev, diskread_t dread)
{
struct pentry *entry;
struct vtoc8 *dl;
u_char *buf;
uint16_t sum, heads, sectors;
int i;
if (table->sectorsize != sizeof(struct vtoc8))
return (table);
buf = malloc(table->sectorsize);
if (buf == NULL)
return (table);
if (dread(dev, buf, 1, 0) != 0) {
DEBUG("read failed");
ptable_close(table);
table = NULL;
goto out;
}
dl = (struct vtoc8 *)buf;
/* Check the sum */
for (i = sum = 0; i < sizeof(struct vtoc8); i += sizeof(sum))
sum ^= be16dec(buf + i);
if (sum != 0) {
DEBUG("incorrect checksum");
goto out;
}
if (be16toh(dl->nparts) != VTOC8_NPARTS) {
DEBUG("invalid number of entries");
goto out;
}
sectors = be16toh(dl->nsecs);
heads = be16toh(dl->nheads);
if (sectors * heads == 0) {
DEBUG("invalid geometry");
goto out;
}
for (i = 0; i < VTOC8_NPARTS; i++) {
dl->part[i].tag = be16toh(dl->part[i].tag);
if (i == VTOC_RAW_PART ||
dl->part[i].tag == VTOC_TAG_UNASSIGNED)
continue;
entry = malloc(sizeof(*entry));
if (entry == NULL)
break;
entry->part.start = be32toh(dl->map[i].cyl) * heads * sectors;
entry->part.end = be32toh(dl->map[i].nblks) +
entry->part.start - 1;
entry->part.type = vtoc8_parttype(dl->part[i].tag);
entry->part.index = i; /* starts from zero */
entry->type.vtoc8 = dl->part[i].tag;
STAILQ_INSERT_TAIL(&table->entries, entry, entry);
DEBUG("new VTOC8 partition added");
}
table->type = PTABLE_VTOC8;
out:
free(buf);
return (table);
}
#endif /* LOADER_VTOC8_SUPPORT */
struct ptable*
ptable_open(void *dev, off_t sectors, uint16_t sectorsize,
diskread_t *dread)
{
struct dos_partition *dp;
struct ptable *table;
u_char *buf;
int i, count;
#ifdef LOADER_MBR_SUPPORT
struct pentry *entry;
uint32_t start, end;
int has_ext;
#endif
table = NULL;
buf = malloc(sectorsize);
if (buf == NULL)
return (NULL);
/* First, read the MBR. */
if (dread(dev, buf, 1, DOSBBSECTOR) != 0) {
DEBUG("read failed");
goto out;
}
table = malloc(sizeof(*table));
if (table == NULL)
goto out;
table->sectors = sectors;
table->sectorsize = sectorsize;
table->type = PTABLE_NONE;
STAILQ_INIT(&table->entries);
#ifdef LOADER_VTOC8_SUPPORT
if (be16dec(buf + offsetof(struct vtoc8, magic)) == VTOC_MAGIC) {
if (ptable_vtoc8read(table, dev, dread) == NULL) {
/* Read error. */
table = NULL;
goto out;
} else if (table->type == PTABLE_VTOC8)
goto out;
}
#endif
/* Check the BSD label. */
if (ptable_bsdread(table, dev, dread) == NULL) { /* Read error. */
table = NULL;
goto out;
} else if (table->type == PTABLE_BSD)
goto out;
#if defined(LOADER_GPT_SUPPORT) || defined(LOADER_MBR_SUPPORT)
/* Check the MBR magic. */
if (buf[DOSMAGICOFFSET] != 0x55 ||
buf[DOSMAGICOFFSET + 1] != 0xaa) {
DEBUG("magic sequence not found");
goto out;
}
/* Check that we have PMBR. Also do some validation. */
dp = (struct dos_partition *)(buf + DOSPARTOFF);
for (i = 0, count = 0; i < NDOSPART; i++) {
if (dp[i].dp_flag != 0 && dp[i].dp_flag != 0x80) {
DEBUG("invalid partition flag %x", dp[i].dp_flag);
break;
}
#ifdef LOADER_GPT_SUPPORT
if (dp[i].dp_typ == DOSPTYP_PMBR) {
table->type = PTABLE_GPT;
DEBUG("PMBR detected");
}
#endif
if (dp[i].dp_typ != 0)
count++;
}
/* Do we have some invalid values? */
if (i != NDOSPART ||
(table->type == PTABLE_GPT && count > 1)) {
if (dp[1].dp_typ != DOSPTYP_HFS) {
table->type = PTABLE_NONE;
DEBUG("invalid values detected, ignore "
"partition table");
goto out;
}
DEBUG("Bootcamp detected");
}
#ifdef LOADER_GPT_SUPPORT
if (table->type == PTABLE_GPT) {
table = ptable_gptread(table, dev, dread);
goto out;
}
#endif
#ifdef LOADER_MBR_SUPPORT
/* Read MBR. */
table->type = PTABLE_MBR;
for (i = has_ext = 0; i < NDOSPART; i++) {
if (dp[i].dp_typ == 0)
continue;
start = le32dec(&(dp[i].dp_start));
end = le32dec(&(dp[i].dp_size));
if (start == 0 || end == 0)
continue;
#if 0 /* Some BIOSes return an incorrect number of sectors */
if (start + end - 1 >= sectors)
continue; /* XXX: ignore */
#endif
if (dp[i].dp_typ == DOSPTYP_EXT ||
dp[i].dp_typ == DOSPTYP_EXTLBA)
has_ext = 1;
entry = malloc(sizeof(*entry));
if (entry == NULL)
break;
entry->part.start = start;
entry->part.end = start + end - 1;
entry->part.index = i + 1;
entry->part.type = mbr_parttype(dp[i].dp_typ);
entry->flags = dp[i].dp_flag;
entry->type.mbr = dp[i].dp_typ;
STAILQ_INSERT_TAIL(&table->entries, entry, entry);
DEBUG("new MBR partition added");
}
if (has_ext) {
table = ptable_ebrread(table, dev, dread);
/* FALLTHROUGH */
}
#endif /* LOADER_MBR_SUPPORT */
#endif /* LOADER_MBR_SUPPORT || LOADER_GPT_SUPPORT */
out:
free(buf);
return (table);
}
void
ptable_close(struct ptable *table)
{
struct pentry *entry;
while (!STAILQ_EMPTY(&table->entries)) {
entry = STAILQ_FIRST(&table->entries);
STAILQ_REMOVE_HEAD(&table->entries, entry);
free(entry);
}
free(table);
}
enum ptable_type
ptable_gettype(const struct ptable *table)
{
return (table->type);
}
int
ptable_getpart(const struct ptable *table, struct ptable_entry *part, int index)
{
struct pentry *entry;
if (part == NULL || table == NULL)
return (EINVAL);
STAILQ_FOREACH(entry, &table->entries, entry) {
if (entry->part.index != index)
continue;
memcpy(part, &entry->part, sizeof(*part));
return (0);
}
return (ENOENT);
}
/*
* Search for a slice with the following preferences:
*
* 1: Active FreeBSD slice
* 2: Non-active FreeBSD slice
* 3: Active Linux slice
* 4: non-active Linux slice
* 5: Active FAT/FAT32 slice
* 6: non-active FAT/FAT32 slice
*/
#define PREF_RAWDISK 0
#define PREF_FBSD_ACT 1
#define PREF_FBSD 2
#define PREF_LINUX_ACT 3
#define PREF_LINUX 4
#define PREF_DOS_ACT 5
#define PREF_DOS 6
#define PREF_NONE 7
int
ptable_getbestpart(const struct ptable *table, struct ptable_entry *part)
{
struct pentry *entry, *best;
int pref, preflevel;
if (part == NULL || table == NULL)
return (EINVAL);
best = NULL;
preflevel = pref = PREF_NONE;
STAILQ_FOREACH(entry, &table->entries, entry) {
#ifdef LOADER_MBR_SUPPORT
if (table->type == PTABLE_MBR) {
switch (entry->type.mbr) {
case DOSPTYP_386BSD:
pref = entry->flags & 0x80 ? PREF_FBSD_ACT:
PREF_FBSD;
break;
case DOSPTYP_LINUX:
pref = entry->flags & 0x80 ? PREF_LINUX_ACT:
PREF_LINUX;
break;
case 0x01: /* DOS/Windows */
case 0x04:
case 0x06:
case 0x0c:
case 0x0e:
case DOSPTYP_FAT32:
pref = entry->flags & 0x80 ? PREF_DOS_ACT:
PREF_DOS;
break;
default:
pref = PREF_NONE;
}
}
#endif /* LOADER_MBR_SUPPORT */
#ifdef LOADER_GPT_SUPPORT
if (table->type == PTABLE_GPT) {
if (entry->part.type == PART_DOS)
pref = PREF_DOS;
else if (entry->part.type == PART_FREEBSD_UFS ||
entry->part.type == PART_FREEBSD_ZFS)
pref = PREF_FBSD;
else
pref = PREF_NONE;
}
#endif /* LOADER_GPT_SUPPORT */
if (pref < preflevel) {
preflevel = pref;
best = entry;
}
}
if (best != NULL) {
memcpy(part, &best->part, sizeof(*part));
return (0);
}
return (ENOENT);
}
void
ptable_iterate(const struct ptable *table, void *arg, ptable_iterate_t *iter)
{
struct pentry *entry;
char name[32];
name[0] = '\0';
STAILQ_FOREACH(entry, &table->entries, entry) {
#ifdef LOADER_MBR_SUPPORT
if (table->type == PTABLE_MBR)
sprintf(name, "s%d", entry->part.index);
else
#endif
#ifdef LOADER_GPT_SUPPORT
if (table->type == PTABLE_GPT)
sprintf(name, "p%d", entry->part.index);
else
#endif
#ifdef LOADER_VTOC8_SUPPORT
if (table->type == PTABLE_VTOC8)
sprintf(name, "%c", (u_char) 'a' +
entry->part.index);
else
#endif
if (table->type == PTABLE_BSD)
sprintf(name, "%c", (u_char) 'a' +
entry->part.index);
iter(arg, name, &entry->part);
}
}