freebsd-dev/sys/powerpc/pseries/mmu_phyp.c

672 lines
17 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2010 Andreas Tobler
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/rmlock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vmmeter.h>
#include <dev/ofw/openfirm.h>
#include <machine/ofw_machdep.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/uma.h>
#include <powerpc/aim/mmu_oea64.h>
#include "phyp-hvcall.h"
#define MMU_PHYP_DEBUG 0
#define MMU_PHYP_ID "mmu_phyp: "
#if MMU_PHYP_DEBUG
#define dprintf(fmt, ...) printf(fmt, ## __VA_ARGS__)
#define dprintf0(fmt, ...) dprintf(MMU_PHYP_ID fmt, ## __VA_ARGS__)
#else
#define dprintf(fmt, args...) do { ; } while(0)
#define dprintf0(fmt, args...) do { ; } while(0)
#endif
static struct rmlock mphyp_eviction_lock;
/*
* Kernel MMU interface
*/
static void mphyp_install(void);
static void mphyp_bootstrap(vm_offset_t kernelstart,
vm_offset_t kernelend);
static void mphyp_cpu_bootstrap(int ap);
static void *mphyp_dump_pmap(void *ctx, void *buf,
u_long *nbytes);
static int64_t mphyp_pte_synch(struct pvo_entry *pvo);
static int64_t mphyp_pte_clear(struct pvo_entry *pvo, uint64_t ptebit);
static int64_t mphyp_pte_unset(struct pvo_entry *pvo);
static int64_t mphyp_pte_insert(struct pvo_entry *pvo);
static int64_t mphyp_pte_unset_sp(struct pvo_entry *pvo);
static int64_t mphyp_pte_insert_sp(struct pvo_entry *pvo);
static int64_t mphyp_pte_replace_sp(struct pvo_entry *pvo);
static struct pmap_funcs mphyp_methods = {
.install = mphyp_install,
.bootstrap = mphyp_bootstrap,
.cpu_bootstrap = mphyp_cpu_bootstrap,
.dumpsys_dump_pmap = mphyp_dump_pmap,
};
static struct moea64_funcs mmu_phyp_funcs = {
.pte_synch = mphyp_pte_synch,
.pte_clear = mphyp_pte_clear,
.pte_unset = mphyp_pte_unset,
.pte_insert = mphyp_pte_insert,
.pte_unset_sp = mphyp_pte_unset_sp,
.pte_insert_sp = mphyp_pte_insert_sp,
.pte_replace_sp = mphyp_pte_replace_sp,
};
MMU_DEF_INHERIT(pseries_mmu, "mmu_phyp", mphyp_methods, oea64_mmu);
static int brokenkvm = 0;
static uint64_t final_pteg_count = 0;
static void
print_kvm_bug_warning(void *data)
{
if (brokenkvm)
printf("WARNING: Running on a broken hypervisor that does "
"not support mandatory H_CLEAR_MOD and H_CLEAR_REF "
"hypercalls. Performance will be suboptimal.\n");
}
SYSINIT(kvmbugwarn1, SI_SUB_COPYRIGHT, SI_ORDER_THIRD + 1,
print_kvm_bug_warning, NULL);
SYSINIT(kvmbugwarn2, SI_SUB_LAST, SI_ORDER_THIRD + 1, print_kvm_bug_warning,
NULL);
static void
mphyp_install()
{
char buf[8];
uint32_t prop[2];
uint32_t nptlp, shift = 0, slb_encoding = 0;
uint32_t lp_size, lp_encoding;
phandle_t dev, node, root;
int idx, len, res;
bool has_lp;
root = OF_peer(0);
dev = OF_child(root);
while (dev != 0) {
res = OF_getprop(dev, "name", buf, sizeof(buf));
if (res > 0 && strcmp(buf, "cpus") == 0)
break;
dev = OF_peer(dev);
}
node = OF_child(dev);
while (node != 0) {
res = OF_getprop(node, "device_type", buf, sizeof(buf));
if (res > 0 && strcmp(buf, "cpu") == 0)
break;
node = OF_peer(node);
}
res = OF_getencprop(node, "ibm,pft-size", prop, sizeof(prop));
if (res <= 0)
panic("mmu_phyp: unknown PFT size");
final_pteg_count = 1 << prop[1];
res = OF_getencprop(node, "ibm,slb-size", prop, sizeof(prop[0]));
if (res > 0)
n_slbs = prop[0];
dprintf0("slb-size=%i\n", n_slbs);
/*
* Scan the large page size property for PAPR compatible machines.
* See PAPR D.5 Changes to Section 5.1.4, 'CPU Node Properties'
* for the encoding of the property.
*/
len = OF_getproplen(node, "ibm,segment-page-sizes");
if (len > 0) {
/*
* We have to use a variable length array on the stack
* since we have very limited stack space.
*/
pcell_t arr[len/sizeof(cell_t)];
res = OF_getencprop(node, "ibm,segment-page-sizes", arr,
sizeof(arr));
len /= 4;
idx = 0;
has_lp = false;
while (len > 0) {
shift = arr[idx];
slb_encoding = arr[idx + 1];
nptlp = arr[idx + 2];
dprintf0("Segment Page Size: "
"%uKB, slb_enc=0x%X: {size, encoding}[%u] =",
shift > 10? 1 << (shift-10) : 0,
slb_encoding, nptlp);
idx += 3;
len -= 3;
while (len > 0 && nptlp) {
lp_size = arr[idx];
lp_encoding = arr[idx+1];
dprintf(" {%uKB, 0x%X}",
lp_size > 10? 1 << (lp_size-10) : 0,
lp_encoding);
if (slb_encoding == SLBV_L && lp_encoding == 0)
has_lp = true;
if (slb_encoding == SLB_PGSZ_4K_4K &&
lp_encoding == LP_4K_16M)
moea64_has_lp_4k_16m = true;
idx += 2;
len -= 2;
nptlp--;
}
dprintf("\n");
if (has_lp && moea64_has_lp_4k_16m)
break;
}
if (has_lp) {
moea64_large_page_shift = shift;
moea64_large_page_size = 1ULL << lp_size;
moea64_large_page_mask = moea64_large_page_size - 1;
hw_direct_map = 1;
printf(MMU_PHYP_ID
"Support for hugepages of %uKB detected\n",
moea64_large_page_shift > 10?
1 << (moea64_large_page_shift-10) : 0);
} else {
moea64_large_page_size = 0;
moea64_large_page_shift = 0;
moea64_large_page_mask = 0;
hw_direct_map = 0;
printf(MMU_PHYP_ID
"Support for hugepages not found\n");
}
}
moea64_ops = &mmu_phyp_funcs;
moea64_install();
}
static void
mphyp_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
{
struct lpte old;
uint64_t vsid;
int idx;
rm_init(&mphyp_eviction_lock, "pte eviction");
moea64_early_bootstrap(kernelstart, kernelend);
moea64_pteg_count = final_pteg_count / sizeof(struct lpteg);
/* Clear any old page table entries */
for (idx = 0; idx < moea64_pteg_count*8; idx++) {
phyp_pft_hcall(H_READ, 0, idx, 0, 0, &old.pte_hi,
&old.pte_lo, &old.pte_lo);
vsid = (old.pte_hi << (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) >> 28;
if (vsid == VSID_VRMA || vsid == 0 /* Older VRMA */)
continue;
if (old.pte_hi & LPTE_VALID)
phyp_hcall(H_REMOVE, 0, idx, 0);
}
moea64_mid_bootstrap(kernelstart, kernelend);
moea64_late_bootstrap(kernelstart, kernelend);
/* Test for broken versions of KVM that don't conform to the spec */
if (phyp_hcall(H_CLEAR_MOD, 0, 0) == H_FUNCTION)
brokenkvm = 1;
}
static void
mphyp_cpu_bootstrap(int ap)
{
struct slb *slb = PCPU_GET(aim.slb);
register_t seg0;
int i;
/*
* Install kernel SLB entries
*/
__asm __volatile ("slbia");
__asm __volatile ("slbmfee %0,%1; slbie %0;" : "=r"(seg0) : "r"(0));
for (i = 0; i < 64; i++) {
if (!(slb[i].slbe & SLBE_VALID))
continue;
__asm __volatile ("slbmte %0, %1" ::
"r"(slb[i].slbv), "r"(slb[i].slbe));
}
}
static int64_t
mphyp_pte_synch(struct pvo_entry *pvo)
{
struct lpte pte;
uint64_t junk;
__asm __volatile("ptesync");
phyp_pft_hcall(H_READ, 0, pvo->pvo_pte.slot, 0, 0, &pte.pte_hi,
&pte.pte_lo, &junk);
if ((pte.pte_hi & LPTE_AVPN_MASK) !=
((pvo->pvo_vpn >> (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) &
LPTE_AVPN_MASK))
return (-1);
if (!(pte.pte_hi & LPTE_VALID))
return (-1);
return (pte.pte_lo & (LPTE_CHG | LPTE_REF));
}
static int64_t
mphyp_pte_clear(struct pvo_entry *pvo, uint64_t ptebit)
{
struct rm_priotracker track;
int64_t refchg;
uint64_t ptelo, junk;
int err __diagused;
/*
* This involves two steps (synch and clear) so we need the entry
* not to change in the middle. We are protected against deliberate
* unset by virtue of holding the pmap lock. Protection against
* incidental unset (page table eviction) comes from holding the
* shared eviction lock.
*/
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
rm_rlock(&mphyp_eviction_lock, &track);
refchg = mphyp_pte_synch(pvo);
if (refchg < 0) {
rm_runlock(&mphyp_eviction_lock, &track);
return (refchg);
}
if (brokenkvm) {
/*
* No way to clear either bit, which is total madness.
* Pessimistically claim that, once modified, it stays so
* forever and that it is never referenced.
*/
rm_runlock(&mphyp_eviction_lock, &track);
return (refchg & ~LPTE_REF);
}
if (ptebit & LPTE_CHG) {
err = phyp_pft_hcall(H_CLEAR_MOD, 0, pvo->pvo_pte.slot, 0, 0,
&ptelo, &junk, &junk);
KASSERT(err == H_SUCCESS,
("Error clearing page change bit: %d", err));
refchg |= (ptelo & LPTE_CHG);
}
if (ptebit & LPTE_REF) {
err = phyp_pft_hcall(H_CLEAR_REF, 0, pvo->pvo_pte.slot, 0, 0,
&ptelo, &junk, &junk);
KASSERT(err == H_SUCCESS,
("Error clearing page reference bit: %d", err));
refchg |= (ptelo & LPTE_REF);
}
rm_runlock(&mphyp_eviction_lock, &track);
return (refchg);
}
static int64_t
mphyp_pte_unset(struct pvo_entry *pvo)
{
struct lpte pte;
uint64_t junk;
int err;
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
moea64_pte_from_pvo(pvo, &pte);
err = phyp_pft_hcall(H_REMOVE, H_AVPN, pvo->pvo_pte.slot,
pte.pte_hi & LPTE_AVPN_MASK, 0, &pte.pte_hi, &pte.pte_lo,
&junk);
KASSERT(err == H_SUCCESS || err == H_NOT_FOUND,
("Error removing page: %d", err));
if (err == H_NOT_FOUND) {
STAT_MOEA64(moea64_pte_overflow--);
return (-1);
}
return (pte.pte_lo & (LPTE_REF | LPTE_CHG));
}
static uintptr_t
mphyp_pte_spillable_ident(uintptr_t ptegbase, struct lpte *to_evict)
{
uint64_t slot, junk, k;
struct lpte pt;
int i, j;
/* Start at a random slot */
i = mftb() % 8;
k = -1;
for (j = 0; j < 8; j++) {
slot = ptegbase + (i + j) % 8;
phyp_pft_hcall(H_READ, 0, slot, 0, 0, &pt.pte_hi,
&pt.pte_lo, &junk);
if ((pt.pte_hi & (LPTE_WIRED | LPTE_BIG)) != 0)
continue;
/* This is a candidate, so remember it */
k = slot;
/* Try to get a page that has not been used lately */
if (!(pt.pte_hi & LPTE_VALID) || !(pt.pte_lo & LPTE_REF)) {
memcpy(to_evict, &pt, sizeof(struct lpte));
return (k);
}
}
if (k == -1)
return (k);
phyp_pft_hcall(H_READ, 0, k, 0, 0, &to_evict->pte_hi,
&to_evict->pte_lo, &junk);
return (k);
}
static __inline int64_t
mphyp_pte_insert_locked(struct pvo_entry *pvo, struct lpte *pte)
{
struct lpte evicted;
uint64_t index, junk;
int64_t result;
/*
* First try primary hash.
*/
pvo->pvo_pte.slot &= ~7UL; /* Base slot address */
result = phyp_pft_hcall(H_ENTER, 0, pvo->pvo_pte.slot, pte->pte_hi,
pte->pte_lo, &index, &evicted.pte_lo, &junk);
if (result == H_SUCCESS) {
pvo->pvo_pte.slot = index;
return (0);
}
KASSERT(result == H_PTEG_FULL, ("Page insertion error: %ld "
"(ptegidx: %#zx/%#lx, PTE %#lx/%#lx", result, pvo->pvo_pte.slot,
moea64_pteg_count, pte->pte_hi, pte->pte_lo));
/*
* Next try secondary hash.
*/
pvo->pvo_vaddr ^= PVO_HID;
pte->pte_hi ^= LPTE_HID;
pvo->pvo_pte.slot ^= (moea64_pteg_mask << 3);
result = phyp_pft_hcall(H_ENTER, 0, pvo->pvo_pte.slot,
pte->pte_hi, pte->pte_lo, &index, &evicted.pte_lo, &junk);
if (result == H_SUCCESS) {
pvo->pvo_pte.slot = index;
return (0);
}
KASSERT(result == H_PTEG_FULL, ("Secondary page insertion error: %ld",
result));
return (-1);
}
static __inline int64_t
mphyp_pte_evict_and_insert_locked(struct pvo_entry *pvo, struct lpte *pte)
{
struct lpte evicted;
uint64_t index, junk, lastptelo;
int64_t result;
evicted.pte_hi = 0;
index = mphyp_pte_spillable_ident(pvo->pvo_pte.slot, &evicted);
if (index == -1L) {
/* Try other hash table? */
pvo->pvo_vaddr ^= PVO_HID;
pte->pte_hi ^= LPTE_HID;
pvo->pvo_pte.slot ^= (moea64_pteg_mask << 3);
index = mphyp_pte_spillable_ident(pvo->pvo_pte.slot, &evicted);
}
if (index == -1L) {
/* No freeable slots in either PTEG? We're hosed. */
rm_wunlock(&mphyp_eviction_lock);
panic("mphyp_pte_insert: overflow");
return (-1);
}
/* Victim acquired: update page before waving goodbye */
if (evicted.pte_hi & LPTE_VALID) {
result = phyp_pft_hcall(H_REMOVE, H_AVPN, index,
evicted.pte_hi & LPTE_AVPN_MASK, 0, &junk, &lastptelo,
&junk);
STAT_MOEA64(moea64_pte_overflow++);
KASSERT(result == H_SUCCESS || result == H_NOT_FOUND,
("Error evicting page: %d", (int)result));
}
/*
* Set the new PTE.
*/
result = phyp_pft_hcall(H_ENTER, H_EXACT, index, pte->pte_hi,
pte->pte_lo, &index, &evicted.pte_lo, &junk);
pvo->pvo_pte.slot = index;
if (result == H_SUCCESS)
return (0);
rm_wunlock(&mphyp_eviction_lock);
panic("Page replacement error: %ld", result);
return (result);
}
static int64_t
mphyp_pte_insert(struct pvo_entry *pvo)
{
struct rm_priotracker track;
int64_t ret;
struct lpte pte;
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
/* Initialize PTE */
moea64_pte_from_pvo(pvo, &pte);
/* Make sure further insertion is locked out during evictions */
rm_rlock(&mphyp_eviction_lock, &track);
ret = mphyp_pte_insert_locked(pvo, &pte);
rm_runlock(&mphyp_eviction_lock, &track);
if (ret == -1) {
/*
* Out of luck. Find a PTE to sacrifice.
*/
/* Lock out all insertions for a bit */
rm_wlock(&mphyp_eviction_lock);
ret = mphyp_pte_evict_and_insert_locked(pvo, &pte);
rm_wunlock(&mphyp_eviction_lock); /* All clear */
}
return (ret);
}
static void *
mphyp_dump_pmap(void *ctx, void *buf, u_long *nbytes)
{
struct dump_context *dctx;
struct lpte p, *pbuf;
int bufidx;
uint64_t junk;
u_long ptex, ptex_end;
dctx = (struct dump_context *)ctx;
pbuf = (struct lpte *)buf;
bufidx = 0;
ptex = dctx->ptex;
ptex_end = ptex + dctx->blksz / sizeof(struct lpte);
ptex_end = MIN(ptex_end, dctx->ptex_end);
*nbytes = (ptex_end - ptex) * sizeof(struct lpte);
if (*nbytes == 0)
return (NULL);
for (; ptex < ptex_end; ptex++) {
phyp_pft_hcall(H_READ, 0, ptex, 0, 0,
&p.pte_hi, &p.pte_lo, &junk);
pbuf[bufidx++] = p;
}
dctx->ptex = ptex;
return (buf);
}
static int64_t
mphyp_pte_unset_sp(struct pvo_entry *pvo)
{
struct lpte pte;
uint64_t junk, refchg;
int err;
vm_offset_t eva;
pmap_t pm __diagused;
pm = pvo->pvo_pmap;
PMAP_LOCK_ASSERT(pm, MA_OWNED);
KASSERT((PVO_VADDR(pvo) & HPT_SP_MASK) == 0,
("%s: va %#jx unaligned", __func__, (uintmax_t)PVO_VADDR(pvo)));
refchg = 0;
eva = PVO_VADDR(pvo) + HPT_SP_SIZE;
for (; pvo != NULL && PVO_VADDR(pvo) < eva;
pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
moea64_pte_from_pvo(pvo, &pte);
err = phyp_pft_hcall(H_REMOVE, H_AVPN, pvo->pvo_pte.slot,
pte.pte_hi & LPTE_AVPN_MASK, 0, &pte.pte_hi, &pte.pte_lo,
&junk);
KASSERT(err == H_SUCCESS || err == H_NOT_FOUND,
("Error removing page: %d", err));
if (err == H_NOT_FOUND)
STAT_MOEA64(moea64_pte_overflow--);
refchg |= pte.pte_lo & (LPTE_REF | LPTE_CHG);
}
return (refchg);
}
static int64_t
mphyp_pte_insert_sp(struct pvo_entry *pvo)
{
struct rm_priotracker track;
int64_t ret;
struct lpte pte;
vm_offset_t eva;
pmap_t pm __diagused;
pm = pvo->pvo_pmap;
PMAP_LOCK_ASSERT(pm, MA_OWNED);
KASSERT((PVO_VADDR(pvo) & HPT_SP_MASK) == 0,
("%s: va %#jx unaligned", __func__, (uintmax_t)PVO_VADDR(pvo)));
eva = PVO_VADDR(pvo) + HPT_SP_SIZE;
/* Make sure further insertion is locked out during evictions */
rm_rlock(&mphyp_eviction_lock, &track);
for (; pvo != NULL && PVO_VADDR(pvo) < eva;
pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
/* Initialize PTE */
moea64_pte_from_pvo(pvo, &pte);
ret = mphyp_pte_insert_locked(pvo, &pte);
if (ret == -1) {
/*
* Out of luck. Find a PTE to sacrifice.
*/
/* Lock out all insertions for a bit */
rm_runlock(&mphyp_eviction_lock, &track);
rm_wlock(&mphyp_eviction_lock);
mphyp_pte_evict_and_insert_locked(pvo, &pte);
rm_wunlock(&mphyp_eviction_lock); /* All clear */
rm_rlock(&mphyp_eviction_lock, &track);
}
}
rm_runlock(&mphyp_eviction_lock, &track);
return (0);
}
static int64_t
mphyp_pte_replace_sp(struct pvo_entry *pvo)
{
int64_t refchg;
refchg = mphyp_pte_unset_sp(pvo);
mphyp_pte_insert_sp(pvo);
return (refchg);
}