freebsd-dev/sys/dev/glxsb/glxsb.c
Mark Murray d1b06863fb Huge cleanup of random(4) code.
* GENERAL
- Update copyright.
- Make kernel options for RANDOM_YARROW and RANDOM_DUMMY. Set
  neither to ON, which means we want Fortuna
- If there is no 'device random' in the kernel, there will be NO
  random(4) device in the kernel, and the KERN_ARND sysctl will
  return nothing. With RANDOM_DUMMY there will be a random(4) that
  always blocks.
- Repair kern.arandom (KERN_ARND sysctl). The old version went
  through arc4random(9) and was a bit weird.
- Adjust arc4random stirring a bit - the existing code looks a little
  suspect.
- Fix the nasty pre- and post-read overloading by providing explictit
  functions to do these tasks.
- Redo read_random(9) so as to duplicate random(4)'s read internals.
  This makes it a first-class citizen rather than a hack.
- Move stuff out of locked regions when it does not need to be
  there.
- Trim RANDOM_DEBUG printfs. Some are excess to requirement, some
  behind boot verbose.
- Use SYSINIT to sequence the startup.
- Fix init/deinit sysctl stuff.
- Make relevant sysctls also tunables.
- Add different harvesting "styles" to allow for different requirements
  (direct, queue, fast).
- Add harvesting of FFS atime events. This needs to be checked for
  weighing down the FS code.
- Add harvesting of slab allocator events. This needs to be checked for
  weighing down the allocator code.
- Fix the random(9) manpage.
- Loadable modules are not present for now. These will be re-engineered
  when the dust settles.
- Use macros for locks.
- Fix comments.

* src/share/man/...
- Update the man pages.

* src/etc/...
- The startup/shutdown work is done in D2924.

* src/UPDATING
- Add UPDATING announcement.

* src/sys/dev/random/build.sh
- Add copyright.
- Add libz for unit tests.

* src/sys/dev/random/dummy.c
- Remove; no longer needed. Functionality incorporated into randomdev.*.

* live_entropy_sources.c live_entropy_sources.h
- Remove; content moved.
- move content to randomdev.[ch] and optimise.

* src/sys/dev/random/random_adaptors.c src/sys/dev/random/random_adaptors.h
- Remove; plugability is no longer used. Compile-time algorithm
  selection is the way to go.

* src/sys/dev/random/random_harvestq.c src/sys/dev/random/random_harvestq.h
- Add early (re)boot-time randomness caching.

* src/sys/dev/random/randomdev_soft.c src/sys/dev/random/randomdev_soft.h
- Remove; no longer needed.

* src/sys/dev/random/uint128.h
- Provide a fake uint128_t; if a real one ever arrived, we can use
  that instead. All that is needed here is N=0, N++, N==0, and some
  localised trickery is used to manufacture a 128-bit 0ULLL.

* src/sys/dev/random/unit_test.c src/sys/dev/random/unit_test.h
- Improve unit tests; previously the testing human needed clairvoyance;
  now the test will do a basic check of compressibility. Clairvoyant
  talent is still a good idea.
- This is still a long way off a proper unit test.

* src/sys/dev/random/fortuna.c src/sys/dev/random/fortuna.h
- Improve messy union to just uint128_t.
- Remove unneeded 'static struct fortuna_start_cache'.
- Tighten up up arithmetic.
- Provide a method to allow eternal junk to be introduced; harden
  it against blatant by compress/hashing.
- Assert that locks are held correctly.
- Fix the nasty pre- and post-read overloading by providing explictit
  functions to do these tasks.
- Turn into self-sufficient module (no longer requires randomdev_soft.[ch])

* src/sys/dev/random/yarrow.c src/sys/dev/random/yarrow.h
- Improve messy union to just uint128_t.
- Remove unneeded 'staic struct start_cache'.
- Tighten up up arithmetic.
- Provide a method to allow eternal junk to be introduced; harden
  it against blatant by compress/hashing.
- Assert that locks are held correctly.
- Fix the nasty pre- and post-read overloading by providing explictit
  functions to do these tasks.
- Turn into self-sufficient module (no longer requires randomdev_soft.[ch])
- Fix some magic numbers elsewhere used as FAST and SLOW.

Differential Revision: https://reviews.freebsd.org/D2025
Reviewed by: vsevolod,delphij,rwatson,trasz,jmg
Approved by: so (delphij)
2015-06-30 17:00:45 +00:00

947 lines
26 KiB
C

/* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
/*
* Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org>
* Copyright (c) 2003, 2004 Theo de Raadt
* Copyright (c) 2003 Jason Wright
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for the security block on the AMD Geode LX processors
* http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/random.h>
#include <sys/rman.h>
#include <sys/rwlock.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <machine/cpufunc.h>
#include <machine/resource.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/cryptosoft.h>
#include <opencrypto/xform.h>
#include "cryptodev_if.h"
#include "glxsb.h"
#define PCI_VENDOR_AMD 0x1022 /* AMD */
#define PCI_PRODUCT_AMD_GEODE_LX_CRYPTO 0x2082 /* Geode LX Crypto */
#define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */
#define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */
#define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */
#define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */
#define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */
#define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */
#define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */
/* For GLD_MSR_CTRL: */
#define SB_GMC_DIV0 0x0000 /* AES update divisor values */
#define SB_GMC_DIV1 0x0001
#define SB_GMC_DIV2 0x0002
#define SB_GMC_DIV3 0x0003
#define SB_GMC_DIV_MASK 0x0003
#define SB_GMC_SBI 0x0004 /* AES swap bits */
#define SB_GMC_SBY 0x0008 /* AES swap bytes */
#define SB_GMC_TW 0x0010 /* Time write (EEPROM) */
#define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */
#define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */
#define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */
#define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */
#define SB_GMC_T_SEL_MASK 0x0300
#define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */
#define SB_GMC_T_TM 0x0800 /* RNG test mode */
/* (deterministic) */
/* Security Block configuration/control registers (offsets from base) */
#define SB_CTL_A 0x0000 /* RW - SB Control A */
#define SB_CTL_B 0x0004 /* RW - SB Control B */
#define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */
#define SB_SOURCE_A 0x0010 /* RW - Source A */
#define SB_DEST_A 0x0014 /* RW - Destination A */
#define SB_LENGTH_A 0x0018 /* RW - Length A */
#define SB_SOURCE_B 0x0020 /* RW - Source B */
#define SB_DEST_B 0x0024 /* RW - Destination B */
#define SB_LENGTH_B 0x0028 /* RW - Length B */
#define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */
#define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */
#define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */
#define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */
#define SB_WKEY_3 0x003C /* WO - Writable Key 3 */
#define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */
#define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */
#define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */
#define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */
#define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */
#define SB_RANDOM_NUM 0x0050 /* RW - Random Number */
#define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */
#define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */
#define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */
#define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */
#define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */
/* For SB_CTL_A and _B */
#define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */
#define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */
#define SB_CTL_DEC 0x0000 /* Decrypt */
#define SB_CTL_WK 0x0004 /* Use writable key (we set) */
#define SB_CTL_DC 0x0008 /* Destination coherent */
#define SB_CTL_SC 0x0010 /* Source coherent */
#define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */
/* For SB_AES_INT */
#define SB_AI_DISABLE_AES_A 0x0001 /* Disable AES A compl int */
#define SB_AI_ENABLE_AES_A 0x0000 /* Enable AES A compl int */
#define SB_AI_DISABLE_AES_B 0x0002 /* Disable AES B compl int */
#define SB_AI_ENABLE_AES_B 0x0000 /* Enable AES B compl int */
#define SB_AI_DISABLE_EEPROM 0x0004 /* Disable EEPROM op comp int */
#define SB_AI_ENABLE_EEPROM 0x0000 /* Enable EEPROM op compl int */
#define SB_AI_AES_A_COMPLETE 0x10000 /* AES A operation complete */
#define SB_AI_AES_B_COMPLETE 0x20000 /* AES B operation complete */
#define SB_AI_EEPROM_COMPLETE 0x40000 /* EEPROM operation complete */
#define SB_AI_CLEAR_INTR \
(SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |\
SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |\
SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE)
#define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */
#define SB_MEM_SIZE 0x0810 /* Size of memory block */
#define SB_AES_ALIGN 0x0010 /* Source and dest buffers */
/* must be 16-byte aligned */
#define SB_AES_BLOCK_SIZE 0x0010
/*
* The Geode LX security block AES acceleration doesn't perform scatter-
* gather: it just takes source and destination addresses. Therefore the
* plain- and ciphertexts need to be contiguous. To this end, we allocate
* a buffer for both, and accept the overhead of copying in and out. If
* the number of bytes in one operation is bigger than allowed for by the
* buffer (buffer is twice the size of the max length, as it has both input
* and output) then we have to perform multiple encryptions/decryptions.
*/
#define GLXSB_MAX_AES_LEN 16384
MALLOC_DEFINE(M_GLXSB, "glxsb_data", "Glxsb Data");
struct glxsb_dma_map {
bus_dmamap_t dma_map; /* DMA map */
bus_dma_segment_t dma_seg; /* segments */
int dma_nsegs; /* #segments */
int dma_size; /* size */
caddr_t dma_vaddr; /* virtual address */
bus_addr_t dma_paddr; /* physical address */
};
struct glxsb_taskop {
struct glxsb_session *to_ses; /* crypto session */
struct cryptop *to_crp; /* cryptop to perfom */
struct cryptodesc *to_enccrd; /* enccrd to perform */
struct cryptodesc *to_maccrd; /* maccrd to perform */
};
struct glxsb_softc {
device_t sc_dev; /* device backpointer */
struct resource *sc_sr; /* resource */
int sc_rid; /* resource rid */
struct callout sc_rngco; /* RNG callout */
int sc_rnghz; /* RNG callout ticks */
bus_dma_tag_t sc_dmat; /* DMA tag */
struct glxsb_dma_map sc_dma; /* DMA map */
int32_t sc_cid; /* crypto tag */
uint32_t sc_sid; /* session id */
TAILQ_HEAD(ses_head, glxsb_session)
sc_sessions; /* crypto sessions */
struct rwlock sc_sessions_lock;/* sessions lock */
struct mtx sc_task_mtx; /* task mutex */
struct taskqueue *sc_tq; /* task queue */
struct task sc_cryptotask; /* task */
struct glxsb_taskop sc_to; /* task's crypto operation */
int sc_task_count; /* tasks count */
};
static int glxsb_probe(device_t);
static int glxsb_attach(device_t);
static int glxsb_detach(device_t);
static void glxsb_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int glxsb_dma_alloc(struct glxsb_softc *);
static void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
static void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
static void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
static void glxsb_rnd(void *);
static int glxsb_crypto_setup(struct glxsb_softc *);
static int glxsb_crypto_newsession(device_t, uint32_t *, struct cryptoini *);
static int glxsb_crypto_freesession(device_t, uint64_t);
static int glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
uint32_t, void *, int, void *);
static int glxsb_crypto_encdec(struct cryptop *, struct cryptodesc *,
struct glxsb_session *, struct glxsb_softc *);
static void glxsb_crypto_task(void *, int);
static int glxsb_crypto_process(device_t, struct cryptop *, int);
static device_method_t glxsb_methods[] = {
/* device interface */
DEVMETHOD(device_probe, glxsb_probe),
DEVMETHOD(device_attach, glxsb_attach),
DEVMETHOD(device_detach, glxsb_detach),
/* crypto device methods */
DEVMETHOD(cryptodev_newsession, glxsb_crypto_newsession),
DEVMETHOD(cryptodev_freesession, glxsb_crypto_freesession),
DEVMETHOD(cryptodev_process, glxsb_crypto_process),
{0,0}
};
static driver_t glxsb_driver = {
"glxsb",
glxsb_methods,
sizeof(struct glxsb_softc)
};
static devclass_t glxsb_devclass;
DRIVER_MODULE(glxsb, pci, glxsb_driver, glxsb_devclass, 0, 0);
MODULE_VERSION(glxsb, 1);
MODULE_DEPEND(glxsb, crypto, 1, 1, 1);
static int
glxsb_probe(device_t dev)
{
if (pci_get_vendor(dev) == PCI_VENDOR_AMD &&
pci_get_device(dev) == PCI_PRODUCT_AMD_GEODE_LX_CRYPTO) {
device_set_desc(dev,
"AMD Geode LX Security Block (AES-128-CBC, RNG)");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
glxsb_attach(device_t dev)
{
struct glxsb_softc *sc = device_get_softc(dev);
uint64_t msr;
sc->sc_dev = dev;
msr = rdmsr(SB_GLD_MSR_CAP);
if ((msr & 0xFFFF00) != 0x130400) {
device_printf(dev, "unknown ID 0x%x\n",
(int)((msr & 0xFFFF00) >> 16));
return (ENXIO);
}
pci_enable_busmaster(dev);
/* Map in the security block configuration/control registers */
sc->sc_rid = PCIR_BAR(0);
sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rid,
RF_ACTIVE);
if (sc->sc_sr == NULL) {
device_printf(dev, "cannot map register space\n");
return (ENXIO);
}
/*
* Configure the Security Block.
*
* We want to enable the noise generator (T_NE), and enable the
* linear feedback shift register and whitener post-processing
* (T_SEL = 3). Also ensure that test mode (deterministic values)
* is disabled.
*/
msr = rdmsr(SB_GLD_MSR_CTRL);
msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
#if 0
msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */
#endif
wrmsr(SB_GLD_MSR_CTRL, msr);
/* Disable interrupts */
bus_write_4(sc->sc_sr, SB_AES_INT, SB_AI_CLEAR_INTR);
/* Allocate a contiguous DMA-able buffer to work in */
if (glxsb_dma_alloc(sc) != 0)
goto fail0;
/* Initialize our task queue */
sc->sc_tq = taskqueue_create("glxsb_taskq", M_NOWAIT | M_ZERO,
taskqueue_thread_enqueue, &sc->sc_tq);
if (sc->sc_tq == NULL) {
device_printf(dev, "cannot create task queue\n");
goto fail0;
}
if (taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(dev)) != 0) {
device_printf(dev, "cannot start task queue\n");
goto fail1;
}
TASK_INIT(&sc->sc_cryptotask, 0, glxsb_crypto_task, sc);
/* Initialize crypto */
if (glxsb_crypto_setup(sc) != 0)
goto fail1;
/* Install a periodic collector for the "true" (AMD's word) RNG */
if (hz > 100)
sc->sc_rnghz = hz / 100;
else
sc->sc_rnghz = 1;
callout_init(&sc->sc_rngco, 1);
glxsb_rnd(sc);
return (0);
fail1:
taskqueue_free(sc->sc_tq);
fail0:
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr);
return (ENXIO);
}
static int
glxsb_detach(device_t dev)
{
struct glxsb_softc *sc = device_get_softc(dev);
struct glxsb_session *ses;
rw_wlock(&sc->sc_sessions_lock);
TAILQ_FOREACH(ses, &sc->sc_sessions, ses_next) {
if (ses->ses_used) {
rw_wunlock(&sc->sc_sessions_lock);
device_printf(dev,
"cannot detach, sessions still active.\n");
return (EBUSY);
}
}
while (!TAILQ_EMPTY(&sc->sc_sessions)) {
ses = TAILQ_FIRST(&sc->sc_sessions);
TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next);
free(ses, M_GLXSB);
}
rw_wunlock(&sc->sc_sessions_lock);
crypto_unregister_all(sc->sc_cid);
callout_drain(&sc->sc_rngco);
taskqueue_drain(sc->sc_tq, &sc->sc_cryptotask);
bus_generic_detach(dev);
glxsb_dma_free(sc, &sc->sc_dma);
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr);
taskqueue_free(sc->sc_tq);
rw_destroy(&sc->sc_sessions_lock);
mtx_destroy(&sc->sc_task_mtx);
return (0);
}
/*
* callback for bus_dmamap_load()
*/
static void
glxsb_dmamap_cb(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{
bus_addr_t *paddr = (bus_addr_t*) arg;
*paddr = seg[0].ds_addr;
}
static int
glxsb_dma_alloc(struct glxsb_softc *sc)
{
struct glxsb_dma_map *dma = &sc->sc_dma;
int rc;
dma->dma_nsegs = 1;
dma->dma_size = GLXSB_MAX_AES_LEN * 2;
/* Setup DMA descriptor area */
rc = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */
SB_AES_ALIGN, 0, /* alignments, bounds */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
dma->dma_size, /* maxsize */
dma->dma_nsegs, /* nsegments */
dma->dma_size, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sc_dmat);
if (rc != 0) {
device_printf(sc->sc_dev,
"cannot allocate DMA tag (%d)\n", rc);
return (rc);
}
rc = bus_dmamem_alloc(sc->sc_dmat, (void **)&dma->dma_vaddr,
BUS_DMA_NOWAIT, &dma->dma_map);
if (rc != 0) {
device_printf(sc->sc_dev,
"cannot allocate DMA memory of %d bytes (%d)\n",
dma->dma_size, rc);
goto fail0;
}
rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
dma->dma_size, glxsb_dmamap_cb, &dma->dma_paddr, BUS_DMA_NOWAIT);
if (rc != 0) {
device_printf(sc->sc_dev,
"cannot load DMA memory for %d bytes (%d)\n",
dma->dma_size, rc);
goto fail1;
}
return (0);
fail1:
bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map);
fail0:
bus_dma_tag_destroy(sc->sc_dmat);
return (rc);
}
static void
glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
{
bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
{
bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
}
static void
glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
{
bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map);
bus_dma_tag_destroy(sc->sc_dmat);
}
static void
glxsb_rnd(void *v)
{
struct glxsb_softc *sc = v;
uint32_t status, value;
status = bus_read_4(sc->sc_sr, SB_RANDOM_NUM_STATUS);
if (status & SB_RNS_TRNG_VALID) {
value = bus_read_4(sc->sc_sr, SB_RANDOM_NUM);
/* feed with one uint32 */
/* MarkM: FIX!! Check that this does not swamp the harvester! */
random_harvest_queue(&value, sizeof(value), 32/2, RANDOM_PURE_GLXSB);
}
callout_reset(&sc->sc_rngco, sc->sc_rnghz, glxsb_rnd, sc);
}
static int
glxsb_crypto_setup(struct glxsb_softc *sc)
{
sc->sc_cid = crypto_get_driverid(sc->sc_dev, CRYPTOCAP_F_HARDWARE);
if (sc->sc_cid < 0) {
device_printf(sc->sc_dev, "cannot get crypto driver id\n");
return (ENOMEM);
}
TAILQ_INIT(&sc->sc_sessions);
sc->sc_sid = 1;
rw_init(&sc->sc_sessions_lock, "glxsb_sessions_lock");
mtx_init(&sc->sc_task_mtx, "glxsb_crypto_mtx", NULL, MTX_DEF);
if (crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0) != 0)
goto crypto_fail;
if (crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0) != 0)
goto crypto_fail;
if (crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0) != 0)
goto crypto_fail;
if (crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0) != 0)
goto crypto_fail;
if (crypto_register(sc->sc_cid, CRYPTO_RIPEMD160_HMAC, 0, 0) != 0)
goto crypto_fail;
if (crypto_register(sc->sc_cid, CRYPTO_SHA2_256_HMAC, 0, 0) != 0)
goto crypto_fail;
if (crypto_register(sc->sc_cid, CRYPTO_SHA2_384_HMAC, 0, 0) != 0)
goto crypto_fail;
if (crypto_register(sc->sc_cid, CRYPTO_SHA2_512_HMAC, 0, 0) != 0)
goto crypto_fail;
return (0);
crypto_fail:
device_printf(sc->sc_dev, "cannot register crypto\n");
crypto_unregister_all(sc->sc_cid);
rw_destroy(&sc->sc_sessions_lock);
mtx_destroy(&sc->sc_task_mtx);
return (ENOMEM);
}
static int
glxsb_crypto_newsession(device_t dev, uint32_t *sidp, struct cryptoini *cri)
{
struct glxsb_softc *sc = device_get_softc(dev);
struct glxsb_session *ses = NULL;
struct cryptoini *encini, *macini;
int error;
if (sc == NULL || sidp == NULL || cri == NULL)
return (EINVAL);
encini = macini = NULL;
for (; cri != NULL; cri = cri->cri_next) {
switch(cri->cri_alg) {
case CRYPTO_NULL_HMAC:
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
if (macini != NULL)
return (EINVAL);
macini = cri;
break;
case CRYPTO_AES_CBC:
if (encini != NULL)
return (EINVAL);
encini = cri;
break;
default:
return (EINVAL);
}
}
/*
* We only support HMAC algorithms to be able to work with
* ipsec(4), so if we are asked only for authentication without
* encryption, don't pretend we can accellerate it.
*/
if (encini == NULL)
return (EINVAL);
/*
* Look for a free session
*
* Free sessions goes first, so if first session is used, we need to
* allocate one.
*/
rw_wlock(&sc->sc_sessions_lock);
ses = TAILQ_FIRST(&sc->sc_sessions);
if (ses == NULL || ses->ses_used) {
ses = malloc(sizeof(*ses), M_GLXSB, M_NOWAIT | M_ZERO);
if (ses == NULL) {
rw_wunlock(&sc->sc_sessions_lock);
return (ENOMEM);
}
ses->ses_id = sc->sc_sid++;
} else {
TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next);
}
ses->ses_used = 1;
TAILQ_INSERT_TAIL(&sc->sc_sessions, ses, ses_next);
rw_wunlock(&sc->sc_sessions_lock);
if (encini->cri_alg == CRYPTO_AES_CBC) {
if (encini->cri_klen != 128) {
glxsb_crypto_freesession(sc->sc_dev, ses->ses_id);
return (EINVAL);
}
arc4rand(ses->ses_iv, sizeof(ses->ses_iv), 0);
ses->ses_klen = encini->cri_klen;
/* Copy the key (Geode LX wants the primary key only) */
bcopy(encini->cri_key, ses->ses_key, sizeof(ses->ses_key));
}
if (macini != NULL) {
error = glxsb_hash_setup(ses, macini);
if (error != 0) {
glxsb_crypto_freesession(sc->sc_dev, ses->ses_id);
return (error);
}
}
*sidp = ses->ses_id;
return (0);
}
static int
glxsb_crypto_freesession(device_t dev, uint64_t tid)
{
struct glxsb_softc *sc = device_get_softc(dev);
struct glxsb_session *ses = NULL;
uint32_t sid = ((uint32_t)tid) & 0xffffffff;
if (sc == NULL)
return (EINVAL);
rw_wlock(&sc->sc_sessions_lock);
TAILQ_FOREACH_REVERSE(ses, &sc->sc_sessions, ses_head, ses_next) {
if (ses->ses_id == sid)
break;
}
if (ses == NULL) {
rw_wunlock(&sc->sc_sessions_lock);
return (EINVAL);
}
TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next);
glxsb_hash_free(ses);
bzero(ses, sizeof(*ses));
ses->ses_used = 0;
ses->ses_id = sid;
TAILQ_INSERT_HEAD(&sc->sc_sessions, ses, ses_next);
rw_wunlock(&sc->sc_sessions_lock);
return (0);
}
static int
glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
uint32_t pdst, void *key, int len, void *iv)
{
uint32_t status;
int i;
if (len & 0xF) {
device_printf(sc->sc_dev,
"len must be a multiple of 16 (not %d)\n", len);
return (EINVAL);
}
/* Set the source */
bus_write_4(sc->sc_sr, SB_SOURCE_A, psrc);
/* Set the destination address */
bus_write_4(sc->sc_sr, SB_DEST_A, pdst);
/* Set the data length */
bus_write_4(sc->sc_sr, SB_LENGTH_A, len);
/* Set the IV */
if (iv != NULL) {
bus_write_region_4(sc->sc_sr, SB_CBC_IV, iv, 4);
control |= SB_CTL_CBC;
}
/* Set the key */
bus_write_region_4(sc->sc_sr, SB_WKEY, key, 4);
/* Ask the security block to do it */
bus_write_4(sc->sc_sr, SB_CTL_A,
control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
/*
* Now wait until it is done.
*
* We do a busy wait. Obviously the number of iterations of
* the loop required to perform the AES operation depends upon
* the number of bytes to process.
*
* On a 500 MHz Geode LX we see
*
* length (bytes) typical max iterations
* 16 12
* 64 22
* 256 59
* 1024 212
* 8192 1,537
*
* Since we have a maximum size of operation defined in
* GLXSB_MAX_AES_LEN, we use this constant to decide how long
* to wait. Allow an order of magnitude longer than it should
* really take, just in case.
*/
for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
status = bus_read_4(sc->sc_sr, SB_CTL_A);
if ((status & SB_CTL_ST) == 0) /* Done */
return (0);
}
device_printf(sc->sc_dev, "operation failed to complete\n");
return (EIO);
}
static int
glxsb_crypto_encdec(struct cryptop *crp, struct cryptodesc *crd,
struct glxsb_session *ses, struct glxsb_softc *sc)
{
char *op_src, *op_dst;
uint32_t op_psrc, op_pdst;
uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
int error;
int len, tlen, xlen;
int offset;
uint32_t control;
if (crd == NULL || (crd->crd_len % SB_AES_BLOCK_SIZE) != 0)
return (EINVAL);
/* How much of our buffer will we need to use? */
xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
GLXSB_MAX_AES_LEN : crd->crd_len;
/*
* XXX Check if we can have input == output on Geode LX.
* XXX In the meantime, use two separate (adjacent) buffers.
*/
op_src = sc->sc_dma.dma_vaddr;
op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
op_psrc = sc->sc_dma.dma_paddr;
op_pdst = sc->sc_dma.dma_paddr + xlen;
if (crd->crd_flags & CRD_F_ENCRYPT) {
control = SB_CTL_ENC;
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
else
bcopy(ses->ses_iv, op_iv, sizeof(op_iv));
if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
crypto_copyback(crp->crp_flags, crp->crp_buf,
crd->crd_inject, sizeof(op_iv), op_iv);
}
} else {
control = SB_CTL_DEC;
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
else {
crypto_copydata(crp->crp_flags, crp->crp_buf,
crd->crd_inject, sizeof(op_iv), op_iv);
}
}
offset = 0;
tlen = crd->crd_len;
piv = op_iv;
/* Process the data in GLXSB_MAX_AES_LEN chunks */
while (tlen > 0) {
len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
crypto_copydata(crp->crp_flags, crp->crp_buf,
crd->crd_skip + offset, len, op_src);
glxsb_dma_pre_op(sc, &sc->sc_dma);
error = glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
len, op_iv);
glxsb_dma_post_op(sc, &sc->sc_dma);
if (error != 0)
return (error);
crypto_copyback(crp->crp_flags, crp->crp_buf,
crd->crd_skip + offset, len, op_dst);
offset += len;
tlen -= len;
if (tlen <= 0) { /* Ideally, just == 0 */
/* Finished - put the IV in session IV */
piv = ses->ses_iv;
}
/*
* Copy out last block for use as next iteration/session IV.
*
* piv is set to op_iv[] before the loop starts, but is
* set to ses->ses_iv if we're going to exit the loop this
* time.
*/
if (crd->crd_flags & CRD_F_ENCRYPT)
bcopy(op_dst + len - sizeof(op_iv), piv, sizeof(op_iv));
else {
/* Decryption, only need this if another iteration */
if (tlen > 0) {
bcopy(op_src + len - sizeof(op_iv), piv,
sizeof(op_iv));
}
}
} /* while */
/* All AES processing has now been done. */
bzero(sc->sc_dma.dma_vaddr, xlen * 2);
return (0);
}
static void
glxsb_crypto_task(void *arg, int pending)
{
struct glxsb_softc *sc = arg;
struct glxsb_session *ses;
struct cryptop *crp;
struct cryptodesc *enccrd, *maccrd;
int error;
maccrd = sc->sc_to.to_maccrd;
enccrd = sc->sc_to.to_enccrd;
crp = sc->sc_to.to_crp;
ses = sc->sc_to.to_ses;
/* Perform data authentication if requested before encryption */
if (maccrd != NULL && maccrd->crd_next == enccrd) {
error = glxsb_hash_process(ses, maccrd, crp);
if (error != 0)
goto out;
}
error = glxsb_crypto_encdec(crp, enccrd, ses, sc);
if (error != 0)
goto out;
/* Perform data authentication if requested after encryption */
if (maccrd != NULL && enccrd->crd_next == maccrd) {
error = glxsb_hash_process(ses, maccrd, crp);
if (error != 0)
goto out;
}
out:
mtx_lock(&sc->sc_task_mtx);
sc->sc_task_count--;
mtx_unlock(&sc->sc_task_mtx);
crp->crp_etype = error;
crypto_unblock(sc->sc_cid, CRYPTO_SYMQ);
crypto_done(crp);
}
static int
glxsb_crypto_process(device_t dev, struct cryptop *crp, int hint)
{
struct glxsb_softc *sc = device_get_softc(dev);
struct glxsb_session *ses;
struct cryptodesc *crd, *enccrd, *maccrd;
uint32_t sid;
int error = 0;
enccrd = maccrd = NULL;
/* Sanity check. */
if (crp == NULL)
return (EINVAL);
if (crp->crp_callback == NULL || crp->crp_desc == NULL) {
error = EINVAL;
goto fail;
}
for (crd = crp->crp_desc; crd != NULL; crd = crd->crd_next) {
switch (crd->crd_alg) {
case CRYPTO_NULL_HMAC:
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
if (maccrd != NULL) {
error = EINVAL;
goto fail;
}
maccrd = crd;
break;
case CRYPTO_AES_CBC:
if (enccrd != NULL) {
error = EINVAL;
goto fail;
}
enccrd = crd;
break;
default:
error = EINVAL;
goto fail;
}
}
if (enccrd == NULL || enccrd->crd_len % AES_BLOCK_LEN != 0) {
error = EINVAL;
goto fail;
}
sid = crp->crp_sid & 0xffffffff;
rw_rlock(&sc->sc_sessions_lock);
TAILQ_FOREACH_REVERSE(ses, &sc->sc_sessions, ses_head, ses_next) {
if (ses->ses_id == sid)
break;
}
rw_runlock(&sc->sc_sessions_lock);
if (ses == NULL || !ses->ses_used) {
error = EINVAL;
goto fail;
}
mtx_lock(&sc->sc_task_mtx);
if (sc->sc_task_count != 0) {
mtx_unlock(&sc->sc_task_mtx);
return (ERESTART);
}
sc->sc_task_count++;
sc->sc_to.to_maccrd = maccrd;
sc->sc_to.to_enccrd = enccrd;
sc->sc_to.to_crp = crp;
sc->sc_to.to_ses = ses;
mtx_unlock(&sc->sc_task_mtx);
taskqueue_enqueue(sc->sc_tq, &sc->sc_cryptotask);
return(0);
fail:
crp->crp_etype = error;
crypto_done(crp);
return (error);
}