freebsd-dev/sys/powerpc/aim/mmu_oea64.c
Konstantin Belousov 3407fefef6 Split the vm_page flags PG_WRITEABLE and PG_REFERENCED into atomic
flags field. Updates to the atomic flags are performed using the atomic
ops on the containing word, do not require any vm lock to be held, and
are non-blocking. The vm_page_aflag_set(9) and vm_page_aflag_clear(9)
functions are provided to modify afalgs.

Document the changes to flags field to only require the page lock.

Introduce vm_page_reference(9) function to provide a stable KPI and
KBI for filesystems like tmpfs and zfs which need to mark a page as
referenced.

Reviewed by:    alc, attilio
Tested by:      marius, flo (sparc64); andreast (powerpc, powerpc64)
Approved by:	re (bz)
2011-09-06 10:30:11 +00:00

2573 lines
66 KiB
C

/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
* Copyright (C) 1995, 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
*/
/*-
* Copyright (C) 2001 Benno Rice.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Manages physical address maps.
*
* In addition to hardware address maps, this module is called upon to
* provide software-use-only maps which may or may not be stored in the
* same form as hardware maps. These pseudo-maps are used to store
* intermediate results from copy operations to and from address spaces.
*
* Since the information managed by this module is also stored by the
* logical address mapping module, this module may throw away valid virtual
* to physical mappings at almost any time. However, invalidations of
* mappings must be done as requested.
*
* In order to cope with hardware architectures which make virtual to
* physical map invalidates expensive, this module may delay invalidate
* reduced protection operations until such time as they are actually
* necessary. This module is given full information as to which processors
* are currently using which maps, and to when physical maps must be made
* correct.
*/
#include "opt_kstack_pages.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/queue.h>
#include <sys/cpuset.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vmmeter.h>
#include <sys/kdb.h>
#include <dev/ofw/openfirm.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/uma.h>
#include <machine/_inttypes.h>
#include <machine/cpu.h>
#include <machine/platform.h>
#include <machine/frame.h>
#include <machine/md_var.h>
#include <machine/psl.h>
#include <machine/bat.h>
#include <machine/hid.h>
#include <machine/pte.h>
#include <machine/sr.h>
#include <machine/trap.h>
#include <machine/mmuvar.h>
#include "mmu_oea64.h"
#include "mmu_if.h"
#include "moea64_if.h"
void moea64_release_vsid(uint64_t vsid);
uintptr_t moea64_get_unique_vsid(void);
#define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR)
#define ENABLE_TRANS(msr) mtmsr(msr)
#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
#define VSID_HASH_MASK 0x0000007fffffffffULL
#define LOCK_TABLE() mtx_lock(&moea64_table_mutex)
#define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex);
#define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED)
struct ofw_map {
cell_t om_va;
cell_t om_len;
cell_t om_pa_hi;
cell_t om_pa_lo;
cell_t om_mode;
};
/*
* Map of physical memory regions.
*/
static struct mem_region *regions;
static struct mem_region *pregions;
static u_int phys_avail_count;
static int regions_sz, pregions_sz;
extern void bs_remap_earlyboot(void);
/*
* Lock for the pteg and pvo tables.
*/
struct mtx moea64_table_mutex;
struct mtx moea64_slb_mutex;
/*
* PTEG data.
*/
u_int moea64_pteg_count;
u_int moea64_pteg_mask;
/*
* PVO data.
*/
struct pvo_head *moea64_pvo_table; /* pvo entries by pteg index */
struct pvo_head moea64_pvo_kunmanaged = /* list of unmanaged pages */
LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
uma_zone_t moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
uma_zone_t moea64_mpvo_zone; /* zone for pvo entries for managed pages */
#define BPVO_POOL_SIZE 327680
static struct pvo_entry *moea64_bpvo_pool;
static int moea64_bpvo_pool_index = 0;
#define VSID_NBPW (sizeof(u_int32_t) * 8)
#ifdef __powerpc64__
#define NVSIDS (NPMAPS * 16)
#define VSID_HASHMASK 0xffffffffUL
#else
#define NVSIDS NPMAPS
#define VSID_HASHMASK 0xfffffUL
#endif
static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
static boolean_t moea64_initialized = FALSE;
/*
* Statistics.
*/
u_int moea64_pte_valid = 0;
u_int moea64_pte_overflow = 0;
u_int moea64_pvo_entries = 0;
u_int moea64_pvo_enter_calls = 0;
u_int moea64_pvo_remove_calls = 0;
SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
&moea64_pte_valid, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
&moea64_pte_overflow, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
&moea64_pvo_entries, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
&moea64_pvo_enter_calls, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
&moea64_pvo_remove_calls, 0, "");
vm_offset_t moea64_scratchpage_va[2];
struct pvo_entry *moea64_scratchpage_pvo[2];
uintptr_t moea64_scratchpage_pte[2];
struct mtx moea64_scratchpage_mtx;
uint64_t moea64_large_page_mask = 0;
int moea64_large_page_size = 0;
int moea64_large_page_shift = 0;
/*
* PVO calls.
*/
static int moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
vm_offset_t, vm_offset_t, uint64_t, int);
static void moea64_pvo_remove(mmu_t, struct pvo_entry *);
static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
/*
* Utility routines.
*/
static void moea64_enter_locked(mmu_t, pmap_t, vm_offset_t,
vm_page_t, vm_prot_t, boolean_t);
static boolean_t moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
static u_int moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
static void moea64_kremove(mmu_t, vm_offset_t);
static void moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
vm_offset_t pa, vm_size_t sz);
/*
* Kernel MMU interface
*/
void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
void moea64_clear_modify(mmu_t, vm_page_t);
void moea64_clear_reference(mmu_t, vm_page_t);
void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
vm_prot_t);
void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
void moea64_init(mmu_t);
boolean_t moea64_is_modified(mmu_t, vm_page_t);
boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
boolean_t moea64_is_referenced(mmu_t, vm_page_t);
boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
int moea64_page_wired_mappings(mmu_t, vm_page_t);
void moea64_pinit(mmu_t, pmap_t);
void moea64_pinit0(mmu_t, pmap_t);
void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
void moea64_qremove(mmu_t, vm_offset_t, int);
void moea64_release(mmu_t, pmap_t);
void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
void moea64_remove_all(mmu_t, vm_page_t);
void moea64_remove_write(mmu_t, vm_page_t);
void moea64_zero_page(mmu_t, vm_page_t);
void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
void moea64_zero_page_idle(mmu_t, vm_page_t);
void moea64_activate(mmu_t, struct thread *);
void moea64_deactivate(mmu_t, struct thread *);
void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
static mmu_method_t moea64_methods[] = {
MMUMETHOD(mmu_change_wiring, moea64_change_wiring),
MMUMETHOD(mmu_clear_modify, moea64_clear_modify),
MMUMETHOD(mmu_clear_reference, moea64_clear_reference),
MMUMETHOD(mmu_copy_page, moea64_copy_page),
MMUMETHOD(mmu_enter, moea64_enter),
MMUMETHOD(mmu_enter_object, moea64_enter_object),
MMUMETHOD(mmu_enter_quick, moea64_enter_quick),
MMUMETHOD(mmu_extract, moea64_extract),
MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold),
MMUMETHOD(mmu_init, moea64_init),
MMUMETHOD(mmu_is_modified, moea64_is_modified),
MMUMETHOD(mmu_is_prefaultable, moea64_is_prefaultable),
MMUMETHOD(mmu_is_referenced, moea64_is_referenced),
MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced),
MMUMETHOD(mmu_map, moea64_map),
MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
MMUMETHOD(mmu_pinit, moea64_pinit),
MMUMETHOD(mmu_pinit0, moea64_pinit0),
MMUMETHOD(mmu_protect, moea64_protect),
MMUMETHOD(mmu_qenter, moea64_qenter),
MMUMETHOD(mmu_qremove, moea64_qremove),
MMUMETHOD(mmu_release, moea64_release),
MMUMETHOD(mmu_remove, moea64_remove),
MMUMETHOD(mmu_remove_all, moea64_remove_all),
MMUMETHOD(mmu_remove_write, moea64_remove_write),
MMUMETHOD(mmu_sync_icache, moea64_sync_icache),
MMUMETHOD(mmu_zero_page, moea64_zero_page),
MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area),
MMUMETHOD(mmu_zero_page_idle, moea64_zero_page_idle),
MMUMETHOD(mmu_activate, moea64_activate),
MMUMETHOD(mmu_deactivate, moea64_deactivate),
MMUMETHOD(mmu_page_set_memattr, moea64_page_set_memattr),
/* Internal interfaces */
MMUMETHOD(mmu_mapdev, moea64_mapdev),
MMUMETHOD(mmu_mapdev_attr, moea64_mapdev_attr),
MMUMETHOD(mmu_unmapdev, moea64_unmapdev),
MMUMETHOD(mmu_kextract, moea64_kextract),
MMUMETHOD(mmu_kenter, moea64_kenter),
MMUMETHOD(mmu_kenter_attr, moea64_kenter_attr),
MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
{ 0, 0 }
};
MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
static __inline u_int
va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
{
uint64_t hash;
int shift;
shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
shift);
return (hash & moea64_pteg_mask);
}
static __inline struct pvo_head *
vm_page_to_pvoh(vm_page_t m)
{
return (&m->md.mdpg_pvoh);
}
static __inline void
moea64_attr_clear(vm_page_t m, u_int64_t ptebit)
{
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
m->md.mdpg_attrs &= ~ptebit;
}
static __inline u_int64_t
moea64_attr_fetch(vm_page_t m)
{
return (m->md.mdpg_attrs);
}
static __inline void
moea64_attr_save(vm_page_t m, u_int64_t ptebit)
{
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
m->md.mdpg_attrs |= ptebit;
}
static __inline void
moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
uint64_t pte_lo, int flags)
{
ASSERT_TABLE_LOCK();
/*
* Construct a PTE. Default to IMB initially. Valid bit only gets
* set when the real pte is set in memory.
*
* Note: Don't set the valid bit for correct operation of tlb update.
*/
pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
(((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
if (flags & PVO_LARGE)
pt->pte_hi |= LPTE_BIG;
pt->pte_lo = pte_lo;
}
static __inline uint64_t
moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
{
uint64_t pte_lo;
int i;
if (ma != VM_MEMATTR_DEFAULT) {
switch (ma) {
case VM_MEMATTR_UNCACHEABLE:
return (LPTE_I | LPTE_G);
case VM_MEMATTR_WRITE_COMBINING:
case VM_MEMATTR_WRITE_BACK:
case VM_MEMATTR_PREFETCHABLE:
return (LPTE_I);
case VM_MEMATTR_WRITE_THROUGH:
return (LPTE_W | LPTE_M);
}
}
/*
* Assume the page is cache inhibited and access is guarded unless
* it's in our available memory array.
*/
pte_lo = LPTE_I | LPTE_G;
for (i = 0; i < pregions_sz; i++) {
if ((pa >= pregions[i].mr_start) &&
(pa < (pregions[i].mr_start + pregions[i].mr_size))) {
pte_lo &= ~(LPTE_I | LPTE_G);
pte_lo |= LPTE_M;
break;
}
}
return pte_lo;
}
/*
* Quick sort callout for comparing memory regions.
*/
static int om_cmp(const void *a, const void *b);
static int
om_cmp(const void *a, const void *b)
{
const struct ofw_map *mapa;
const struct ofw_map *mapb;
mapa = a;
mapb = b;
if (mapa->om_pa_hi < mapb->om_pa_hi)
return (-1);
else if (mapa->om_pa_hi > mapb->om_pa_hi)
return (1);
else if (mapa->om_pa_lo < mapb->om_pa_lo)
return (-1);
else if (mapa->om_pa_lo > mapb->om_pa_lo)
return (1);
else
return (0);
}
static void
moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
{
struct ofw_map translations[sz/sizeof(struct ofw_map)];
register_t msr;
vm_offset_t off;
vm_paddr_t pa_base;
int i;
bzero(translations, sz);
if (OF_getprop(mmu, "translations", translations, sz) == -1)
panic("moea64_bootstrap: can't get ofw translations");
CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
sz /= sizeof(*translations);
qsort(translations, sz, sizeof (*translations), om_cmp);
for (i = 0; i < sz; i++) {
CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
(uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
translations[i].om_len);
if (translations[i].om_pa_lo % PAGE_SIZE)
panic("OFW translation not page-aligned!");
pa_base = translations[i].om_pa_lo;
#ifdef __powerpc64__
pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
#else
if (translations[i].om_pa_hi)
panic("OFW translations above 32-bit boundary!");
#endif
/* Now enter the pages for this mapping */
DISABLE_TRANS(msr);
for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
if (moea64_pvo_find_va(kernel_pmap,
translations[i].om_va + off) != NULL)
continue;
moea64_kenter(mmup, translations[i].om_va + off,
pa_base + off);
}
ENABLE_TRANS(msr);
}
}
#ifdef __powerpc64__
static void
moea64_probe_large_page(void)
{
uint16_t pvr = mfpvr() >> 16;
switch (pvr) {
case IBM970:
case IBM970FX:
case IBM970MP:
powerpc_sync(); isync();
mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
powerpc_sync(); isync();
/* FALLTHROUGH */
case IBMCELLBE:
moea64_large_page_size = 0x1000000; /* 16 MB */
moea64_large_page_shift = 24;
break;
default:
moea64_large_page_size = 0;
}
moea64_large_page_mask = moea64_large_page_size - 1;
}
static void
moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
{
struct slb *cache;
struct slb entry;
uint64_t esid, slbe;
uint64_t i;
cache = PCPU_GET(slb);
esid = va >> ADDR_SR_SHFT;
slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
for (i = 0; i < 64; i++) {
if (cache[i].slbe == (slbe | i))
return;
}
entry.slbe = slbe;
entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
if (large)
entry.slbv |= SLBV_L;
slb_insert_kernel(entry.slbe, entry.slbv);
}
#endif
static void
moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
vm_offset_t kernelend)
{
register_t msr;
vm_paddr_t pa;
vm_offset_t size, off;
uint64_t pte_lo;
int i;
if (moea64_large_page_size == 0)
hw_direct_map = 0;
DISABLE_TRANS(msr);
if (hw_direct_map) {
PMAP_LOCK(kernel_pmap);
for (i = 0; i < pregions_sz; i++) {
for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
pregions[i].mr_size; pa += moea64_large_page_size) {
pte_lo = LPTE_M;
/*
* Set memory access as guarded if prefetch within
* the page could exit the available physmem area.
*/
if (pa & moea64_large_page_mask) {
pa &= moea64_large_page_mask;
pte_lo |= LPTE_G;
}
if (pa + moea64_large_page_size >
pregions[i].mr_start + pregions[i].mr_size)
pte_lo |= LPTE_G;
moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
&moea64_pvo_kunmanaged, pa, pa,
pte_lo, PVO_WIRED | PVO_LARGE);
}
}
PMAP_UNLOCK(kernel_pmap);
} else {
size = sizeof(struct pvo_head) * moea64_pteg_count;
off = (vm_offset_t)(moea64_pvo_table);
for (pa = off; pa < off + size; pa += PAGE_SIZE)
moea64_kenter(mmup, pa, pa);
size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
off = (vm_offset_t)(moea64_bpvo_pool);
for (pa = off; pa < off + size; pa += PAGE_SIZE)
moea64_kenter(mmup, pa, pa);
/*
* Map certain important things, like ourselves.
*
* NOTE: We do not map the exception vector space. That code is
* used only in real mode, and leaving it unmapped allows us to
* catch NULL pointer deferences, instead of making NULL a valid
* address.
*/
for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
pa += PAGE_SIZE)
moea64_kenter(mmup, pa, pa);
}
ENABLE_TRANS(msr);
}
void
moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
{
int i, j;
vm_size_t physsz, hwphyssz;
#ifndef __powerpc64__
/* We don't have a direct map since there is no BAT */
hw_direct_map = 0;
/* Make sure battable is zero, since we have no BAT */
for (i = 0; i < 16; i++) {
battable[i].batu = 0;
battable[i].batl = 0;
}
#else
moea64_probe_large_page();
/* Use a direct map if we have large page support */
if (moea64_large_page_size > 0)
hw_direct_map = 1;
else
hw_direct_map = 0;
#endif
/* Get physical memory regions from firmware */
mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
panic("moea64_bootstrap: phys_avail too small");
phys_avail_count = 0;
physsz = 0;
hwphyssz = 0;
TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
regions[i].mr_start + regions[i].mr_size,
regions[i].mr_size);
if (hwphyssz != 0 &&
(physsz + regions[i].mr_size) >= hwphyssz) {
if (physsz < hwphyssz) {
phys_avail[j] = regions[i].mr_start;
phys_avail[j + 1] = regions[i].mr_start +
hwphyssz - physsz;
physsz = hwphyssz;
phys_avail_count++;
}
break;
}
phys_avail[j] = regions[i].mr_start;
phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
phys_avail_count++;
physsz += regions[i].mr_size;
}
/* Check for overlap with the kernel and exception vectors */
for (j = 0; j < 2*phys_avail_count; j+=2) {
if (phys_avail[j] < EXC_LAST)
phys_avail[j] += EXC_LAST;
if (kernelstart >= phys_avail[j] &&
kernelstart < phys_avail[j+1]) {
if (kernelend < phys_avail[j+1]) {
phys_avail[2*phys_avail_count] =
(kernelend & ~PAGE_MASK) + PAGE_SIZE;
phys_avail[2*phys_avail_count + 1] =
phys_avail[j+1];
phys_avail_count++;
}
phys_avail[j+1] = kernelstart & ~PAGE_MASK;
}
if (kernelend >= phys_avail[j] &&
kernelend < phys_avail[j+1]) {
if (kernelstart > phys_avail[j]) {
phys_avail[2*phys_avail_count] = phys_avail[j];
phys_avail[2*phys_avail_count + 1] =
kernelstart & ~PAGE_MASK;
phys_avail_count++;
}
phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
}
}
physmem = btoc(physsz);
#ifdef PTEGCOUNT
moea64_pteg_count = PTEGCOUNT;
#else
moea64_pteg_count = 0x1000;
while (moea64_pteg_count < physmem)
moea64_pteg_count <<= 1;
moea64_pteg_count >>= 1;
#endif /* PTEGCOUNT */
}
void
moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
{
vm_size_t size;
register_t msr;
int i;
/*
* Set PTEG mask
*/
moea64_pteg_mask = moea64_pteg_count - 1;
/*
* Allocate pv/overflow lists.
*/
size = sizeof(struct pvo_head) * moea64_pteg_count;
moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
PAGE_SIZE);
CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
DISABLE_TRANS(msr);
for (i = 0; i < moea64_pteg_count; i++)
LIST_INIT(&moea64_pvo_table[i]);
ENABLE_TRANS(msr);
/*
* Initialize the lock that synchronizes access to the pteg and pvo
* tables.
*/
mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF |
MTX_RECURSE);
mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
/*
* Initialise the unmanaged pvo pool.
*/
moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
moea64_bpvo_pool_index = 0;
/*
* Make sure kernel vsid is allocated as well as VSID 0.
*/
#ifndef __powerpc64__
moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
moea64_vsid_bitmap[0] |= 1;
#endif
/*
* Initialize the kernel pmap (which is statically allocated).
*/
#ifdef __powerpc64__
for (i = 0; i < 64; i++) {
pcpup->pc_slb[i].slbv = 0;
pcpup->pc_slb[i].slbe = 0;
}
#else
for (i = 0; i < 16; i++)
kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
#endif
kernel_pmap->pmap_phys = kernel_pmap;
CPU_FILL(&kernel_pmap->pm_active);
PMAP_LOCK_INIT(kernel_pmap);
/*
* Now map in all the other buffers we allocated earlier
*/
moea64_setup_direct_map(mmup, kernelstart, kernelend);
}
void
moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
{
ihandle_t mmui;
phandle_t chosen;
phandle_t mmu;
size_t sz;
int i;
vm_offset_t pa, va;
void *dpcpu;
/*
* Set up the Open Firmware pmap and add its mappings if not in real
* mode.
*/
chosen = OF_finddevice("/chosen");
if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
mmu = OF_instance_to_package(mmui);
if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
sz = 0;
if (sz > 6144 /* tmpstksz - 2 KB headroom */)
panic("moea64_bootstrap: too many ofw translations");
if (sz > 0)
moea64_add_ofw_mappings(mmup, mmu, sz);
}
/*
* Calculate the last available physical address.
*/
for (i = 0; phys_avail[i + 2] != 0; i += 2)
;
Maxmem = powerpc_btop(phys_avail[i + 1]);
/*
* Initialize MMU and remap early physical mappings
*/
MMU_CPU_BOOTSTRAP(mmup,0);
mtmsr(mfmsr() | PSL_DR | PSL_IR);
pmap_bootstrapped++;
bs_remap_earlyboot();
/*
* Set the start and end of kva.
*/
virtual_avail = VM_MIN_KERNEL_ADDRESS;
virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
/*
* Map the entire KVA range into the SLB. We must not fault there.
*/
#ifdef __powerpc64__
for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
moea64_bootstrap_slb_prefault(va, 0);
#endif
/*
* Figure out how far we can extend virtual_end into segment 16
* without running into existing mappings. Segment 16 is guaranteed
* to contain neither RAM nor devices (at least on Apple hardware),
* but will generally contain some OFW mappings we should not
* step on.
*/
#ifndef __powerpc64__ /* KVA is in high memory on PPC64 */
PMAP_LOCK(kernel_pmap);
while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
virtual_end += PAGE_SIZE;
PMAP_UNLOCK(kernel_pmap);
#endif
/*
* Allocate a kernel stack with a guard page for thread0 and map it
* into the kernel page map.
*/
pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
thread0.td_kstack = va;
thread0.td_kstack_pages = KSTACK_PAGES;
for (i = 0; i < KSTACK_PAGES; i++) {
moea64_kenter(mmup, va, pa);
pa += PAGE_SIZE;
va += PAGE_SIZE;
}
/*
* Allocate virtual address space for the message buffer.
*/
pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
msgbufp = (struct msgbuf *)virtual_avail;
va = virtual_avail;
virtual_avail += round_page(msgbufsize);
while (va < virtual_avail) {
moea64_kenter(mmup, va, pa);
pa += PAGE_SIZE;
va += PAGE_SIZE;
}
/*
* Allocate virtual address space for the dynamic percpu area.
*/
pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
dpcpu = (void *)virtual_avail;
va = virtual_avail;
virtual_avail += DPCPU_SIZE;
while (va < virtual_avail) {
moea64_kenter(mmup, va, pa);
pa += PAGE_SIZE;
va += PAGE_SIZE;
}
dpcpu_init(dpcpu, 0);
/*
* Allocate some things for page zeroing. We put this directly
* in the page table, marked with LPTE_LOCKED, to avoid any
* of the PVO book-keeping or other parts of the VM system
* from even knowing that this hack exists.
*/
if (!hw_direct_map) {
mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
MTX_DEF);
for (i = 0; i < 2; i++) {
moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
virtual_end -= PAGE_SIZE;
moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
LOCK_TABLE();
moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
mmup, moea64_scratchpage_pvo[i]);
moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
|= LPTE_LOCKED;
MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
&moea64_scratchpage_pvo[i]->pvo_pte.lpte,
moea64_scratchpage_pvo[i]->pvo_vpn);
UNLOCK_TABLE();
}
}
}
/*
* Activate a user pmap. The pmap must be activated before its address
* space can be accessed in any way.
*/
void
moea64_activate(mmu_t mmu, struct thread *td)
{
pmap_t pm;
pm = &td->td_proc->p_vmspace->vm_pmap;
CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
#ifdef __powerpc64__
PCPU_SET(userslb, pm->pm_slb);
#else
PCPU_SET(curpmap, pm->pmap_phys);
#endif
}
void
moea64_deactivate(mmu_t mmu, struct thread *td)
{
pmap_t pm;
pm = &td->td_proc->p_vmspace->vm_pmap;
CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
#ifdef __powerpc64__
PCPU_SET(userslb, NULL);
#else
PCPU_SET(curpmap, NULL);
#endif
}
void
moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
{
struct pvo_entry *pvo;
uintptr_t pt;
uint64_t vsid;
int i, ptegidx;
PMAP_LOCK(pm);
pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
if (pvo != NULL) {
LOCK_TABLE();
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
if (wired) {
if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
pm->pm_stats.wired_count++;
pvo->pvo_vaddr |= PVO_WIRED;
pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
} else {
if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
pm->pm_stats.wired_count--;
pvo->pvo_vaddr &= ~PVO_WIRED;
pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
}
if (pt != -1) {
/* Update wiring flag in page table. */
MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
pvo->pvo_vpn);
} else if (wired) {
/*
* If we are wiring the page, and it wasn't in the
* page table before, add it.
*/
vsid = PVO_VSID(pvo);
ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
pvo->pvo_vaddr & PVO_LARGE);
i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
if (i >= 0) {
PVO_PTEGIDX_CLR(pvo);
PVO_PTEGIDX_SET(pvo, i);
}
}
UNLOCK_TABLE();
}
PMAP_UNLOCK(pm);
}
/*
* This goes through and sets the physical address of our
* special scratch PTE to the PA we want to zero or copy. Because
* of locking issues (this can get called in pvo_enter() by
* the UMA allocator), we can't use most other utility functions here
*/
static __inline
void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
~(LPTE_WIMG | LPTE_RPGN);
moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
&moea64_scratchpage_pvo[which]->pvo_pte.lpte,
moea64_scratchpage_pvo[which]->pvo_vpn);
isync();
}
void
moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
{
vm_offset_t dst;
vm_offset_t src;
dst = VM_PAGE_TO_PHYS(mdst);
src = VM_PAGE_TO_PHYS(msrc);
if (hw_direct_map) {
kcopy((void *)src, (void *)dst, PAGE_SIZE);
} else {
mtx_lock(&moea64_scratchpage_mtx);
moea64_set_scratchpage_pa(mmu, 0, src);
moea64_set_scratchpage_pa(mmu, 1, dst);
kcopy((void *)moea64_scratchpage_va[0],
(void *)moea64_scratchpage_va[1], PAGE_SIZE);
mtx_unlock(&moea64_scratchpage_mtx);
}
}
void
moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
{
vm_offset_t pa = VM_PAGE_TO_PHYS(m);
if (size + off > PAGE_SIZE)
panic("moea64_zero_page: size + off > PAGE_SIZE");
if (hw_direct_map) {
bzero((caddr_t)pa + off, size);
} else {
mtx_lock(&moea64_scratchpage_mtx);
moea64_set_scratchpage_pa(mmu, 0, pa);
bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
mtx_unlock(&moea64_scratchpage_mtx);
}
}
/*
* Zero a page of physical memory by temporarily mapping it
*/
void
moea64_zero_page(mmu_t mmu, vm_page_t m)
{
vm_offset_t pa = VM_PAGE_TO_PHYS(m);
vm_offset_t va, off;
if (!hw_direct_map) {
mtx_lock(&moea64_scratchpage_mtx);
moea64_set_scratchpage_pa(mmu, 0, pa);
va = moea64_scratchpage_va[0];
} else {
va = pa;
}
for (off = 0; off < PAGE_SIZE; off += cacheline_size)
__asm __volatile("dcbz 0,%0" :: "r"(va + off));
if (!hw_direct_map)
mtx_unlock(&moea64_scratchpage_mtx);
}
void
moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
{
moea64_zero_page(mmu, m);
}
/*
* Map the given physical page at the specified virtual address in the
* target pmap with the protection requested. If specified the page
* will be wired down.
*/
void
moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, boolean_t wired)
{
vm_page_lock_queues();
PMAP_LOCK(pmap);
moea64_enter_locked(mmu, pmap, va, m, prot, wired);
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
}
/*
* Map the given physical page at the specified virtual address in the
* target pmap with the protection requested. If specified the page
* will be wired down.
*
* The page queues and pmap must be locked.
*/
static void
moea64_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, boolean_t wired)
{
struct pvo_head *pvo_head;
uma_zone_t zone;
vm_page_t pg;
uint64_t pte_lo;
u_int pvo_flags;
int error;
if (!moea64_initialized) {
pvo_head = &moea64_pvo_kunmanaged;
pg = NULL;
zone = moea64_upvo_zone;
pvo_flags = 0;
} else {
pvo_head = vm_page_to_pvoh(m);
pg = m;
zone = moea64_mpvo_zone;
pvo_flags = PVO_MANAGED;
}
if (pmap_bootstrapped)
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
VM_OBJECT_LOCKED(m->object),
("moea64_enter_locked: page %p is not busy", m));
/* XXX change the pvo head for fake pages */
if ((m->oflags & VPO_UNMANAGED) != 0) {
pvo_flags &= ~PVO_MANAGED;
pvo_head = &moea64_pvo_kunmanaged;
zone = moea64_upvo_zone;
}
pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
if (prot & VM_PROT_WRITE) {
pte_lo |= LPTE_BW;
if (pmap_bootstrapped &&
(m->oflags & VPO_UNMANAGED) == 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
} else
pte_lo |= LPTE_BR;
if ((prot & VM_PROT_EXECUTE) == 0)
pte_lo |= LPTE_NOEXEC;
if (wired)
pvo_flags |= PVO_WIRED;
error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags);
/*
* Flush the page from the instruction cache if this page is
* mapped executable and cacheable.
*/
if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0)
moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
}
static void
moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
vm_size_t sz)
{
/*
* This is much trickier than on older systems because
* we can't sync the icache on physical addresses directly
* without a direct map. Instead we check a couple of cases
* where the memory is already mapped in and, failing that,
* use the same trick we use for page zeroing to create
* a temporary mapping for this physical address.
*/
if (!pmap_bootstrapped) {
/*
* If PMAP is not bootstrapped, we are likely to be
* in real mode.
*/
__syncicache((void *)pa, sz);
} else if (pmap == kernel_pmap) {
__syncicache((void *)va, sz);
} else if (hw_direct_map) {
__syncicache((void *)pa, sz);
} else {
/* Use the scratch page to set up a temp mapping */
mtx_lock(&moea64_scratchpage_mtx);
moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
__syncicache((void *)(moea64_scratchpage_va[1] +
(va & ADDR_POFF)), sz);
mtx_unlock(&moea64_scratchpage_mtx);
}
}
/*
* Maps a sequence of resident pages belonging to the same object.
* The sequence begins with the given page m_start. This page is
* mapped at the given virtual address start. Each subsequent page is
* mapped at a virtual address that is offset from start by the same
* amount as the page is offset from m_start within the object. The
* last page in the sequence is the page with the largest offset from
* m_start that can be mapped at a virtual address less than the given
* virtual address end. Not every virtual page between start and end
* is mapped; only those for which a resident page exists with the
* corresponding offset from m_start are mapped.
*/
void
moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
vm_page_t m_start, vm_prot_t prot)
{
vm_page_t m;
vm_pindex_t diff, psize;
psize = atop(end - start);
m = m_start;
vm_page_lock_queues();
PMAP_LOCK(pm);
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
moea64_enter_locked(mmu, pm, start + ptoa(diff), m, prot &
(VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
m = TAILQ_NEXT(m, listq);
}
vm_page_unlock_queues();
PMAP_UNLOCK(pm);
}
void
moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
vm_prot_t prot)
{
vm_page_lock_queues();
PMAP_LOCK(pm);
moea64_enter_locked(mmu, pm, va, m,
prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
vm_page_unlock_queues();
PMAP_UNLOCK(pm);
}
vm_paddr_t
moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
{
struct pvo_entry *pvo;
vm_paddr_t pa;
PMAP_LOCK(pm);
pvo = moea64_pvo_find_va(pm, va);
if (pvo == NULL)
pa = 0;
else
pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
(va - PVO_VADDR(pvo));
PMAP_UNLOCK(pm);
return (pa);
}
/*
* Atomically extract and hold the physical page with the given
* pmap and virtual address pair if that mapping permits the given
* protection.
*/
vm_page_t
moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
struct pvo_entry *pvo;
vm_page_t m;
vm_paddr_t pa;
m = NULL;
pa = 0;
PMAP_LOCK(pmap);
retry:
pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
(prot & VM_PROT_WRITE) == 0)) {
if (vm_page_pa_tryrelock(pmap,
pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
goto retry;
m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
vm_page_hold(m);
}
PA_UNLOCK_COND(pa);
PMAP_UNLOCK(pmap);
return (m);
}
static mmu_t installed_mmu;
static void *
moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
{
/*
* This entire routine is a horrible hack to avoid bothering kmem
* for new KVA addresses. Because this can get called from inside
* kmem allocation routines, calling kmem for a new address here
* can lead to multiply locking non-recursive mutexes.
*/
static vm_pindex_t color;
vm_offset_t va;
vm_page_t m;
int pflags, needed_lock;
*flags = UMA_SLAB_PRIV;
needed_lock = !PMAP_LOCKED(kernel_pmap);
if (needed_lock)
PMAP_LOCK(kernel_pmap);
if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
else
pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
if (wait & M_ZERO)
pflags |= VM_ALLOC_ZERO;
for (;;) {
m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ);
if (m == NULL) {
if (wait & M_NOWAIT)
return (NULL);
VM_WAIT;
} else
break;
}
va = VM_PAGE_TO_PHYS(m);
moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
&moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
PVO_WIRED | PVO_BOOTSTRAP);
if (needed_lock)
PMAP_UNLOCK(kernel_pmap);
if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
bzero((void *)va, PAGE_SIZE);
return (void *)va;
}
void
moea64_init(mmu_t mmu)
{
CTR0(KTR_PMAP, "moea64_init");
moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
UMA_ZONE_VM | UMA_ZONE_NOFREE);
moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
UMA_ZONE_VM | UMA_ZONE_NOFREE);
if (!hw_direct_map) {
installed_mmu = mmu;
uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
}
moea64_initialized = TRUE;
}
boolean_t
moea64_is_referenced(mmu_t mmu, vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_is_referenced: page %p is not managed", m));
return (moea64_query_bit(mmu, m, PTE_REF));
}
boolean_t
moea64_is_modified(mmu_t mmu, vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_is_modified: page %p is not managed", m));
/*
* If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
* concurrently set while the object is locked. Thus, if PGA_WRITEABLE
* is clear, no PTEs can have LPTE_CHG set.
*/
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if ((m->oflags & VPO_BUSY) == 0 &&
(m->aflags & PGA_WRITEABLE) == 0)
return (FALSE);
return (moea64_query_bit(mmu, m, LPTE_CHG));
}
boolean_t
moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
{
struct pvo_entry *pvo;
boolean_t rv;
PMAP_LOCK(pmap);
pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
PMAP_UNLOCK(pmap);
return (rv);
}
void
moea64_clear_reference(mmu_t mmu, vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_clear_reference: page %p is not managed", m));
moea64_clear_bit(mmu, m, LPTE_REF);
}
void
moea64_clear_modify(mmu_t mmu, vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_clear_modify: page %p is not managed", m));
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
KASSERT((m->oflags & VPO_BUSY) == 0,
("moea64_clear_modify: page %p is busy", m));
/*
* If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
* set. If the object containing the page is locked and the page is
* not VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
*/
if ((m->aflags & PGA_WRITEABLE) == 0)
return;
moea64_clear_bit(mmu, m, LPTE_CHG);
}
/*
* Clear the write and modified bits in each of the given page's mappings.
*/
void
moea64_remove_write(mmu_t mmu, vm_page_t m)
{
struct pvo_entry *pvo;
uintptr_t pt;
pmap_t pmap;
uint64_t lo;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_remove_write: page %p is not managed", m));
/*
* If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
* another thread while the object is locked. Thus, if PGA_WRITEABLE
* is clear, no page table entries need updating.
*/
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if ((m->oflags & VPO_BUSY) == 0 &&
(m->aflags & PGA_WRITEABLE) == 0)
return;
vm_page_lock_queues();
lo = moea64_attr_fetch(m);
powerpc_sync();
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
pmap = pvo->pvo_pmap;
PMAP_LOCK(pmap);
LOCK_TABLE();
if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
if (pt != -1) {
MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
lo |= pvo->pvo_pte.lpte.pte_lo;
pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
MOEA64_PTE_CHANGE(mmu, pt,
&pvo->pvo_pte.lpte, pvo->pvo_vpn);
if (pvo->pvo_pmap == kernel_pmap)
isync();
}
}
UNLOCK_TABLE();
PMAP_UNLOCK(pmap);
}
if ((lo & LPTE_CHG) != 0) {
moea64_attr_clear(m, LPTE_CHG);
vm_page_dirty(m);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
vm_page_unlock_queues();
}
/*
* moea64_ts_referenced:
*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* XXX: The exact number of bits to check and clear is a matter that
* should be tested and standardized at some point in the future for
* optimal aging of shared pages.
*/
boolean_t
moea64_ts_referenced(mmu_t mmu, vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_ts_referenced: page %p is not managed", m));
return (moea64_clear_bit(mmu, m, LPTE_REF));
}
/*
* Modify the WIMG settings of all mappings for a page.
*/
void
moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
{
struct pvo_entry *pvo;
struct pvo_head *pvo_head;
uintptr_t pt;
pmap_t pmap;
uint64_t lo;
if ((m->oflags & VPO_UNMANAGED) != 0) {
m->md.mdpg_cache_attrs = ma;
return;
}
vm_page_lock_queues();
pvo_head = vm_page_to_pvoh(m);
lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
pmap = pvo->pvo_pmap;
PMAP_LOCK(pmap);
LOCK_TABLE();
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
pvo->pvo_pte.lpte.pte_lo |= lo;
if (pt != -1) {
MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
pvo->pvo_vpn);
if (pvo->pvo_pmap == kernel_pmap)
isync();
}
UNLOCK_TABLE();
PMAP_UNLOCK(pmap);
}
m->md.mdpg_cache_attrs = ma;
vm_page_unlock_queues();
}
/*
* Map a wired page into kernel virtual address space.
*/
void
moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
{
uint64_t pte_lo;
int error;
pte_lo = moea64_calc_wimg(pa, ma);
PMAP_LOCK(kernel_pmap);
error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
&moea64_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
if (error != 0 && error != ENOENT)
panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
pa, error);
/*
* Flush the memory from the instruction cache.
*/
if ((pte_lo & (LPTE_I | LPTE_G)) == 0)
__syncicache((void *)va, PAGE_SIZE);
PMAP_UNLOCK(kernel_pmap);
}
void
moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
{
moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
}
/*
* Extract the physical page address associated with the given kernel virtual
* address.
*/
vm_offset_t
moea64_kextract(mmu_t mmu, vm_offset_t va)
{
struct pvo_entry *pvo;
vm_paddr_t pa;
/*
* Shortcut the direct-mapped case when applicable. We never put
* anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
*/
if (va < VM_MIN_KERNEL_ADDRESS)
return (va);
PMAP_LOCK(kernel_pmap);
pvo = moea64_pvo_find_va(kernel_pmap, va);
KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
va));
pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
PMAP_UNLOCK(kernel_pmap);
return (pa);
}
/*
* Remove a wired page from kernel virtual address space.
*/
void
moea64_kremove(mmu_t mmu, vm_offset_t va)
{
moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
}
/*
* Map a range of physical addresses into kernel virtual address space.
*
* The value passed in *virt is a suggested virtual address for the mapping.
* Architectures which can support a direct-mapped physical to virtual region
* can return the appropriate address within that region, leaving '*virt'
* unchanged. We cannot and therefore do not; *virt is updated with the
* first usable address after the mapped region.
*/
vm_offset_t
moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
vm_offset_t pa_end, int prot)
{
vm_offset_t sva, va;
sva = *virt;
va = sva;
for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
moea64_kenter(mmu, va, pa_start);
*virt = va;
return (sva);
}
/*
* Returns true if the pmap's pv is one of the first
* 16 pvs linked to from this page. This count may
* be changed upwards or downwards in the future; it
* is only necessary that true be returned for a small
* subset of pmaps for proper page aging.
*/
boolean_t
moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
{
int loops;
struct pvo_entry *pvo;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_page_exists_quick: page %p is not managed", m));
loops = 0;
rv = FALSE;
vm_page_lock_queues();
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
if (pvo->pvo_pmap == pmap) {
rv = TRUE;
break;
}
if (++loops >= 16)
break;
}
vm_page_unlock_queues();
return (rv);
}
/*
* Return the number of managed mappings to the given physical page
* that are wired.
*/
int
moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
{
struct pvo_entry *pvo;
int count;
count = 0;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (count);
vm_page_lock_queues();
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
count++;
vm_page_unlock_queues();
return (count);
}
static uintptr_t moea64_vsidcontext;
uintptr_t
moea64_get_unique_vsid(void) {
u_int entropy;
register_t hash;
uint32_t mask;
int i;
entropy = 0;
__asm __volatile("mftb %0" : "=r"(entropy));
mtx_lock(&moea64_slb_mutex);
for (i = 0; i < NVSIDS; i += VSID_NBPW) {
u_int n;
/*
* Create a new value by mutiplying by a prime and adding in
* entropy from the timebase register. This is to make the
* VSID more random so that the PT hash function collides
* less often. (Note that the prime casues gcc to do shifts
* instead of a multiply.)
*/
moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
hash = moea64_vsidcontext & (NVSIDS - 1);
if (hash == 0) /* 0 is special, avoid it */
continue;
n = hash >> 5;
mask = 1 << (hash & (VSID_NBPW - 1));
hash = (moea64_vsidcontext & VSID_HASHMASK);
if (moea64_vsid_bitmap[n] & mask) { /* collision? */
/* anything free in this bucket? */
if (moea64_vsid_bitmap[n] == 0xffffffff) {
entropy = (moea64_vsidcontext >> 20);
continue;
}
i = ffs(~moea64_vsid_bitmap[n]) - 1;
mask = 1 << i;
hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
hash |= i;
}
KASSERT(!(moea64_vsid_bitmap[n] & mask),
("Allocating in-use VSID %#zx\n", hash));
moea64_vsid_bitmap[n] |= mask;
mtx_unlock(&moea64_slb_mutex);
return (hash);
}
mtx_unlock(&moea64_slb_mutex);
panic("%s: out of segments",__func__);
}
#ifdef __powerpc64__
void
moea64_pinit(mmu_t mmu, pmap_t pmap)
{
PMAP_LOCK_INIT(pmap);
pmap->pm_slb_tree_root = slb_alloc_tree();
pmap->pm_slb = slb_alloc_user_cache();
pmap->pm_slb_len = 0;
}
#else
void
moea64_pinit(mmu_t mmu, pmap_t pmap)
{
int i;
uint32_t hash;
PMAP_LOCK_INIT(pmap);
if (pmap_bootstrapped)
pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
(vm_offset_t)pmap);
else
pmap->pmap_phys = pmap;
/*
* Allocate some segment registers for this pmap.
*/
hash = moea64_get_unique_vsid();
for (i = 0; i < 16; i++)
pmap->pm_sr[i] = VSID_MAKE(i, hash);
KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
}
#endif
/*
* Initialize the pmap associated with process 0.
*/
void
moea64_pinit0(mmu_t mmu, pmap_t pm)
{
moea64_pinit(mmu, pm);
bzero(&pm->pm_stats, sizeof(pm->pm_stats));
}
/*
* Set the physical protection on the specified range of this map as requested.
*/
void
moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
vm_prot_t prot)
{
struct pvo_entry *pvo;
uintptr_t pt;
CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
eva, prot);
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
("moea64_protect: non current pmap"));
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
moea64_remove(mmu, pm, sva, eva);
return;
}
vm_page_lock_queues();
PMAP_LOCK(pm);
for (; sva < eva; sva += PAGE_SIZE) {
pvo = moea64_pvo_find_va(pm, sva);
if (pvo == NULL)
continue;
/*
* Grab the PTE pointer before we diddle with the cached PTE
* copy.
*/
LOCK_TABLE();
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
/*
* Change the protection of the page.
*/
pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
if ((prot & VM_PROT_EXECUTE) == 0)
pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
/*
* If the PVO is in the page table, update that pte as well.
*/
if (pt != -1) {
MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
pvo->pvo_vpn);
if ((pvo->pvo_pte.lpte.pte_lo &
(LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
moea64_syncicache(mmu, pm, sva,
pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN,
PAGE_SIZE);
}
}
UNLOCK_TABLE();
}
vm_page_unlock_queues();
PMAP_UNLOCK(pm);
}
/*
* Map a list of wired pages into kernel virtual address space. This is
* intended for temporary mappings which do not need page modification or
* references recorded. Existing mappings in the region are overwritten.
*/
void
moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
{
while (count-- > 0) {
moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
va += PAGE_SIZE;
m++;
}
}
/*
* Remove page mappings from kernel virtual address space. Intended for
* temporary mappings entered by moea64_qenter.
*/
void
moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
{
while (count-- > 0) {
moea64_kremove(mmu, va);
va += PAGE_SIZE;
}
}
void
moea64_release_vsid(uint64_t vsid)
{
int idx, mask;
mtx_lock(&moea64_slb_mutex);
idx = vsid & (NVSIDS-1);
mask = 1 << (idx % VSID_NBPW);
idx /= VSID_NBPW;
KASSERT(moea64_vsid_bitmap[idx] & mask,
("Freeing unallocated VSID %#jx", vsid));
moea64_vsid_bitmap[idx] &= ~mask;
mtx_unlock(&moea64_slb_mutex);
}
void
moea64_release(mmu_t mmu, pmap_t pmap)
{
/*
* Free segment registers' VSIDs
*/
#ifdef __powerpc64__
slb_free_tree(pmap);
slb_free_user_cache(pmap->pm_slb);
#else
KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
#endif
PMAP_LOCK_DESTROY(pmap);
}
/*
* Remove the given range of addresses from the specified map.
*/
void
moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
{
struct pvo_entry *pvo;
vm_page_lock_queues();
PMAP_LOCK(pm);
for (; sva < eva; sva += PAGE_SIZE) {
pvo = moea64_pvo_find_va(pm, sva);
if (pvo != NULL)
moea64_pvo_remove(mmu, pvo);
}
vm_page_unlock_queues();
PMAP_UNLOCK(pm);
}
/*
* Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
* will reflect changes in pte's back to the vm_page.
*/
void
moea64_remove_all(mmu_t mmu, vm_page_t m)
{
struct pvo_head *pvo_head;
struct pvo_entry *pvo, *next_pvo;
pmap_t pmap;
vm_page_lock_queues();
pvo_head = vm_page_to_pvoh(m);
for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
next_pvo = LIST_NEXT(pvo, pvo_vlink);
pmap = pvo->pvo_pmap;
PMAP_LOCK(pmap);
moea64_pvo_remove(mmu, pvo);
PMAP_UNLOCK(pmap);
}
if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m)) {
moea64_attr_clear(m, LPTE_CHG);
vm_page_dirty(m);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
vm_page_unlock_queues();
}
/*
* Allocate a physical page of memory directly from the phys_avail map.
* Can only be called from moea64_bootstrap before avail start and end are
* calculated.
*/
vm_offset_t
moea64_bootstrap_alloc(vm_size_t size, u_int align)
{
vm_offset_t s, e;
int i, j;
size = round_page(size);
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
if (align != 0)
s = (phys_avail[i] + align - 1) & ~(align - 1);
else
s = phys_avail[i];
e = s + size;
if (s < phys_avail[i] || e > phys_avail[i + 1])
continue;
if (s + size > platform_real_maxaddr())
continue;
if (s == phys_avail[i]) {
phys_avail[i] += size;
} else if (e == phys_avail[i + 1]) {
phys_avail[i + 1] -= size;
} else {
for (j = phys_avail_count * 2; j > i; j -= 2) {
phys_avail[j] = phys_avail[j - 2];
phys_avail[j + 1] = phys_avail[j - 1];
}
phys_avail[i + 3] = phys_avail[i + 1];
phys_avail[i + 1] = s;
phys_avail[i + 2] = e;
phys_avail_count++;
}
return (s);
}
panic("moea64_bootstrap_alloc: could not allocate memory");
}
static int
moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
uint64_t pte_lo, int flags)
{
struct pvo_entry *pvo;
uint64_t vsid;
int first;
u_int ptegidx;
int i;
int bootstrap;
/*
* One nasty thing that can happen here is that the UMA calls to
* allocate new PVOs need to map more memory, which calls pvo_enter(),
* which calls UMA...
*
* We break the loop by detecting recursion and allocating out of
* the bootstrap pool.
*/
first = 0;
bootstrap = (flags & PVO_BOOTSTRAP);
if (!moea64_initialized)
bootstrap = 1;
/*
* Compute the PTE Group index.
*/
va &= ~ADDR_POFF;
vsid = va_to_vsid(pm, va);
ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
/*
* Remove any existing mapping for this page. Reuse the pvo entry if
* there is a mapping.
*/
LOCK_TABLE();
moea64_pvo_enter_calls++;
LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
(pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
== (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
/* Re-insert if spilled */
i = MOEA64_PTE_INSERT(mmu, ptegidx,
&pvo->pvo_pte.lpte);
if (i >= 0)
PVO_PTEGIDX_SET(pvo, i);
moea64_pte_overflow--;
}
UNLOCK_TABLE();
return (0);
}
moea64_pvo_remove(mmu, pvo);
break;
}
}
/*
* If we aren't overwriting a mapping, try to allocate.
*/
if (bootstrap) {
if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
moea64_bpvo_pool_index, BPVO_POOL_SIZE,
BPVO_POOL_SIZE * sizeof(struct pvo_entry));
}
pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
moea64_bpvo_pool_index++;
bootstrap = 1;
} else {
/*
* Note: drop the table lock around the UMA allocation in
* case the UMA allocator needs to manipulate the page
* table. The mapping we are working with is already
* protected by the PMAP lock.
*/
UNLOCK_TABLE();
pvo = uma_zalloc(zone, M_NOWAIT);
LOCK_TABLE();
}
if (pvo == NULL) {
UNLOCK_TABLE();
return (ENOMEM);
}
moea64_pvo_entries++;
pvo->pvo_vaddr = va;
pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
| (vsid << 16);
pvo->pvo_pmap = pm;
LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
pvo->pvo_vaddr &= ~ADDR_POFF;
if (flags & PVO_WIRED)
pvo->pvo_vaddr |= PVO_WIRED;
if (pvo_head != &moea64_pvo_kunmanaged)
pvo->pvo_vaddr |= PVO_MANAGED;
if (bootstrap)
pvo->pvo_vaddr |= PVO_BOOTSTRAP;
if (flags & PVO_LARGE)
pvo->pvo_vaddr |= PVO_LARGE;
moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
(uint64_t)(pa) | pte_lo, flags);
/*
* Remember if the list was empty and therefore will be the first
* item.
*/
if (LIST_FIRST(pvo_head) == NULL)
first = 1;
LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
if (pvo->pvo_vaddr & PVO_WIRED) {
pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
pm->pm_stats.wired_count++;
}
pm->pm_stats.resident_count++;
/*
* We hope this succeeds but it isn't required.
*/
i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
if (i >= 0) {
PVO_PTEGIDX_SET(pvo, i);
} else {
panic("moea64_pvo_enter: overflow");
moea64_pte_overflow++;
}
if (pm == kernel_pmap)
isync();
UNLOCK_TABLE();
#ifdef __powerpc64__
/*
* Make sure all our bootstrap mappings are in the SLB as soon
* as virtual memory is switched on.
*/
if (!pmap_bootstrapped)
moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
#endif
return (first ? ENOENT : 0);
}
static void
moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
{
uintptr_t pt;
/*
* If there is an active pte entry, we need to deactivate it (and
* save the ref & cfg bits).
*/
LOCK_TABLE();
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
if (pt != -1) {
MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
PVO_PTEGIDX_CLR(pvo);
} else {
moea64_pte_overflow--;
}
/*
* Update our statistics.
*/
pvo->pvo_pmap->pm_stats.resident_count--;
if (pvo->pvo_vaddr & PVO_WIRED)
pvo->pvo_pmap->pm_stats.wired_count--;
/*
* Save the REF/CHG bits into their cache if the page is managed.
*/
if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
struct vm_page *pg;
pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
if (pg != NULL) {
moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo &
(LPTE_REF | LPTE_CHG));
}
}
/*
* Remove this PVO from the PV list.
*/
LIST_REMOVE(pvo, pvo_vlink);
/*
* Remove this from the overflow list and return it to the pool
* if we aren't going to reuse it.
*/
LIST_REMOVE(pvo, pvo_olink);
moea64_pvo_entries--;
moea64_pvo_remove_calls++;
UNLOCK_TABLE();
if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
moea64_upvo_zone, pvo);
}
static struct pvo_entry *
moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
{
struct pvo_entry *pvo;
int ptegidx;
uint64_t vsid;
#ifdef __powerpc64__
uint64_t slbv;
if (pm == kernel_pmap) {
slbv = kernel_va_to_slbv(va);
} else {
struct slb *slb;
slb = user_va_to_slb_entry(pm, va);
/* The page is not mapped if the segment isn't */
if (slb == NULL)
return NULL;
slbv = slb->slbv;
}
vsid = (slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT;
if (slbv & SLBV_L)
va &= ~moea64_large_page_mask;
else
va &= ~ADDR_POFF;
ptegidx = va_to_pteg(vsid, va, slbv & SLBV_L);
#else
va &= ~ADDR_POFF;
vsid = va_to_vsid(pm, va);
ptegidx = va_to_pteg(vsid, va, 0);
#endif
LOCK_TABLE();
LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va)
break;
}
UNLOCK_TABLE();
return (pvo);
}
static boolean_t
moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
{
struct pvo_entry *pvo;
uintptr_t pt;
if (moea64_attr_fetch(m) & ptebit)
return (TRUE);
vm_page_lock_queues();
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
/*
* See if we saved the bit off. If so, cache it and return
* success.
*/
if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
moea64_attr_save(m, ptebit);
vm_page_unlock_queues();
return (TRUE);
}
}
/*
* No luck, now go through the hard part of looking at the PTEs
* themselves. Sync so that any pending REF/CHG bits are flushed to
* the PTEs.
*/
powerpc_sync();
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
/*
* See if this pvo has a valid PTE. if so, fetch the
* REF/CHG bits from the valid PTE. If the appropriate
* ptebit is set, cache it and return success.
*/
LOCK_TABLE();
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
if (pt != -1) {
MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
UNLOCK_TABLE();
moea64_attr_save(m, ptebit);
vm_page_unlock_queues();
return (TRUE);
}
}
UNLOCK_TABLE();
}
vm_page_unlock_queues();
return (FALSE);
}
static u_int
moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
{
u_int count;
struct pvo_entry *pvo;
uintptr_t pt;
vm_page_lock_queues();
/*
* Clear the cached value.
*/
moea64_attr_clear(m, ptebit);
/*
* Sync so that any pending REF/CHG bits are flushed to the PTEs (so
* we can reset the right ones). note that since the pvo entries and
* list heads are accessed via BAT0 and are never placed in the page
* table, we don't have to worry about further accesses setting the
* REF/CHG bits.
*/
powerpc_sync();
/*
* For each pvo entry, clear the pvo's ptebit. If this pvo has a
* valid pte clear the ptebit from the valid pte.
*/
count = 0;
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
LOCK_TABLE();
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
if (pt != -1) {
MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
count++;
MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
pvo->pvo_vpn, ptebit);
}
}
pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
UNLOCK_TABLE();
}
vm_page_unlock_queues();
return (count);
}
boolean_t
moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
{
struct pvo_entry *pvo;
vm_offset_t ppa;
int error = 0;
PMAP_LOCK(kernel_pmap);
for (ppa = pa & ~ADDR_POFF; ppa < pa + size; ppa += PAGE_SIZE) {
pvo = moea64_pvo_find_va(kernel_pmap, ppa);
if (pvo == NULL ||
(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
error = EFAULT;
break;
}
}
PMAP_UNLOCK(kernel_pmap);
return (error);
}
/*
* Map a set of physical memory pages into the kernel virtual
* address space. Return a pointer to where it is mapped. This
* routine is intended to be used for mapping device memory,
* NOT real memory.
*/
void *
moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
{
vm_offset_t va, tmpva, ppa, offset;
ppa = trunc_page(pa);
offset = pa & PAGE_MASK;
size = roundup(offset + size, PAGE_SIZE);
va = kmem_alloc_nofault(kernel_map, size);
if (!va)
panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
for (tmpva = va; size > 0;) {
moea64_kenter_attr(mmu, tmpva, ppa, ma);
size -= PAGE_SIZE;
tmpva += PAGE_SIZE;
ppa += PAGE_SIZE;
}
return ((void *)(va + offset));
}
void *
moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
{
return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
}
void
moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
{
vm_offset_t base, offset;
base = trunc_page(va);
offset = va & PAGE_MASK;
size = roundup(offset + size, PAGE_SIZE);
kmem_free(kernel_map, base, size);
}
void
moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
{
struct pvo_entry *pvo;
vm_offset_t lim;
vm_paddr_t pa;
vm_size_t len;
PMAP_LOCK(pm);
while (sz > 0) {
lim = round_page(va);
len = MIN(lim - va, sz);
pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
(va & ADDR_POFF);
moea64_syncicache(mmu, pm, va, pa, len);
}
va += len;
sz -= len;
}
PMAP_UNLOCK(pm);
}