freebsd-dev/usr.bin/make/job.c
Max Khon 9a81351403 Implement "Remaking Makefiles" feature:
After reading Makefile and all the files that are included using .include
or .sinclude directives (source Makefiles) make considers each source
Makefile as a target and tries to rebuild it.  Both explicit and implicit
rules are checked and all source Makefiles are updated if necessary. If
any of the source Makefiles were rebuilt, make restarts from clean state.

To prevent infinite loops the following source Makefile targets are
ignored:
- :: targets that have no prerequisites but have commands
- ! targets
- targets that have .PHONY or .EXEC attributes
- targets without prerequisites and without commands

When remaking a source Makefile options -t (touch target), -q (query
mode), and -n (no exec) do not take effect, unless source Makefile is
specified explicitly as a target in make command line.
Additionally, system makefiles and .depend are not considered as a
Makefiles that can be rebuilt.

Reviewed by:	harti
2007-03-08 09:16:11 +00:00

3387 lines
83 KiB
C

/*-
* Copyright (c) 1988, 1989, 1990, 1993
* The Regents of the University of California. All rights reserved.
* Copyright (c) 1988, 1989 by Adam de Boor
* Copyright (c) 1989 by Berkeley Softworks
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Adam de Boor.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)job.c 8.2 (Berkeley) 3/19/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifndef OLD_JOKE
#define OLD_JOKE 0
#endif /* OLD_JOKE */
/*-
* job.c --
* handle the creation etc. of our child processes.
*
* Interface:
* Job_Make Start the creation of the given target.
*
* Job_CatchChildren
* Check for and handle the termination of any children.
* This must be called reasonably frequently to keep the
* whole make going at a decent clip, since job table
* entries aren't removed until their process is caught
* this way. Its single argument is TRUE if the function
* should block waiting for a child to terminate.
*
* Job_CatchOutput Print any output our children have produced. Should
* also be called fairly frequently to keep the user
* informed of what's going on. If no output is waiting,
* it will block for a time given by the SEL_* constants,
* below, or until output is ready.
*
* Job_Init Called to intialize this module. in addition, any
* commands attached to the .BEGIN target are executed
* before this function returns. Hence, the makefile must
* have been parsed before this function is called.
*
* Job_Full Return TRUE if the job table is filled.
*
* Job_Empty Return TRUE if the job table is completely empty.
*
* Job_Finish Perform any final processing which needs doing. This
* includes the execution of any commands which have
* been/were attached to the .END target. It should only
* be called when the job table is empty.
*
* Job_AbortAll Abort all currently running jobs. It doesn't handle
* output or do anything for the jobs, just kills them.
* It should only be called in an emergency, as it were.
*
* Job_CheckCommands
* Verify that the commands for a target are ok. Provide
* them if necessary and possible.
*
* Job_Touch Update a target without really updating it.
*
* Job_Wait Wait for all currently-running jobs to finish.
*
* compat.c --
* The routines in this file implement the full-compatibility
* mode of PMake. Most of the special functionality of PMake
* is available in this mode. Things not supported:
* - different shells.
* - friendly variable substitution.
*
* Interface:
* Compat_Run Initialize things for this module and recreate
* thems as need creatin'
*/
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/select.h>
#include <sys/stat.h>
#ifdef USE_KQUEUE
#include <sys/event.h>
#endif
#include <sys/wait.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <string.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <utime.h>
#include "arch.h"
#include "buf.h"
#include "config.h"
#include "dir.h"
#include "globals.h"
#include "GNode.h"
#include "job.h"
#include "make.h"
#include "parse.h"
#include "proc.h"
#include "shell.h"
#include "str.h"
#include "suff.h"
#include "targ.h"
#include "util.h"
#include "var.h"
#define TMPPAT "/tmp/makeXXXXXXXXXX"
#ifndef USE_KQUEUE
/*
* The SEL_ constants determine the maximum amount of time spent in select
* before coming out to see if a child has finished. SEL_SEC is the number of
* seconds and SEL_USEC is the number of micro-seconds
*/
#define SEL_SEC 2
#define SEL_USEC 0
#endif /* !USE_KQUEUE */
/*
* Job Table definitions.
*
* The job "table" is kept as a linked Lst in 'jobs', with the number of
* active jobs maintained in the 'nJobs' variable. At no time will this
* exceed the value of 'maxJobs', initialized by the Job_Init function.
*
* When a job is finished, the Make_Update function is called on each of the
* parents of the node which was just remade. This takes care of the upward
* traversal of the dependency graph.
*/
#define JOB_BUFSIZE 1024
typedef struct Job {
pid_t pid; /* The child's process ID */
struct GNode *node; /* The target the child is making */
/*
* A LstNode for the first command to be saved after the job completes.
* This is NULL if there was no "..." in the job's commands.
*/
LstNode *tailCmds;
/*
* An FILE* for writing out the commands. This is only
* used before the job is actually started.
*/
FILE *cmdFILE;
/*
* A word of flags which determine how the module handles errors,
* echoing, etc. for the job
*/
short flags; /* Flags to control treatment of job */
#define JOB_IGNERR 0x001 /* Ignore non-zero exits */
#define JOB_SILENT 0x002 /* no output */
#define JOB_SPECIAL 0x004 /* Target is a special one. i.e. run it locally
* if we can't export it and maxLocal is 0 */
#define JOB_IGNDOTS 0x008 /* Ignore "..." lines when processing
* commands */
#define JOB_FIRST 0x020 /* Job is first job for the node */
#define JOB_RESTART 0x080 /* Job needs to be completely restarted */
#define JOB_RESUME 0x100 /* Job needs to be resumed b/c it stopped,
* for some reason */
#define JOB_CONTINUING 0x200 /* We are in the process of resuming this job.
* Used to avoid infinite recursion between
* JobFinish and JobRestart */
/* union for handling shell's output */
union {
/*
* This part is used when usePipes is true.
* The output is being caught via a pipe and the descriptors
* of our pipe, an array in which output is line buffered and
* the current position in that buffer are all maintained for
* each job.
*/
struct {
/*
* Input side of pipe associated with
* job's output channel
*/
int op_inPipe;
/*
* Output side of pipe associated with job's
* output channel
*/
int op_outPipe;
/*
* Buffer for storing the output of the
* job, line by line
*/
char op_outBuf[JOB_BUFSIZE + 1];
/* Current position in op_outBuf */
int op_curPos;
} o_pipe;
/*
* If usePipes is false the output is routed to a temporary
* file and all that is kept is the name of the file and the
* descriptor open to the file.
*/
struct {
/* Name of file to which shell output was rerouted */
char of_outFile[sizeof(TMPPAT)];
/*
* Stream open to the output file. Used to funnel all
* from a single job to one file while still allowing
* multiple shell invocations
*/
int of_outFd;
} o_file;
} output; /* Data for tracking a shell's output */
TAILQ_ENTRY(Job) link; /* list link */
} Job;
#define outPipe output.o_pipe.op_outPipe
#define inPipe output.o_pipe.op_inPipe
#define outBuf output.o_pipe.op_outBuf
#define curPos output.o_pipe.op_curPos
#define outFile output.o_file.of_outFile
#define outFd output.o_file.of_outFd
TAILQ_HEAD(JobList, Job);
/*
* error handling variables
*/
static int errors = 0; /* number of errors reported */
static int aborting = 0; /* why is the make aborting? */
#define ABORT_ERROR 1 /* Because of an error */
#define ABORT_INTERRUPT 2 /* Because it was interrupted */
#define ABORT_WAIT 3 /* Waiting for jobs to finish */
/*
* XXX: Avoid SunOS bug... FILENO() is fp->_file, and file
* is a char! So when we go above 127 we turn negative!
*/
#define FILENO(a) ((unsigned)fileno(a))
/*
* post-make command processing. The node postCommands is really just the
* .END target but we keep it around to avoid having to search for it
* all the time.
*/
static GNode *postCommands;
/*
* The number of commands actually printed for a target. Should this
* number be 0, no shell will be executed.
*/
static int numCommands;
/*
* Return values from JobStart.
*/
#define JOB_RUNNING 0 /* Job is running */
#define JOB_ERROR 1 /* Error in starting the job */
#define JOB_FINISHED 2 /* The job is already finished */
#define JOB_STOPPED 3 /* The job is stopped */
/*
* The maximum number of jobs that may run. This is initialize from the
* -j argument for the leading make and from the FIFO for sub-makes.
*/
static int maxJobs;
static int nJobs; /* The number of children currently running */
/* The structures that describe them */
static struct JobList jobs = TAILQ_HEAD_INITIALIZER(jobs);
static Boolean jobFull; /* Flag to tell when the job table is full. It
* is set TRUE when (1) the total number of
* running jobs equals the maximum allowed */
#ifdef USE_KQUEUE
static int kqfd; /* File descriptor obtained by kqueue() */
#else
static fd_set outputs; /* Set of descriptors of pipes connected to
* the output channels of children */
#endif
static GNode *lastNode; /* The node for which output was most recently
* produced. */
static const char *targFmt; /* Format string to use to head output from a
* job when it's not the most-recent job heard
* from */
#define TARG_FMT "--- %s ---\n" /* Default format */
#define MESSAGE(fp, gn) \
fprintf(fp, targFmt, gn->name);
/*
* When JobStart attempts to run a job but isn't allowed to
* or when Job_CatchChildren detects a job that has
* been stopped somehow, the job is placed on the stoppedJobs queue to be run
* when the next job finishes.
*
* Lst of Job structures describing jobs that were stopped due to
* concurrency limits or externally
*/
static struct JobList stoppedJobs = TAILQ_HEAD_INITIALIZER(stoppedJobs);
static int fifoFd; /* Fd of our job fifo */
static char fifoName[] = "/tmp/make_fifo_XXXXXXXXX";
static int fifoMaster;
static sig_atomic_t interrupted;
#if defined(USE_PGRP) && defined(SYSV)
# define KILL(pid, sig) killpg(-(pid), (sig))
#else
# if defined(USE_PGRP)
# define KILL(pid, sig) killpg((pid), (sig))
# else
# define KILL(pid, sig) kill((pid), (sig))
# endif
#endif
/*
* Grmpf... There is no way to set bits of the wait structure
* anymore with the stupid W*() macros. I liked the union wait
* stuff much more. So, we devise our own macros... This is
* really ugly, use dramamine sparingly. You have been warned.
*/
#define W_SETMASKED(st, val, fun) \
{ \
int sh = (int)~0; \
int mask = fun(sh); \
\
for (sh = 0; ((mask >> sh) & 1) == 0; sh++) \
continue; \
*(st) = (*(st) & ~mask) | ((val) << sh); \
}
#define W_SETTERMSIG(st, val) W_SETMASKED(st, val, WTERMSIG)
#define W_SETEXITSTATUS(st, val) W_SETMASKED(st, val, WEXITSTATUS)
static void JobRestart(Job *);
static int JobStart(GNode *, int, Job *);
static void JobDoOutput(Job *, Boolean);
static void JobInterrupt(int, int);
static void JobRestartJobs(void);
static int Compat_RunCommand(char *, struct GNode *);
static GNode *curTarg = NULL;
static GNode *ENDNode;
/**
* Create a fifo file with a uniq filename, and returns a file
* descriptor to that fifo.
*/
static int
mkfifotemp(char *template)
{
char *start;
char *pathend;
char *ptr;
const unsigned char padchar[] =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
if (template[0] == '\0') {
errno = EINVAL; /* bad input string */
return (-1);
}
/* Find end of template string. */
pathend = strchr(template, '\0');
ptr = pathend - 1;
/*
* Starting from the end of the template replace spaces with 'X' in
* them with random characters until there are no more 'X'.
*/
while (ptr >= template && *ptr == 'X') {
uint32_t rand_num = arc4random() % (sizeof(padchar) - 1);
*ptr-- = padchar[rand_num];
}
start = ptr + 1;
/* Check the target directory. */
for (; ptr > template; --ptr) {
if (*ptr == '/') {
struct stat sbuf;
*ptr = '\0';
if (stat(template, &sbuf) != 0)
return (-1);
if (!S_ISDIR(sbuf.st_mode)) {
errno = ENOTDIR;
return (-1);
}
*ptr = '/';
break;
}
}
for (;;) {
if (mkfifo(template, 0600) == 0) {
int fd;
if ((fd = open(template, O_RDWR, 0600)) < 0) {
unlink(template);
return (-1);
} else {
return (fd);
}
} else {
if (errno != EEXIST) {
return (-1);
}
}
/*
* If we have a collision, cycle through the space of
* filenames.
*/
for (ptr = start;;) {
char *pad;
if (*ptr == '\0' || ptr == pathend)
return (-1);
pad = strchr(padchar, *ptr);
if (pad == NULL || *++pad == '\0') {
*ptr++ = padchar[0];
} else {
*ptr++ = *pad;
break;
}
}
}
/*NOTREACHED*/
}
static void
catch_child(int sig __unused)
{
}
/**
*/
void
Proc_Init()
{
/*
* Catch SIGCHLD so that we get kicked out of select() when we
* need to look at a child. This is only known to matter for the
* -j case (perhaps without -P).
*
* XXX this is intentionally misplaced.
*/
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART | SA_NOCLDSTOP;
sa.sa_handler = catch_child;
sigaction(SIGCHLD, &sa, NULL);
}
/**
* Wait for child process to terminate.
*/
static int
ProcWait(ProcStuff *ps)
{
pid_t pid;
int status;
/*
* Wait for the process to exit.
*/
for (;;) {
pid = wait(&status);
if (pid == -1 && errno != EINTR) {
Fatal("error in wait: %d", pid);
/* NOTREACHED */
}
if (pid == ps->child_pid) {
break;
}
if (interrupted) {
break;
}
}
return (status);
}
/**
* JobCatchSignal
* Got a signal. Set global variables and hope that someone will
* handle it.
*/
static void
JobCatchSig(int signo)
{
interrupted = signo;
}
/**
* JobPassSig --
* Pass a signal on to all local jobs if
* USE_PGRP is defined, then die ourselves.
*
* Side Effects:
* We die by the same signal.
*/
static void
JobPassSig(int signo)
{
Job *job;
sigset_t nmask, omask;
struct sigaction act;
sigemptyset(&nmask);
sigaddset(&nmask, signo);
sigprocmask(SIG_SETMASK, &nmask, &omask);
DEBUGF(JOB, ("JobPassSig(%d) called.\n", signo));
TAILQ_FOREACH(job, &jobs, link) {
DEBUGF(JOB, ("JobPassSig passing signal %d to child %jd.\n",
signo, (intmax_t)job->pid));
KILL(job->pid, signo);
}
/*
* Deal with proper cleanup based on the signal received. We only run
* the .INTERRUPT target if the signal was in fact an interrupt.
* The other three termination signals are more of a "get out *now*"
* command.
*/
if (signo == SIGINT) {
JobInterrupt(TRUE, signo);
} else if (signo == SIGHUP || signo == SIGTERM || signo == SIGQUIT) {
JobInterrupt(FALSE, signo);
}
/*
* Leave gracefully if SIGQUIT, rather than core dumping.
*/
if (signo == SIGQUIT) {
signo = SIGINT;
}
/*
* Send ourselves the signal now we've given the message to everyone
* else. Note we block everything else possible while we're getting
* the signal. This ensures that all our jobs get continued when we
* wake up before we take any other signal.
* XXX this comment seems wrong.
*/
act.sa_handler = SIG_DFL;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
sigaction(signo, &act, NULL);
DEBUGF(JOB, ("JobPassSig passing signal to self, mask = %x.\n",
~0 & ~(1 << (signo - 1))));
signal(signo, SIG_DFL);
KILL(getpid(), signo);
signo = SIGCONT;
TAILQ_FOREACH(job, &jobs, link) {
DEBUGF(JOB, ("JobPassSig passing signal %d to child %jd.\n",
signo, (intmax_t)job->pid));
KILL(job->pid, signo);
}
sigprocmask(SIG_SETMASK, &omask, NULL);
sigprocmask(SIG_SETMASK, &omask, NULL);
act.sa_handler = JobPassSig;
sigaction(signo, &act, NULL);
}
/**
* JobPrintCommand --
* Put out another command for the given job. If the command starts
* with an @ or a - we process it specially. In the former case,
* so long as the -s and -n flags weren't given to make, we stick
* a shell-specific echoOff command in the script. In the latter,
* we ignore errors for the entire job, unless the shell has error
* control.
* If the command is just "..." we take all future commands for this
* job to be commands to be executed once the entire graph has been
* made and return non-zero to signal that the end of the commands
* was reached. These commands are later attached to the postCommands
* node and executed by Job_Finish when all things are done.
* This function is called from JobStart via LST_FOREACH.
*
* Results:
* Always 0, unless the command was "..."
*
* Side Effects:
* If the command begins with a '-' and the shell has no error control,
* the JOB_IGNERR flag is set in the job descriptor.
* If the command is "..." and we're not ignoring such things,
* tailCmds is set to the successor node of the cmd.
* numCommands is incremented if the command is actually printed.
*/
static int
JobPrintCommand(char *cmd, Job *job)
{
Boolean noSpecials; /* true if we shouldn't worry about
* inserting special commands into
* the input stream. */
Boolean shutUp = FALSE; /* true if we put a no echo command
* into the command file */
Boolean errOff = FALSE; /* true if we turned error checking
* off before printing the command
* and need to turn it back on */
const char *cmdTemplate;/* Template to use when printing the command */
char *cmdStart; /* Start of expanded command */
LstNode *cmdNode; /* Node for replacing the command */
noSpecials = (noExecute && !(job->node->type & OP_MAKE));
if (strcmp(cmd, "...") == 0) {
job->node->type |= OP_SAVE_CMDS;
if ((job->flags & JOB_IGNDOTS) == 0) {
job->tailCmds =
Lst_Succ(Lst_Member(&job->node->commands, cmd));
return (1);
}
return (0);
}
#define DBPRINTF(fmt, arg) \
DEBUGF(JOB, (fmt, arg)); \
fprintf(job->cmdFILE, fmt, arg); \
fflush(job->cmdFILE);
numCommands += 1;
/*
* For debugging, we replace each command with the result of expanding
* the variables in the command.
*/
cmdNode = Lst_Member(&job->node->commands, cmd);
cmd = Buf_Peel(Var_Subst(cmd, job->node, FALSE));
cmdStart = cmd;
Lst_Replace(cmdNode, cmdStart);
cmdTemplate = "%s\n";
/*
* Check for leading @', -' or +'s to control echoing, error checking,
* and execution on -n.
*/
while (*cmd == '@' || *cmd == '-' || *cmd == '+') {
switch (*cmd) {
case '@':
shutUp = DEBUG(LOUD) ? FALSE : TRUE;
break;
case '-':
errOff = TRUE;
break;
case '+':
if (noSpecials) {
/*
* We're not actually exececuting anything...
* but this one needs to be - use compat mode
* just for it.
*/
Compat_RunCommand(cmd, job->node);
return (0);
}
break;
}
cmd++;
}
while (isspace((unsigned char)*cmd))
cmd++;
if (shutUp) {
if (!(job->flags & JOB_SILENT) && !noSpecials &&
commandShell->hasEchoCtl) {
DBPRINTF("%s\n", commandShell->echoOff);
} else {
shutUp = FALSE;
}
}
if (errOff) {
if (!(job->flags & JOB_IGNERR) && !noSpecials) {
if (commandShell->hasErrCtl) {
/*
* We don't want the error-control commands
* showing up either, so we turn off echoing
* while executing them. We could put another
* field in the shell structure to tell
* JobDoOutput to look for this string too,
* but why make it any more complex than
* it already is?
*/
if (!(job->flags & JOB_SILENT) && !shutUp &&
commandShell->hasEchoCtl) {
DBPRINTF("%s\n", commandShell->echoOff);
DBPRINTF("%s\n", commandShell->ignErr);
DBPRINTF("%s\n", commandShell->echoOn);
} else {
DBPRINTF("%s\n", commandShell->ignErr);
}
} else if (commandShell->ignErr &&
*commandShell->ignErr != '\0') {
/*
* The shell has no error control, so we need to
* be weird to get it to ignore any errors from
* the command. If echoing is turned on, we turn
* it off and use the errCheck template to echo
* the command. Leave echoing off so the user
* doesn't see the weirdness we go through to
* ignore errors. Set cmdTemplate to use the
* weirdness instead of the simple "%s\n"
* template.
*/
if (!(job->flags & JOB_SILENT) && !shutUp &&
commandShell->hasEchoCtl) {
DBPRINTF("%s\n", commandShell->echoOff);
DBPRINTF(commandShell->errCheck, cmd);
shutUp = TRUE;
}
cmdTemplate = commandShell->ignErr;
/*
* The error ignoration (hee hee) is already
* taken care of by the ignErr template, so
* pretend error checking is still on.
*/
errOff = FALSE;
} else {
errOff = FALSE;
}
} else {
errOff = FALSE;
}
}
DBPRINTF(cmdTemplate, cmd);
if (errOff) {
/*
* If echoing is already off, there's no point in issuing the
* echoOff command. Otherwise we issue it and pretend it was on
* for the whole command...
*/
if (!shutUp && !(job->flags & JOB_SILENT) &&
commandShell->hasEchoCtl) {
DBPRINTF("%s\n", commandShell->echoOff);
shutUp = TRUE;
}
DBPRINTF("%s\n", commandShell->errCheck);
}
if (shutUp) {
DBPRINTF("%s\n", commandShell->echoOn);
}
return (0);
}
/**
* JobClose --
* Called to close both input and output pipes when a job is finished.
*
* Side Effects:
* The file descriptors associated with the job are closed.
*/
static void
JobClose(Job *job)
{
if (usePipes) {
#if !defined(USE_KQUEUE)
FD_CLR(job->inPipe, &outputs);
#endif
if (job->outPipe != job->inPipe) {
close(job->outPipe);
}
JobDoOutput(job, TRUE);
close(job->inPipe);
} else {
close(job->outFd);
JobDoOutput(job, TRUE);
}
}
/**
* JobFinish --
* Do final processing for the given job including updating
* parents and starting new jobs as available/necessary. Note
* that we pay no attention to the JOB_IGNERR flag here.
* This is because when we're called because of a noexecute flag
* or something, jstat.w_status is 0 and when called from
* Job_CatchChildren, the status is zeroed if it s/b ignored.
*
* Side Effects:
* Some nodes may be put on the toBeMade queue.
* Final commands for the job are placed on postCommands.
*
* If we got an error and are aborting (aborting == ABORT_ERROR) and
* the job list is now empty, we are done for the day.
* If we recognized an error (errors !=0), we set the aborting flag
* to ABORT_ERROR so no more jobs will be started.
*/
static void
JobFinish(Job *job, int *status)
{
Boolean done;
LstNode *ln;
if (WIFEXITED(*status)) {
int job_status = WEXITSTATUS(*status);
JobClose(job);
/*
* Deal with ignored errors in -B mode. We need to
* print a message telling of the ignored error as
* well as setting status.w_status to 0 so the next
* command gets run. To do this, we set done to be
* TRUE if in -B mode and the job exited non-zero.
*/
if (job_status == 0) {
done = FALSE;
} else {
if (job->flags & JOB_IGNERR) {
done = TRUE;
} else {
/*
* If it exited non-zero and either we're
* doing things our way or we're not ignoring
* errors, the job is finished. Similarly, if
* the shell died because of a signal the job
* is also finished. In these cases, finish
* out the job's output before printing the
* exit status...
*/
done = TRUE;
if (job->cmdFILE != NULL &&
job->cmdFILE != stdout) {
fclose(job->cmdFILE);
}
}
}
} else if (WIFSIGNALED(*status)) {
if (WTERMSIG(*status) == SIGCONT) {
/*
* No need to close things down or anything.
*/
done = FALSE;
} else {
/*
* If it exited non-zero and either we're
* doing things our way or we're not ignoring
* errors, the job is finished. Similarly, if
* the shell died because of a signal the job
* is also finished. In these cases, finish
* out the job's output before printing the
* exit status...
*/
JobClose(job);
if (job->cmdFILE != NULL &&
job->cmdFILE != stdout) {
fclose(job->cmdFILE);
}
done = TRUE;
}
} else {
/*
* No need to close things down or anything.
*/
done = FALSE;
}
if (WIFEXITED(*status)) {
if (done || DEBUG(JOB)) {
FILE *out;
if (compatMake &&
!usePipes &&
(job->flags & JOB_IGNERR)) {
/*
* If output is going to a file and this job
* is ignoring errors, arrange to have the
* exit status sent to the output file as
* well.
*/
out = fdopen(job->outFd, "w");
if (out == NULL)
Punt("Cannot fdopen");
} else {
out = stdout;
}
DEBUGF(JOB, ("Process %jd exited.\n",
(intmax_t)job->pid));
if (WEXITSTATUS(*status) == 0) {
if (DEBUG(JOB)) {
if (usePipes && job->node != lastNode) {
MESSAGE(out, job->node);
lastNode = job->node;
}
fprintf(out,
"*** Completed successfully\n");
}
} else {
if (usePipes && job->node != lastNode) {
MESSAGE(out, job->node);
lastNode = job->node;
}
fprintf(out, "*** Error code %d%s\n",
WEXITSTATUS(*status),
(job->flags & JOB_IGNERR) ?
"(ignored)" : "");
if (job->flags & JOB_IGNERR) {
*status = 0;
}
}
fflush(out);
}
} else if (WIFSIGNALED(*status)) {
if (done || DEBUG(JOB) || (WTERMSIG(*status) == SIGCONT)) {
FILE *out;
if (compatMake &&
!usePipes &&
(job->flags & JOB_IGNERR)) {
/*
* If output is going to a file and this job
* is ignoring errors, arrange to have the
* exit status sent to the output file as
* well.
*/
out = fdopen(job->outFd, "w");
if (out == NULL)
Punt("Cannot fdopen");
} else {
out = stdout;
}
if (WTERMSIG(*status) == SIGCONT) {
/*
* If the beastie has continued, shift the
* Job from the stopped list to the running
* one (or re-stop it if concurrency is
* exceeded) and go and get another child.
*/
if (job->flags & (JOB_RESUME | JOB_RESTART)) {
if (usePipes && job->node != lastNode) {
MESSAGE(out, job->node);
lastNode = job->node;
}
fprintf(out, "*** Continued\n");
}
if (!(job->flags & JOB_CONTINUING)) {
DEBUGF(JOB, ("Warning: process %jd was not "
"continuing.\n", (intmax_t) job->pid));
#ifdef notdef
/*
* We don't really want to restart a
* job from scratch just because it
* continued, especially not without
* killing the continuing process!
* That's why this is ifdef'ed out.
* FD - 9/17/90
*/
JobRestart(job);
#endif
}
job->flags &= ~JOB_CONTINUING;
TAILQ_INSERT_TAIL(&jobs, job, link);
nJobs += 1;
DEBUGF(JOB, ("Process %jd is continuing locally.\n",
(intmax_t) job->pid));
if (nJobs == maxJobs) {
jobFull = TRUE;
DEBUGF(JOB, ("Job queue is full.\n"));
}
fflush(out);
return;
} else {
if (usePipes && job->node != lastNode) {
MESSAGE(out, job->node);
lastNode = job->node;
}
fprintf(out,
"*** Signal %d\n", WTERMSIG(*status));
fflush(out);
}
}
} else {
/* STOPPED */
FILE *out;
if (compatMake && !usePipes && (job->flags & JOB_IGNERR)) {
/*
* If output is going to a file and this job
* is ignoring errors, arrange to have the
* exit status sent to the output file as
* well.
*/
out = fdopen(job->outFd, "w");
if (out == NULL)
Punt("Cannot fdopen");
} else {
out = stdout;
}
DEBUGF(JOB, ("Process %jd stopped.\n", (intmax_t) job->pid));
if (usePipes && job->node != lastNode) {
MESSAGE(out, job->node);
lastNode = job->node;
}
fprintf(out, "*** Stopped -- signal %d\n", WSTOPSIG(*status));
job->flags |= JOB_RESUME;
TAILQ_INSERT_TAIL(&stoppedJobs, job, link);
fflush(out);
return;
}
/*
* Now handle the -B-mode stuff. If the beast still isn't finished,
* try and restart the job on the next command. If JobStart says it's
* ok, it's ok. If there's an error, this puppy is done.
*/
if (compatMake && WIFEXITED(*status) &&
Lst_Succ(job->node->compat_command) != NULL) {
switch (JobStart(job->node, job->flags & JOB_IGNDOTS, job)) {
case JOB_RUNNING:
done = FALSE;
break;
case JOB_ERROR:
done = TRUE;
W_SETEXITSTATUS(status, 1);
break;
case JOB_FINISHED:
/*
* If we got back a JOB_FINISHED code, JobStart has
* already called Make_Update and freed the job
* descriptor. We set done to false here to avoid fake
* cycles and double frees. JobStart needs to do the
* update so we can proceed up the graph when given
* the -n flag..
*/
done = FALSE;
break;
default:
break;
}
} else {
done = TRUE;
}
if (done && aborting != ABORT_ERROR &&
aborting != ABORT_INTERRUPT && *status == 0) {
/*
* As long as we aren't aborting and the job didn't return a
* non-zero status that we shouldn't ignore, we call
* Make_Update to update the parents. In addition, any saved
* commands for the node are placed on the .END target.
*/
for (ln = job->tailCmds; ln != NULL; ln = LST_NEXT(ln)) {
Lst_AtEnd(&postCommands->commands,
Buf_Peel(
Var_Subst(Lst_Datum(ln), job->node, FALSE)));
}
job->node->made = MADE;
Make_Update(job->node);
free(job);
} else if (*status != 0) {
errors += 1;
free(job);
}
JobRestartJobs();
/*
* Set aborting if any error.
*/
if (errors && !keepgoing && aborting != ABORT_INTERRUPT) {
/*
* If we found any errors in this batch of children and the -k
* flag wasn't given, we set the aborting flag so no more jobs
* get started.
*/
aborting = ABORT_ERROR;
}
if (aborting == ABORT_ERROR && Job_Empty()) {
/*
* If we are aborting and the job table is now empty, we finish.
*/
Finish(errors);
}
}
/**
* Job_Touch
* Touch the given target. Called by JobStart when the -t flag was
* given. Prints messages unless told to be silent.
*
* Side Effects:
* The data modification of the file is changed. In addition, if the
* file did not exist, it is created.
*/
void
Job_Touch(GNode *gn, Boolean silent)
{
int streamID; /* ID of stream opened to do the touch */
struct utimbuf times; /* Times for utime() call */
if (gn->type & (OP_JOIN | OP_USE | OP_EXEC | OP_OPTIONAL)) {
/*
* .JOIN, .USE, .ZEROTIME and .OPTIONAL targets are "virtual"
* targets and, as such, shouldn't really be created.
*/
return;
}
if (!silent) {
fprintf(stdout, "touch %s\n", gn->name);
fflush(stdout);
}
if (noExecute) {
return;
}
if (gn->type & OP_ARCHV) {
Arch_Touch(gn);
} else if (gn->type & OP_LIB) {
Arch_TouchLib(gn);
} else {
char *file = gn->path ? gn->path : gn->name;
times.actime = times.modtime = now;
if (utime(file, &times) < 0) {
streamID = open(file, O_RDWR | O_CREAT, 0666);
if (streamID >= 0) {
char c;
/*
* Read and write a byte to the file to change
* the modification time, then close the file.
*/
if (read(streamID, &c, 1) == 1) {
lseek(streamID, (off_t)0, SEEK_SET);
write(streamID, &c, 1);
}
close(streamID);
} else {
fprintf(stdout, "*** couldn't touch %s: %s",
file, strerror(errno));
fflush(stdout);
}
}
}
}
/**
* Job_CheckCommands
* Make sure the given node has all the commands it needs.
*
* Results:
* TRUE if the commands list is/was ok.
*
* Side Effects:
* The node will have commands from the .DEFAULT rule added to it
* if it needs them.
*/
Boolean
Job_CheckCommands(GNode *gn, void (*abortProc)(const char *, ...))
{
if (OP_NOP(gn->type) && Lst_IsEmpty(&gn->commands) &&
(gn->type & OP_LIB) == 0) {
/*
* No commands. Look for .DEFAULT rule from which we might infer
* commands.
*/
if (DEFAULT != NULL && !Lst_IsEmpty(&DEFAULT->commands)) {
/*
* Make only looks for a .DEFAULT if the node was
* never the target of an operator, so that's what we
* do too. If a .DEFAULT was given, we substitute its
* commands for gn's commands and set the IMPSRC
* variable to be the target's name The DEFAULT node
* acts like a transformation rule, in that gn also
* inherits any attributes or sources attached to
* .DEFAULT itself.
*/
Make_HandleUse(DEFAULT, gn);
Var_Set(IMPSRC, Var_Value(TARGET, gn), gn);
} else if (Dir_MTime(gn) == 0) {
/*
* The node wasn't the target of an operator we have
* no .DEFAULT rule to go on and the target doesn't
* already exist. There's nothing more we can do for
* this branch. If the -k flag wasn't given, we stop
* in our tracks, otherwise we just don't update
* this node's parents so they never get examined.
*/
static const char msg[] =
"make: don't know how to make";
if (gn->type & OP_OPTIONAL) {
fprintf(stdout, "%s %s(ignored)\n",
msg, gn->name);
fflush(stdout);
} else if (keepgoing) {
fprintf(stdout, "%s %s(continuing)\n",
msg, gn->name);
fflush(stdout);
return (FALSE);
} else {
#if OLD_JOKE
if (strcmp(gn->name,"love") == 0)
(*abortProc)("Not war.");
else
#endif
(*abortProc)("%s %s. Stop",
msg, gn->name);
return (FALSE);
}
}
}
return (TRUE);
}
/**
* JobExec
* Execute the shell for the given job. Called from JobStart and
* JobRestart.
*
* Side Effects:
* A shell is executed, outputs is altered and the Job structure added
* to the job table.
*/
static void
JobExec(Job *job, char **argv)
{
ProcStuff ps;
if (DEBUG(JOB)) {
int i;
DEBUGF(JOB, ("Running %s\n", job->node->name));
DEBUGF(JOB, ("\tCommand: "));
for (i = 0; argv[i] != NULL; i++) {
DEBUGF(JOB, ("%s ", argv[i]));
}
DEBUGF(JOB, ("\n"));
}
/*
* Some jobs produce no output and it's disconcerting to have
* no feedback of their running (since they produce no output, the
* banner with their name in it never appears). This is an attempt to
* provide that feedback, even if nothing follows it.
*/
if (lastNode != job->node && (job->flags & JOB_FIRST) &&
!(job->flags & JOB_SILENT)) {
MESSAGE(stdout, job->node);
lastNode = job->node;
}
ps.in = FILENO(job->cmdFILE);
if (usePipes) {
/*
* Set up the child's output to be routed through the
* pipe we've created for it.
*/
ps.out = job->outPipe;
} else {
/*
* We're capturing output in a file, so we duplicate
* the descriptor to the temporary file into the
* standard output.
*/
ps.out = job->outFd;
}
ps.err = STDERR_FILENO;
ps.merge_errors = 1;
ps.pgroup = 1;
ps.searchpath = 0;
ps.argv = argv;
ps.argv_free = 0;
/*
* Fork. Warning since we are doing vfork() instead of fork(),
* do not allocate memory in the child process!
*/
if ((ps.child_pid = vfork()) == -1) {
Punt("Cannot fork");
} else if (ps.child_pid == 0) {
/*
* Child
*/
if (fifoFd >= 0)
close(fifoFd);
Proc_Exec(&ps);
/* NOTREACHED */
}
/*
* Parent
*/
job->pid = ps.child_pid;
if (usePipes && (job->flags & JOB_FIRST)) {
/*
* The first time a job is run for a node, we set the
* current position in the buffer to the beginning and
* mark another stream to watch in the outputs mask.
*/
#ifdef USE_KQUEUE
struct kevent kev[2];
#endif
job->curPos = 0;
#if defined(USE_KQUEUE)
EV_SET(&kev[0], job->inPipe, EVFILT_READ, EV_ADD, 0, 0, job);
EV_SET(&kev[1], job->pid, EVFILT_PROC,
EV_ADD | EV_ONESHOT, NOTE_EXIT, 0, NULL);
if (kevent(kqfd, kev, 2, NULL, 0, NULL) != 0) {
/*
* kevent() will fail if the job is already
* finished
*/
if (errno != EINTR && errno != EBADF && errno != ESRCH)
Punt("kevent: %s", strerror(errno));
}
#else
FD_SET(job->inPipe, &outputs);
#endif /* USE_KQUEUE */
}
if (job->cmdFILE != NULL && job->cmdFILE != stdout) {
fclose(job->cmdFILE);
job->cmdFILE = NULL;
}
/*
* Now the job is actually running, add it to the table.
*/
nJobs += 1;
TAILQ_INSERT_TAIL(&jobs, job, link);
if (nJobs == maxJobs) {
jobFull = TRUE;
}
}
/**
* JobMakeArgv
* Create the argv needed to execute the shell for a given job.
*/
static void
JobMakeArgv(Job *job, char **argv)
{
int argc;
static char args[10]; /* For merged arguments */
argv[0] = commandShell->name;
argc = 1;
if ((commandShell->exit && *commandShell->exit != '-') ||
(commandShell->echo && *commandShell->echo != '-')) {
/*
* At least one of the flags doesn't have a minus before it, so
* merge them together. Have to do this because the *(&(@*#*&#$#
* Bourne shell thinks its second argument is a file to source.
* Grrrr. Note the ten-character limitation on the combined
* arguments.
*/
sprintf(args, "-%s%s", (job->flags & JOB_IGNERR) ? "" :
commandShell->exit ? commandShell->exit : "",
(job->flags & JOB_SILENT) ? "" :
commandShell->echo ? commandShell->echo : "");
if (args[1]) {
argv[argc] = args;
argc++;
}
} else {
if (!(job->flags & JOB_IGNERR) && commandShell->exit) {
argv[argc] = commandShell->exit;
argc++;
}
if (!(job->flags & JOB_SILENT) && commandShell->echo) {
argv[argc] = commandShell->echo;
argc++;
}
}
argv[argc] = NULL;
}
/**
* JobRestart
* Restart a job that stopped for some reason. The job must be neither
* on the jobs nor on the stoppedJobs list.
*
* Side Effects:
* jobFull will be set if the job couldn't be run.
*/
static void
JobRestart(Job *job)
{
if (job->flags & JOB_RESTART) {
/*
* Set up the control arguments to the shell. This is based on
* the flags set earlier for this job. If the JOB_IGNERR flag
* is clear, the 'exit' flag of the commandShell is used to
* cause it to exit upon receiving an error. If the JOB_SILENT
* flag is clear, the 'echo' flag of the commandShell is used
* to get it to start echoing as soon as it starts
* processing commands.
*/
char *argv[4];
JobMakeArgv(job, argv);
DEBUGF(JOB, ("Restarting %s...", job->node->name));
if (nJobs >= maxJobs && !(job->flags & JOB_SPECIAL)) {
/*
* Not allowed to run -- put it back on the hold
* queue and mark the table full
*/
DEBUGF(JOB, ("holding\n"));
TAILQ_INSERT_HEAD(&stoppedJobs, job, link);
jobFull = TRUE;
DEBUGF(JOB, ("Job queue is full.\n"));
return;
} else {
/*
* Job may be run locally.
*/
DEBUGF(JOB, ("running locally\n"));
}
JobExec(job, argv);
} else {
/*
* The job has stopped and needs to be restarted.
* Why it stopped, we don't know...
*/
DEBUGF(JOB, ("Resuming %s...", job->node->name));
if ((nJobs < maxJobs || ((job->flags & JOB_SPECIAL) &&
maxJobs == 0)) && nJobs != maxJobs) {
/*
* If we haven't reached the concurrency limit already
* (or the job must be run and maxJobs is 0), it's ok
* to resume it.
*/
Boolean error;
int status;
error = (KILL(job->pid, SIGCONT) != 0);
if (!error) {
/*
* Make sure the user knows we've continued
* the beast and actually put the thing in the
* job table.
*/
job->flags |= JOB_CONTINUING;
status = 0;
W_SETTERMSIG(&status, SIGCONT);
JobFinish(job, &status);
job->flags &= ~(JOB_RESUME|JOB_CONTINUING);
DEBUGF(JOB, ("done\n"));
} else {
Error("couldn't resume %s: %s",
job->node->name, strerror(errno));
status = 0;
W_SETEXITSTATUS(&status, 1);
JobFinish(job, &status);
}
} else {
/*
* Job cannot be restarted. Mark the table as full and
* place the job back on the list of stopped jobs.
*/
DEBUGF(JOB, ("table full\n"));
TAILQ_INSERT_HEAD(&stoppedJobs, job, link);
jobFull = TRUE;
DEBUGF(JOB, ("Job queue is full.\n"));
}
}
}
/**
* JobStart
* Start a target-creation process going for the target described
* by the graph node gn.
*
* Results:
* JOB_ERROR if there was an error in the commands, JOB_FINISHED
* if there isn't actually anything left to do for the job and
* JOB_RUNNING if the job has been started.
*
* Side Effects:
* A new Job node is created and added to the list of running
* jobs. PMake is forked and a child shell created.
*/
static int
JobStart(GNode *gn, int flags, Job *previous)
{
Job *job; /* new job descriptor */
char *argv[4]; /* Argument vector to shell */
Boolean cmdsOK; /* true if the nodes commands were all right */
Boolean noExec; /* Set true if we decide not to run the job */
int tfd; /* File descriptor for temp file */
LstNode *ln;
char tfile[sizeof(TMPPAT)];
if (interrupted) {
JobPassSig(interrupted);
return (JOB_ERROR);
}
if (previous != NULL) {
previous->flags &= ~(JOB_FIRST | JOB_IGNERR | JOB_SILENT);
job = previous;
} else {
job = emalloc(sizeof(Job));
flags |= JOB_FIRST;
}
job->node = gn;
job->tailCmds = NULL;
/*
* Set the initial value of the flags for this job based on the global
* ones and the node's attributes... Any flags supplied by the caller
* are also added to the field.
*/
job->flags = 0;
if (Targ_Ignore(gn)) {
job->flags |= JOB_IGNERR;
}
if (Targ_Silent(gn)) {
job->flags |= JOB_SILENT;
}
job->flags |= flags;
/*
* Check the commands now so any attributes from .DEFAULT have a chance
* to migrate to the node.
*/
if (!compatMake && (job->flags & JOB_FIRST)) {
cmdsOK = Job_CheckCommands(gn, Error);
} else {
cmdsOK = TRUE;
}
/*
* If the -n flag wasn't given, we open up OUR (not the child's)
* temporary file to stuff commands in it. The thing is rd/wr so we
* don't need to reopen it to feed it to the shell. If the -n flag
* *was* given, we just set the file to be stdout. Cute, huh?
*/
if ((gn->type & OP_MAKE) || (!noExecute && !touchFlag)) {
/*
* We're serious here, but if the commands were bogus, we're
* also dead...
*/
if (!cmdsOK) {
DieHorribly();
}
strcpy(tfile, TMPPAT);
if ((tfd = mkstemp(tfile)) == -1)
Punt("Cannot create temp file: %s", strerror(errno));
job->cmdFILE = fdopen(tfd, "w+");
eunlink(tfile);
if (job->cmdFILE == NULL) {
close(tfd);
Punt("Could not open %s", tfile);
}
fcntl(FILENO(job->cmdFILE), F_SETFD, 1);
/*
* Send the commands to the command file, flush all its
* buffers then rewind and remove the thing.
*/
noExec = FALSE;
/*
* Used to be backwards; replace when start doing multiple
* commands per shell.
*/
if (compatMake) {
/*
* Be compatible: If this is the first time for this
* node, verify its commands are ok and open the
* commands list for sequential access by later
* invocations of JobStart. Once that is done, we take
* the next command off the list and print it to the
* command file. If the command was an ellipsis, note
* that there's nothing more to execute.
*/
if (job->flags & JOB_FIRST)
gn->compat_command = Lst_First(&gn->commands);
else
gn->compat_command =
Lst_Succ(gn->compat_command);
if (gn->compat_command == NULL ||
JobPrintCommand(Lst_Datum(gn->compat_command), job))
noExec = TRUE;
if (noExec && !(job->flags & JOB_FIRST)) {
/*
* If we're not going to execute anything, the
* job is done and we need to close down the
* various file descriptors we've opened for
* output, then call JobDoOutput to catch the
* final characters or send the file to the
* screen... Note that the i/o streams are only
* open if this isn't the first job. Note also
* that this could not be done in
* Job_CatchChildren b/c it wasn't clear if
* there were more commands to execute or not...
*/
JobClose(job);
}
} else {
/*
* We can do all the commands at once. hooray for sanity
*/
numCommands = 0;
LST_FOREACH(ln, &gn->commands) {
if (JobPrintCommand(Lst_Datum(ln), job))
break;
}
/*
* If we didn't print out any commands to the shell
* script, there's not much point in executing the
* shell, is there?
*/
if (numCommands == 0) {
noExec = TRUE;
}
}
} else if (noExecute) {
/*
* Not executing anything -- just print all the commands to
* stdout in one fell swoop. This will still set up
* job->tailCmds correctly.
*/
if (lastNode != gn) {
MESSAGE(stdout, gn);
lastNode = gn;
}
job->cmdFILE = stdout;
/*
* Only print the commands if they're ok, but don't die if
* they're not -- just let the user know they're bad and keep
* going. It doesn't do any harm in this case and may do
* some good.
*/
if (cmdsOK) {
LST_FOREACH(ln, &gn->commands) {
if (JobPrintCommand(Lst_Datum(ln), job))
break;
}
}
/*
* Don't execute the shell, thank you.
*/
noExec = TRUE;
} else {
/*
* Just touch the target and note that no shell should be
* executed. Set cmdFILE to stdout to make life easier. Check
* the commands, too, but don't die if they're no good -- it
* does no harm to keep working up the graph.
*/
job->cmdFILE = stdout;
Job_Touch(gn, job->flags & JOB_SILENT);
noExec = TRUE;
}
/*
* If we're not supposed to execute a shell, don't.
*/
if (noExec) {
/*
* Unlink and close the command file if we opened one
*/
if (job->cmdFILE != stdout) {
if (job->cmdFILE != NULL)
fclose(job->cmdFILE);
} else {
fflush(stdout);
}
/*
* We only want to work our way up the graph if we aren't here
* because the commands for the job were no good.
*/
if (cmdsOK) {
if (aborting == 0) {
for (ln = job->tailCmds; ln != NULL;
ln = LST_NEXT(ln)) {
Lst_AtEnd(&postCommands->commands,
Buf_Peel(Var_Subst(Lst_Datum(ln),
job->node, FALSE)));
}
job->node->made = MADE;
Make_Update(job->node);
}
free(job);
return(JOB_FINISHED);
} else {
free(job);
return(JOB_ERROR);
}
} else {
fflush(job->cmdFILE);
}
/*
* Set up the control arguments to the shell. This is based on the flags
* set earlier for this job.
*/
JobMakeArgv(job, argv);
/*
* If we're using pipes to catch output, create the pipe by which we'll
* get the shell's output. If we're using files, print out that we're
* starting a job and then set up its temporary-file name.
*/
if (!compatMake || (job->flags & JOB_FIRST)) {
if (usePipes) {
int fd[2];
if (pipe(fd) == -1)
Punt("Cannot create pipe: %s", strerror(errno));
job->inPipe = fd[0];
job->outPipe = fd[1];
fcntl(job->inPipe, F_SETFD, 1);
fcntl(job->outPipe, F_SETFD, 1);
} else {
fprintf(stdout, "Remaking `%s'\n", gn->name);
fflush(stdout);
strcpy(job->outFile, TMPPAT);
if ((job->outFd = mkstemp(job->outFile)) == -1)
Punt("cannot create temp file: %s",
strerror(errno));
fcntl(job->outFd, F_SETFD, 1);
}
}
if (nJobs >= maxJobs && !(job->flags & JOB_SPECIAL) && maxJobs != 0) {
/*
* We've hit the limit of concurrency, so put the job on hold
* until some other job finishes. Note that the special jobs
* (.BEGIN, .INTERRUPT and .END) may be run even when the
* limit has been reached (e.g. when maxJobs == 0).
*/
jobFull = TRUE;
DEBUGF(JOB, ("Can only run job locally.\n"));
job->flags |= JOB_RESTART;
TAILQ_INSERT_TAIL(&stoppedJobs, job, link);
} else {
if (nJobs >= maxJobs) {
/*
* If we're running this job as a special case
* (see above), at least say the table is full.
*/
jobFull = TRUE;
DEBUGF(JOB, ("Local job queue is full.\n"));
}
JobExec(job, argv);
}
return (JOB_RUNNING);
}
static char *
JobOutput(Job *job, char *cp, char *endp, int msg)
{
char *ecp;
if (commandShell->noPrint) {
ecp = strstr(cp, commandShell->noPrint);
while (ecp != NULL) {
if (cp != ecp) {
*ecp = '\0';
if (msg && job->node != lastNode) {
MESSAGE(stdout, job->node);
lastNode = job->node;
}
/*
* The only way there wouldn't be a newline
* after this line is if it were the last in
* the buffer. However, since the non-printable
* comes after it, there must be a newline, so
* we don't print one.
*/
fprintf(stdout, "%s", cp);
fflush(stdout);
}
cp = ecp + strlen(commandShell->noPrint);
if (cp != endp) {
/*
* Still more to print, look again after
* skipping the whitespace following the
* non-printable command....
*/
cp++;
while (*cp == ' ' || *cp == '\t' ||
*cp == '\n') {
cp++;
}
ecp = strstr(cp, commandShell->noPrint);
} else {
return (cp);
}
}
}
return (cp);
}
/**
* JobDoOutput
* This function is called at different times depending on
* whether the user has specified that output is to be collected
* via pipes or temporary files. In the former case, we are called
* whenever there is something to read on the pipe. We collect more
* output from the given job and store it in the job's outBuf. If
* this makes up a line, we print it tagged by the job's identifier,
* as necessary.
* If output has been collected in a temporary file, we open the
* file and read it line by line, transfering it to our own
* output channel until the file is empty. At which point we
* remove the temporary file.
* In both cases, however, we keep our figurative eye out for the
* 'noPrint' line for the shell from which the output came. If
* we recognize a line, we don't print it. If the command is not
* alone on the line (the character after it is not \0 or \n), we
* do print whatever follows it.
*
* Side Effects:
* curPos may be shifted as may the contents of outBuf.
*/
static void
JobDoOutput(Job *job, Boolean finish)
{
Boolean gotNL = FALSE; /* true if got a newline */
Boolean fbuf; /* true if our buffer filled up */
int nr; /* number of bytes read */
int i; /* auxiliary index into outBuf */
int max; /* limit for i (end of current data) */
int nRead; /* (Temporary) number of bytes read */
FILE *oFILE; /* Stream pointer to shell's output file */
char inLine[132];
if (usePipes) {
/*
* Read as many bytes as will fit in the buffer.
*/
end_loop:
gotNL = FALSE;
fbuf = FALSE;
nRead = read(job->inPipe, &job->outBuf[job->curPos],
JOB_BUFSIZE - job->curPos);
/*
* Check for interrupt here too, because the above read may
* block when the child process is stopped. In this case the
* interrupt will unblock it (we don't use SA_RESTART).
*/
if (interrupted)
JobPassSig(interrupted);
if (nRead < 0) {
DEBUGF(JOB, ("JobDoOutput(piperead)"));
nr = 0;
} else {
nr = nRead;
}
/*
* If we hit the end-of-file (the job is dead), we must flush
* its remaining output, so pretend we read a newline if
* there's any output remaining in the buffer.
* Also clear the 'finish' flag so we stop looping.
*/
if (nr == 0 && job->curPos != 0) {
job->outBuf[job->curPos] = '\n';
nr = 1;
finish = FALSE;
} else if (nr == 0) {
finish = FALSE;
}
/*
* Look for the last newline in the bytes we just got. If there
* is one, break out of the loop with 'i' as its index and
* gotNL set TRUE.
*/
max = job->curPos + nr;
for (i = job->curPos + nr - 1; i >= job->curPos; i--) {
if (job->outBuf[i] == '\n') {
gotNL = TRUE;
break;
} else if (job->outBuf[i] == '\0') {
/*
* Why?
*/
job->outBuf[i] = ' ';
}
}
if (!gotNL) {
job->curPos += nr;
if (job->curPos == JOB_BUFSIZE) {
/*
* If we've run out of buffer space, we have
* no choice but to print the stuff. sigh.
*/
fbuf = TRUE;
i = job->curPos;
}
}
if (gotNL || fbuf) {
/*
* Need to send the output to the screen. Null terminate
* it first, overwriting the newline character if there
* was one. So long as the line isn't one we should
* filter (according to the shell description), we print
* the line, preceded by a target banner if this target
* isn't the same as the one for which we last printed
* something. The rest of the data in the buffer are
* then shifted down to the start of the buffer and
* curPos is set accordingly.
*/
job->outBuf[i] = '\0';
if (i >= job->curPos) {
char *cp;
cp = JobOutput(job, job->outBuf,
&job->outBuf[i], FALSE);
/*
* There's still more in that buffer. This time,
* though, we know there's no newline at the
* end, so we add one of our own free will.
*/
if (*cp != '\0') {
if (job->node != lastNode) {
MESSAGE(stdout, job->node);
lastNode = job->node;
}
fprintf(stdout, "%s%s", cp,
gotNL ? "\n" : "");
fflush(stdout);
}
}
if (i < max - 1) {
/* shift the remaining characters down */
memcpy(job->outBuf, &job->outBuf[i + 1],
max - (i + 1));
job->curPos = max - (i + 1);
} else {
/*
* We have written everything out, so we just
* start over from the start of the buffer.
* No copying. No nothing.
*/
job->curPos = 0;
}
}
if (finish) {
/*
* If the finish flag is true, we must loop until we hit
* end-of-file on the pipe. This is guaranteed to happen
* eventually since the other end of the pipe is now
* closed (we closed it explicitly and the child has
* exited). When we do get an EOF, finish will be set
* FALSE and we'll fall through and out.
*/
goto end_loop;
}
} else {
/*
* We've been called to retrieve the output of the job from the
* temporary file where it's been squirreled away. This consists
* of opening the file, reading the output line by line, being
* sure not to print the noPrint line for the shell we used,
* then close and remove the temporary file. Very simple.
*
* Change to read in blocks and do FindSubString type things
* as for pipes? That would allow for "@echo -n..."
*/
oFILE = fopen(job->outFile, "r");
if (oFILE != NULL) {
fprintf(stdout, "Results of making %s:\n",
job->node->name);
fflush(stdout);
while (fgets(inLine, sizeof(inLine), oFILE) != NULL) {
char *cp, *endp, *oendp;
cp = inLine;
oendp = endp = inLine + strlen(inLine);
if (endp[-1] == '\n') {
*--endp = '\0';
}
cp = JobOutput(job, inLine, endp, FALSE);
/*
* There's still more in that buffer. This time,
* though, we know there's no newline at the
* end, so we add one of our own free will.
*/
fprintf(stdout, "%s", cp);
fflush(stdout);
if (endp != oendp) {
fprintf(stdout, "\n");
fflush(stdout);
}
}
fclose(oFILE);
eunlink(job->outFile);
}
}
}
/**
* Job_CatchChildren
* Handle the exit of a child. Called from Make_Make.
*
* Side Effects:
* The job descriptor is removed from the list of children.
*
* Notes:
* We do waits, blocking or not, according to the wisdom of our
* caller, until there are no more children to report. For each
* job, call JobFinish to finish things off. This will take care of
* putting jobs on the stoppedJobs queue.
*/
void
Job_CatchChildren(Boolean block)
{
pid_t pid; /* pid of dead child */
Job *job; /* job descriptor for dead child */
int status; /* Exit/termination status */
/*
* Don't even bother if we know there's no one around.
*/
if (nJobs == 0) {
return;
}
for (;;) {
pid = waitpid((pid_t)-1, &status,
(block ? 0 : WNOHANG) | WUNTRACED);
if (pid <= 0)
break;
DEBUGF(JOB, ("Process %jd exited or stopped.\n",
(intmax_t)pid));
TAILQ_FOREACH(job, &jobs, link) {
if (job->pid == pid)
break;
}
if (job == NULL) {
if (WIFSIGNALED(status) &&
(WTERMSIG(status) == SIGCONT)) {
TAILQ_FOREACH(job, &jobs, link) {
if (job->pid == pid)
break;
}
if (job == NULL) {
Error("Resumed child (%jd) "
"not in table", (intmax_t)pid);
continue;
}
TAILQ_REMOVE(&stoppedJobs, job, link);
} else {
Error("Child (%jd) not in table?",
(intmax_t)pid);
continue;
}
} else {
TAILQ_REMOVE(&jobs, job, link);
nJobs -= 1;
if (fifoFd >= 0 && maxJobs > 1) {
write(fifoFd, "+", 1);
maxJobs--;
if (nJobs >= maxJobs)
jobFull = TRUE;
else
jobFull = FALSE;
} else {
DEBUGF(JOB, ("Job queue is no longer full.\n"));
jobFull = FALSE;
}
}
JobFinish(job, &status);
}
if (interrupted)
JobPassSig(interrupted);
}
/**
* Job_CatchOutput
* Catch the output from our children, if we're using
* pipes do so. Otherwise just block time until we get a
* signal(most likely a SIGCHLD) since there's no point in
* just spinning when there's nothing to do and the reaping
* of a child can wait for a while.
*
* Side Effects:
* Output is read from pipes if we're piping.
* -----------------------------------------------------------------------
*/
void
#ifdef USE_KQUEUE
Job_CatchOutput(int flag __unused)
#else
Job_CatchOutput(int flag)
#endif
{
int nfds;
#ifdef USE_KQUEUE
#define KEV_SIZE 4
struct kevent kev[KEV_SIZE];
int i;
#else
struct timeval timeout;
fd_set readfds;
Job *job;
#endif
fflush(stdout);
if (usePipes) {
#ifdef USE_KQUEUE
if ((nfds = kevent(kqfd, NULL, 0, kev, KEV_SIZE, NULL)) == -1) {
if (errno != EINTR)
Punt("kevent: %s", strerror(errno));
if (interrupted)
JobPassSig(interrupted);
} else {
for (i = 0; i < nfds; i++) {
if (kev[i].flags & EV_ERROR) {
warnc(kev[i].data, "kevent");
continue;
}
switch (kev[i].filter) {
case EVFILT_READ:
JobDoOutput(kev[i].udata, FALSE);
break;
case EVFILT_PROC:
/*
* Just wake up and let
* Job_CatchChildren() collect the
* terminated job.
*/
break;
}
}
}
#else
readfds = outputs;
timeout.tv_sec = SEL_SEC;
timeout.tv_usec = SEL_USEC;
if (flag && jobFull && fifoFd >= 0)
FD_SET(fifoFd, &readfds);
nfds = select(FD_SETSIZE, &readfds, (fd_set *)NULL,
(fd_set *)NULL, &timeout);
if (nfds <= 0) {
if (interrupted)
JobPassSig(interrupted);
return;
}
if (fifoFd >= 0 && FD_ISSET(fifoFd, &readfds)) {
if (--nfds <= 0)
return;
}
job = TAILQ_FIRST(&jobs);
while (nfds != 0 && job != NULL) {
if (FD_ISSET(job->inPipe, &readfds)) {
JobDoOutput(job, FALSE);
nfds--;
}
job = TAILQ_NEXT(job, link);
}
#endif /* !USE_KQUEUE */
}
}
/**
* Job_Make
* Start the creation of a target. Basically a front-end for
* JobStart used by the Make module.
*
* Side Effects:
* Another job is started.
*/
void
Job_Make(GNode *gn)
{
JobStart(gn, 0, NULL);
}
/**
* Job_Init
* Initialize the process module, given a maximum number of jobs.
*
* Side Effects:
* lists and counters are initialized
*/
void
Job_Init(int maxproc)
{
GNode *begin; /* node for commands to do at the very start */
const char *env;
struct sigaction sa;
fifoFd = -1;
env = getenv("MAKE_JOBS_FIFO");
if (env == NULL && maxproc > 1) {
/*
* We did not find the environment variable so we are the
* leader. Create the fifo, open it, write one char per
* allowed job into the pipe.
*/
fifoFd = mkfifotemp(fifoName);
if (fifoFd < 0) {
env = NULL;
} else {
fifoMaster = 1;
fcntl(fifoFd, F_SETFL, O_NONBLOCK);
env = fifoName;
setenv("MAKE_JOBS_FIFO", env, 1);
while (maxproc-- > 0) {
write(fifoFd, "+", 1);
}
/* The master make does not get a magic token */
jobFull = TRUE;
maxJobs = 0;
}
} else if (env != NULL) {
/*
* We had the environment variable so we are a slave.
* Open fifo and give ourselves a magic token which represents
* the token our parent make has grabbed to start his make
* process. Otherwise the sub-makes would gobble up tokens and
* the proper number of tokens to specify to -j would depend
* on the depth of the tree and the order of execution.
*/
fifoFd = open(env, O_RDWR, 0);
if (fifoFd >= 0) {
fcntl(fifoFd, F_SETFL, O_NONBLOCK);
maxJobs = 1;
jobFull = FALSE;
}
}
if (fifoFd < 0) {
maxJobs = maxproc;
jobFull = FALSE;
} else {
}
nJobs = 0;
aborting = 0;
errors = 0;
lastNode = NULL;
if ((maxJobs == 1 && fifoFd < 0) || beVerbose == 0) {
/*
* If only one job can run at a time, there's no need for a
* banner, no is there?
*/
targFmt = "";
} else {
targFmt = TARG_FMT;
}
/*
* Catch the four signals that POSIX specifies if they aren't ignored.
* JobCatchSignal will just set global variables and hope someone
* else is going to handle the interrupt.
*/
sa.sa_handler = JobCatchSig;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (signal(SIGINT, SIG_IGN) != SIG_IGN) {
sigaction(SIGINT, &sa, NULL);
}
if (signal(SIGHUP, SIG_IGN) != SIG_IGN) {
sigaction(SIGHUP, &sa, NULL);
}
if (signal(SIGQUIT, SIG_IGN) != SIG_IGN) {
sigaction(SIGQUIT, &sa, NULL);
}
if (signal(SIGTERM, SIG_IGN) != SIG_IGN) {
sigaction(SIGTERM, &sa, NULL);
}
/*
* There are additional signals that need to be caught and passed if
* either the export system wants to be told directly of signals or if
* we're giving each job its own process group (since then it won't get
* signals from the terminal driver as we own the terminal)
*/
#if defined(USE_PGRP)
if (signal(SIGTSTP, SIG_IGN) != SIG_IGN) {
sigaction(SIGTSTP, &sa, NULL);
}
if (signal(SIGTTOU, SIG_IGN) != SIG_IGN) {
sigaction(SIGTTOU, &sa, NULL);
}
if (signal(SIGTTIN, SIG_IGN) != SIG_IGN) {
sigaction(SIGTTIN, &sa, NULL);
}
if (signal(SIGWINCH, SIG_IGN) != SIG_IGN) {
sigaction(SIGWINCH, &sa, NULL);
}
#endif
#ifdef USE_KQUEUE
if ((kqfd = kqueue()) == -1) {
Punt("kqueue: %s", strerror(errno));
}
#endif
begin = Targ_FindNode(".BEGIN", TARG_NOCREATE);
if (begin != NULL) {
JobStart(begin, JOB_SPECIAL, (Job *)NULL);
while (nJobs) {
Job_CatchOutput(0);
Job_CatchChildren(!usePipes);
}
}
postCommands = Targ_FindNode(".END", TARG_CREATE);
}
/**
* Job_Full
* See if the job table is full. It is considered full if it is OR
* if we are in the process of aborting OR if we have
* reached/exceeded our local quota. This prevents any more jobs
* from starting up.
*
* Results:
* TRUE if the job table is full, FALSE otherwise
*/
Boolean
Job_Full(void)
{
char c;
int i;
if (aborting)
return (aborting);
if (fifoFd >= 0 && jobFull) {
i = read(fifoFd, &c, 1);
if (i > 0) {
maxJobs++;
jobFull = FALSE;
}
}
return (jobFull);
}
/**
* Job_Empty
* See if the job table is empty. Because the local concurrency may
* be set to 0, it is possible for the job table to become empty,
* while the list of stoppedJobs remains non-empty. In such a case,
* we want to restart as many jobs as we can.
*
* Results:
* TRUE if it is. FALSE if it ain't.
*/
Boolean
Job_Empty(void)
{
if (nJobs == 0) {
if (!TAILQ_EMPTY(&stoppedJobs) && !aborting) {
/*
* The job table is obviously not full if it has no
* jobs in it...Try and restart the stopped jobs.
*/
jobFull = FALSE;
JobRestartJobs();
return (FALSE);
} else {
return (TRUE);
}
} else {
return (FALSE);
}
}
/**
* JobInterrupt
* Handle the receipt of an interrupt.
*
* Side Effects:
* All children are killed. Another job will be started if the
* .INTERRUPT target was given.
*/
static void
JobInterrupt(int runINTERRUPT, int signo)
{
Job *job; /* job descriptor in that element */
GNode *interrupt; /* the node describing the .INTERRUPT target */
aborting = ABORT_INTERRUPT;
TAILQ_FOREACH(job, &jobs, link) {
if (!Targ_Precious(job->node)) {
char *file = (job->node->path == NULL ?
job->node->name : job->node->path);
if (!noExecute && eunlink(file) != -1) {
Error("*** %s removed", file);
}
}
if (job->pid) {
DEBUGF(JOB, ("JobInterrupt passing signal to child "
"%jd.\n", (intmax_t)job->pid));
KILL(job->pid, signo);
}
}
if (runINTERRUPT && !touchFlag) {
/*
* clear the interrupted flag because we would get an
* infinite loop otherwise.
*/
interrupted = 0;
interrupt = Targ_FindNode(".INTERRUPT", TARG_NOCREATE);
if (interrupt != NULL) {
ignoreErrors = FALSE;
JobStart(interrupt, JOB_IGNDOTS, (Job *)NULL);
while (nJobs) {
Job_CatchOutput(0);
Job_CatchChildren(!usePipes);
}
}
}
if (fifoMaster)
unlink(fifoName);
}
/**
* Job_Finish
* Do final processing such as the running of the commands
* attached to the .END target.
*
* Results:
* Number of errors reported.
*/
int
Job_Finish(void)
{
if (postCommands != NULL && !Lst_IsEmpty(&postCommands->commands)) {
if (errors) {
Error("Errors reported so .END ignored");
} else {
JobStart(postCommands, JOB_SPECIAL | JOB_IGNDOTS, NULL);
while (nJobs) {
Job_CatchOutput(0);
Job_CatchChildren(!usePipes);
}
}
}
if (fifoFd >= 0) {
close(fifoFd);
fifoFd = -1;
if (fifoMaster)
unlink(fifoName);
}
return (errors);
}
/**
* Job_Wait
* Waits for all running jobs to finish and returns. Sets 'aborting'
* to ABORT_WAIT to prevent other jobs from starting.
*
* Side Effects:
* Currently running jobs finish.
*/
void
Job_Wait(void)
{
aborting = ABORT_WAIT;
while (nJobs != 0) {
Job_CatchOutput(0);
Job_CatchChildren(!usePipes);
}
aborting = 0;
}
/**
* Job_AbortAll
* Abort all currently running jobs without handling output or anything.
* This function is to be called only in the event of a major
* error. Most definitely NOT to be called from JobInterrupt.
*
* Side Effects:
* All children are killed, not just the firstborn
*/
void
Job_AbortAll(void)
{
Job *job; /* the job descriptor in that element */
int foo;
aborting = ABORT_ERROR;
if (nJobs) {
TAILQ_FOREACH(job, &jobs, link) {
/*
* kill the child process with increasingly drastic
* signals to make darn sure it's dead.
*/
KILL(job->pid, SIGINT);
KILL(job->pid, SIGKILL);
}
}
/*
* Catch as many children as want to report in at first, then give up
*/
while (waitpid((pid_t)-1, &foo, WNOHANG) > 0)
;
}
/**
* JobRestartJobs
* Tries to restart stopped jobs if there are slots available.
* Note that this tries to restart them regardless of pending errors.
* It's not good to leave stopped jobs lying around!
*
* Side Effects:
* Resumes(and possibly migrates) jobs.
*/
static void
JobRestartJobs(void)
{
Job *job;
while (!jobFull && (job = TAILQ_FIRST(&stoppedJobs)) != NULL) {
DEBUGF(JOB, ("Job queue is not full. "
"Restarting a stopped job.\n"));
TAILQ_REMOVE(&stoppedJobs, job, link);
JobRestart(job);
}
}
/**
* Cmd_Exec
* Execute the command in cmd, and return the output of that command
* in a string.
*
* Results:
* A string containing the output of the command, or the empty string
* If error is not NULL, it contains the reason for the command failure
* Any output sent to stderr in the child process is passed to stderr,
* and not captured in the string.
*
* Side Effects:
* The string must be freed by the caller.
*/
Buffer *
Cmd_Exec(const char *cmd, const char **error)
{
int fds[2]; /* Pipe streams */
int status; /* command exit status */
Buffer *buf; /* buffer to store the result */
ssize_t rcnt;
ProcStuff ps;
*error = NULL;
buf = Buf_Init(0);
/*
* Open a pipe for fetching its output
*/
if (pipe(fds) == -1) {
*error = "Couldn't create pipe for \"%s\"";
return (buf);
}
/* Set close-on-exec on read side of pipe. */
fcntl(fds[0], F_SETFD, fcntl(fds[0], F_GETFD) | FD_CLOEXEC);
ps.in = STDIN_FILENO;
ps.out = fds[1];
ps.err = STDERR_FILENO;
ps.merge_errors = 0;
ps.pgroup = 0;
ps.searchpath = 0;
/* Set up arguments for shell */
ps.argv = emalloc(4 * sizeof(char *));
ps.argv[0] = strdup(commandShell->name);
ps.argv[1] = strdup("-c");
ps.argv[2] = strdup(cmd);
ps.argv[3] = NULL;
ps.argv_free = 1;
/*
* Fork. Warning since we are doing vfork() instead of fork(),
* do not allocate memory in the child process!
*/
if ((ps.child_pid = vfork()) == -1) {
*error = "Couldn't exec \"%s\"";
return (buf);
} else if (ps.child_pid == 0) {
/*
* Child
*/
Proc_Exec(&ps);
/* NOTREACHED */
}
free(ps.argv[2]);
free(ps.argv[1]);
free(ps.argv[0]);
free(ps.argv);
close(fds[1]); /* No need for the writing half of the pipe. */
do {
char result[BUFSIZ];
rcnt = read(fds[0], result, sizeof(result));
if (rcnt != -1)
Buf_AddBytes(buf, (size_t)rcnt, (Byte *)result);
} while (rcnt > 0 || (rcnt == -1 && errno == EINTR));
if (rcnt == -1)
*error = "Error reading shell's output for \"%s\"";
/*
* Close the input side of the pipe.
*/
close(fds[0]);
status = ProcWait(&ps);
if (status)
*error = "\"%s\" returned non-zero status";
Buf_StripNewlines(buf);
return (buf);
}
/*
* Interrupt handler - set flag and defer handling to the main code
*/
static void
CompatCatchSig(int signo)
{
interrupted = signo;
}
/*-
*-----------------------------------------------------------------------
* CompatInterrupt --
* Interrupt the creation of the current target and remove it if
* it ain't precious.
*
* Results:
* None.
*
* Side Effects:
* The target is removed and the process exits. If .INTERRUPT exists,
* its commands are run first WITH INTERRUPTS IGNORED..
*
*-----------------------------------------------------------------------
*/
static void
CompatInterrupt(int signo)
{
GNode *gn;
sigset_t nmask, omask;
LstNode *ln;
sigemptyset(&nmask);
sigaddset(&nmask, SIGINT);
sigaddset(&nmask, SIGTERM);
sigaddset(&nmask, SIGHUP);
sigaddset(&nmask, SIGQUIT);
sigprocmask(SIG_SETMASK, &nmask, &omask);
/* prevent recursion in evaluation of .INTERRUPT */
interrupted = 0;
if (curTarg != NULL && !Targ_Precious(curTarg)) {
const char *file = Var_Value(TARGET, curTarg);
if (!noExecute && eunlink(file) != -1) {
printf("*** %s removed\n", file);
}
}
/*
* Run .INTERRUPT only if hit with interrupt signal
*/
if (signo == SIGINT) {
gn = Targ_FindNode(".INTERRUPT", TARG_NOCREATE);
if (gn != NULL) {
LST_FOREACH(ln, &gn->commands) {
if (Compat_RunCommand(Lst_Datum(ln), gn))
break;
}
}
}
sigprocmask(SIG_SETMASK, &omask, NULL);
if (signo == SIGQUIT)
exit(signo);
signal(signo, SIG_DFL);
kill(getpid(), signo);
}
/**
* shellneed
*
* Results:
* Returns NULL if a specified line must be executed by the shell,
* and an argument vector if it can be run via execvp().
*
* Side Effects:
* Uses brk_string so destroys the contents of argv.
*/
static char **
shellneed(ArgArray *aa, char *cmd)
{
char **p;
int ret;
if (commandShell->meta == NULL || commandShell->builtins.argc <= 1)
/* use shell */
return (NULL);
if (strpbrk(cmd, commandShell->meta) != NULL)
return (NULL);
/*
* Break the command into words to form an argument
* vector we can execute.
*/
brk_string(aa, cmd, TRUE);
for (p = commandShell->builtins.argv + 1; *p != 0; p++) {
if ((ret = strcmp(aa->argv[1], *p)) == 0) {
/* found - use shell */
ArgArray_Done(aa);
return (NULL);
}
if (ret < 0) {
/* not found */
break;
}
}
return (aa->argv + 1);
}
/**
* Execute the next command for a target. If the command returns an
* error, the node's made field is set to ERROR and creation stops.
* The node from which the command came is also given. This is used
* to execute the commands in compat mode and when executing commands
* with the '+' flag in non-compat mode. In these modes each command
* line should be executed by its own shell. We do some optimisation here:
* if the shell description defines both a string of meta characters and
* a list of builtins and the command line neither contains a meta character
* nor starts with one of the builtins then we execute the command directly
* without invoking a shell.
*
* Results:
* 0 if the command succeeded, 1 if an error occurred.
*
* Side Effects:
* The node's 'made' field may be set to ERROR.
*/
static int
Compat_RunCommand(char *cmd, GNode *gn)
{
ArgArray aa;
char *cmdStart; /* Start of expanded command */
Boolean silent; /* Don't print command */
Boolean doit; /* Execute even in -n */
Boolean errCheck; /* Check errors */
int reason; /* Reason for child's death */
int status; /* Description of child's death */
LstNode *cmdNode; /* Node where current cmd is located */
char **av; /* Argument vector for thing to exec */
ProcStuff ps;
silent = gn->type & OP_SILENT;
errCheck = !(gn->type & OP_IGNORE);
doit = FALSE;
cmdNode = Lst_Member(&gn->commands, cmd);
cmdStart = Buf_Peel(Var_Subst(cmd, gn, FALSE));
/*
* brk_string will return an argv with a NULL in av[0], thus causing
* execvp() to choke and die horribly. Besides, how can we execute a
* null command? In any case, we warn the user that the command
* expanded to nothing (is this the right thing to do?).
*/
if (*cmdStart == '\0') {
free(cmdStart);
Error("%s expands to empty string", cmd);
return (0);
} else {
cmd = cmdStart;
}
Lst_Replace(cmdNode, cmdStart);
if ((gn->type & OP_SAVE_CMDS) && (gn != ENDNode)) {
Lst_AtEnd(&ENDNode->commands, cmdStart);
return (0);
} else if (strcmp(cmdStart, "...") == 0) {
gn->type |= OP_SAVE_CMDS;
return (0);
}
while (*cmd == '@' || *cmd == '-' || *cmd == '+') {
switch (*cmd) {
case '@':
silent = DEBUG(LOUD) ? FALSE : TRUE;
break;
case '-':
errCheck = FALSE;
break;
case '+':
doit = TRUE;
break;
}
cmd++;
}
while (isspace((unsigned char)*cmd))
cmd++;
/*
* Print the command before echoing if we're not supposed to be quiet
* for this one. We also print the command if -n given, but not if '+'.
*/
if (!silent || (noExecute && !doit)) {
printf("%s\n", cmd);
fflush(stdout);
}
/*
* If we're not supposed to execute any commands, this is as far as
* we go...
*/
if (!doit && noExecute) {
return (0);
}
ps.in = STDIN_FILENO;
ps.out = STDOUT_FILENO;
ps.err = STDERR_FILENO;
ps.merge_errors = 0;
ps.pgroup = 0;
ps.searchpath = 1;
if ((av = shellneed(&aa, cmd)) == NULL) {
/*
* Shell meta character or shell builtin found - pass
* command to shell. We give the shell the -e flag as
* well as -c if it is supposed to exit when it hits an error.
*/
ps.argv = emalloc(4 * sizeof(char *));
ps.argv[0] = strdup(commandShell->path);
ps.argv[1] = strdup(errCheck ? "-ec" : "-c");
ps.argv[2] = strdup(cmd);
ps.argv[3] = NULL;
ps.argv_free = 1;
} else {
ps.argv = av;
ps.argv_free = 0;
}
ps.errCheck = errCheck;
/*
* Warning since we are doing vfork() instead of fork(),
* do not allocate memory in the child process!
*/
if ((ps.child_pid = vfork()) == -1) {
Fatal("Could not fork");
} else if (ps.child_pid == 0) {
/*
* Child
*/
Proc_Exec(&ps);
/* NOTREACHED */
} else {
if (ps.argv_free) {
free(ps.argv[2]);
free(ps.argv[1]);
free(ps.argv[0]);
free(ps.argv);
} else {
ArgArray_Done(&aa);
}
/*
* we need to print out the command associated with this
* Gnode in Targ_PrintCmd from Targ_PrintGraph when debugging
* at level g2, in main(), Fatal() and DieHorribly(),
* therefore do not free it when debugging.
*/
if (!DEBUG(GRAPH2)) {
free(cmdStart);
}
/*
* The child is off and running. Now all we can do is wait...
*/
reason = ProcWait(&ps);
if (interrupted)
CompatInterrupt(interrupted);
/*
* Decode and report the reason child exited, then
* indicate how we handled it.
*/
if (WIFEXITED(reason)) {
status = WEXITSTATUS(reason);
if (status == 0) {
return (0);
} else {
printf("*** Error code %d", status);
}
} else if (WIFSTOPPED(reason)) {
status = WSTOPSIG(reason);
} else {
status = WTERMSIG(reason);
printf("*** Signal %d", status);
}
if (ps.errCheck) {
gn->made = ERROR;
if (keepgoing) {
/*
* Abort the current
* target, but let
* others continue.
*/
printf(" (continuing)\n");
}
return (status);
} else {
/*
* Continue executing
* commands for this target.
* If we return 0, this will
* happen...
*/
printf(" (ignored)\n");
return (0);
}
}
}
/*-
*-----------------------------------------------------------------------
* Compat_Make --
* Make a target, given the parent, to abort if necessary.
*
* Side Effects:
* If an error is detected and not being ignored, the process exits.
*
*-----------------------------------------------------------------------
*/
int
Compat_Make(GNode *gn, GNode *pgn)
{
LstNode *ln;
if (gn->type & OP_USE) {
Make_HandleUse(gn, pgn);
} else if (gn->made == UNMADE) {
/*
* First mark ourselves to be made, then apply whatever
* transformations the suffix module thinks are necessary.
* Once that's done, we can descend and make all our children.
* If any of them has an error but the -k flag was given, our
* 'make' field will be set FALSE again. This is our signal to
* not attempt to do anything but abort our parent as well.
*/
gn->make = TRUE;
gn->made = BEINGMADE;
Suff_FindDeps(gn);
LST_FOREACH(ln, &gn->children)
Compat_Make(Lst_Datum(ln), gn);
if (!gn->make) {
gn->made = ABORTED;
pgn->make = FALSE;
return (0);
}
if (Lst_Member(&gn->iParents, pgn) != NULL) {
Var_Set(IMPSRC, Var_Value(TARGET, gn), pgn);
}
/*
* All the children were made ok. Now cmtime contains the
* modification time of the newest child, we need to find out
* if we exist and when we were modified last. The criteria for
* datedness are defined by the Make_OODate function.
*/
DEBUGF(MAKE, ("Examining %s...", gn->name));
if (!Make_OODate(gn)) {
gn->made = UPTODATE;
DEBUGF(MAKE, ("up-to-date.\n"));
return (0);
} else {
DEBUGF(MAKE, ("out-of-date.\n"));
}
/*
* If the user is just seeing if something is out-of-date,
* exit now to tell him/her "yes".
*/
if (queryFlag) {
exit(1);
}
/*
* We need to be re-made. We also have to make sure we've got
* a $? variable. To be nice, we also define the $> variable
* using Make_DoAllVar().
*/
Make_DoAllVar(gn);
/*
* Alter our type to tell if errors should be ignored or things
* should not be printed so Compat_RunCommand knows what to do.
*/
if (Targ_Ignore(gn)) {
gn->type |= OP_IGNORE;
}
if (Targ_Silent(gn)) {
gn->type |= OP_SILENT;
}
if (Job_CheckCommands(gn, Fatal)) {
/*
* Our commands are ok, but we still have to worry
* about the -t flag...
*/
if (!touchFlag) {
curTarg = gn;
LST_FOREACH(ln, &gn->commands) {
if (Compat_RunCommand(Lst_Datum(ln),
gn))
break;
}
curTarg = NULL;
} else {
Job_Touch(gn, gn->type & OP_SILENT);
}
} else {
gn->made = ERROR;
}
if (gn->made != ERROR) {
/*
* If the node was made successfully, mark it so, update
* its modification time and timestamp all its parents.
* Note that for .ZEROTIME targets, the timestamping
* isn't done. This is to keep its state from affecting
* that of its parent.
*/
gn->made = MADE;
#ifndef RECHECK
/*
* We can't re-stat the thing, but we can at least take
* care of rules where a target depends on a source that
* actually creates the target, but only if it has
* changed, e.g.
*
* parse.h : parse.o
*
* parse.o : parse.y
* yacc -d parse.y
* cc -c y.tab.c
* mv y.tab.o parse.o
* cmp -s y.tab.h parse.h || mv y.tab.h parse.h
*
* In this case, if the definitions produced by yacc
* haven't changed from before, parse.h won't have been
* updated and gn->mtime will reflect the current
* modification time for parse.h. This is something of a
* kludge, I admit, but it's a useful one..
*
* XXX: People like to use a rule like
*
* FRC:
*
* To force things that depend on FRC to be made, so we
* have to check for gn->children being empty as well...
*/
if (!Lst_IsEmpty(&gn->commands) ||
Lst_IsEmpty(&gn->children)) {
gn->mtime = now;
}
#else
/*
* This is what Make does and it's actually a good
* thing, as it allows rules like
*
* cmp -s y.tab.h parse.h || cp y.tab.h parse.h
*
* to function as intended. Unfortunately, thanks to
* the stateless nature of NFS (and the speed of this
* program), there are times when the modification time
* of a file created on a remote machine will not be
* modified before the stat() implied by the Dir_MTime
* occurs, thus leading us to believe that the file
* is unchanged, wreaking havoc with files that depend
* on this one.
*
* I have decided it is better to make too much than to
* make too little, so this stuff is commented out
* unless you're sure it's ok.
* -- ardeb 1/12/88
*/
if (noExecute || Dir_MTime(gn) == 0) {
gn->mtime = now;
}
if (gn->cmtime > gn->mtime)
gn->mtime = gn->cmtime;
DEBUGF(MAKE, ("update time: %s\n",
Targ_FmtTime(gn->mtime)));
#endif
if (!(gn->type & OP_EXEC)) {
pgn->childMade = TRUE;
Make_TimeStamp(pgn, gn);
}
} else if (keepgoing) {
pgn->make = FALSE;
} else {
printf("\n\nStop in %s.\n", Var_Value(".CURDIR", gn));
exit(1);
}
} else if (gn->made == ERROR) {
/*
* Already had an error when making this beastie. Tell the
* parent to abort.
*/
pgn->make = FALSE;
} else {
if (Lst_Member(&gn->iParents, pgn) != NULL) {
Var_Set(IMPSRC, Var_Value(TARGET, gn), pgn);
}
switch(gn->made) {
case BEINGMADE:
Error("Graph cycles through %s\n", gn->name);
gn->made = ERROR;
pgn->make = FALSE;
break;
case MADE:
if ((gn->type & OP_EXEC) == 0) {
pgn->childMade = TRUE;
Make_TimeStamp(pgn, gn);
}
break;
case UPTODATE:
if ((gn->type & OP_EXEC) == 0) {
Make_TimeStamp(pgn, gn);
}
break;
default:
break;
}
}
return (0);
}
/*-
* Install signal handlers for Compat_Run
*/
void
Compat_InstallSignalHandlers(void)
{
if (signal(SIGINT, SIG_IGN) != SIG_IGN) {
signal(SIGINT, CompatCatchSig);
}
if (signal(SIGTERM, SIG_IGN) != SIG_IGN) {
signal(SIGTERM, CompatCatchSig);
}
if (signal(SIGHUP, SIG_IGN) != SIG_IGN) {
signal(SIGHUP, CompatCatchSig);
}
if (signal(SIGQUIT, SIG_IGN) != SIG_IGN) {
signal(SIGQUIT, CompatCatchSig);
}
}
/*-
*-----------------------------------------------------------------------
* Compat_Run --
* Start making again, given a list of target nodes.
*
* Results:
* None.
*
* Side Effects:
* Guess what?
*
*-----------------------------------------------------------------------
*/
void
Compat_Run(Lst *targs)
{
GNode *gn = NULL; /* Current root target */
int error_cnt; /* Number of targets not remade due to errors */
LstNode *ln;
Compat_InstallSignalHandlers();
ENDNode = Targ_FindNode(".END", TARG_CREATE);
/*
* If the user has defined a .BEGIN target, execute the commands
* attached to it.
*/
if (!queryFlag) {
gn = Targ_FindNode(".BEGIN", TARG_NOCREATE);
if (gn != NULL) {
LST_FOREACH(ln, &gn->commands) {
if (Compat_RunCommand(Lst_Datum(ln), gn))
break;
}
if (gn->made == ERROR) {
printf("\n\nStop.\n");
exit(1);
}
}
}
/*
* For each entry in the list of targets to create, call Compat_Make on
* it to create the thing. Compat_Make will leave the 'made' field of gn
* in one of several states:
* UPTODATE gn was already up-to-date
* MADE gn was recreated successfully
* ERROR An error occurred while gn was being created
* ABORTED gn was not remade because one of its inferiors
* could not be made due to errors.
*/
error_cnt = 0;
while (!Lst_IsEmpty(targs)) {
gn = Lst_DeQueue(targs);
Compat_Make(gn, gn);
if (gn->made == UPTODATE) {
printf("`%s' is up to date.\n", gn->name);
} else if (gn->made == ABORTED) {
printf("`%s' not remade because of errors.\n",
gn->name);
error_cnt += 1;
}
}
/*
* If the user has defined a .END target, run its commands.
*/
if (error_cnt == 0) {
LST_FOREACH(ln, &ENDNode->commands) {
if (Compat_RunCommand(Lst_Datum(ln), ENDNode))
break;
}
}
}