freebsd-dev/contrib/bind9/lib/isc/sha2.c
Doug Barton ecb246eba6 Update to 9.6.2-P1, the latest patchfix release which deals with
the problems related to the handling of broken DNSSEC trust chains.

This fix is only relevant for those who have DNSSEC validation
enabled and configure trust anchors from third parties, either
manually, or through a system like DLV.
2010-03-29 06:31:58 +00:00

1256 lines
36 KiB
C

/*
* Copyright (C) 2005-2007, 2009, 2010 Internet Systems Consortium, Inc. ("ISC")
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/* $Id: sha2.c,v 1.13.332.4 2010/01/15 23:47:34 tbox Exp $ */
/* $FreeBSD$ */
/* $KAME: sha2.c,v 1.8 2001/11/08 01:07:52 itojun Exp $ */
/*
* sha2.c
*
* Version 1.0.0beta1
*
* Written by Aaron D. Gifford <me@aarongifford.com>
*
* Copyright 2000 Aaron D. Gifford. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <config.h>
#include <isc/assertions.h>
#include <isc/sha2.h>
#include <isc/string.h>
#include <isc/util.h>
/*
* UNROLLED TRANSFORM LOOP NOTE:
* You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
* loop version for the hash transform rounds (defined using macros
* later in this file). Either define on the command line, for example:
*
* cc -DISC_SHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
*
* or define below:
*
* \#define ISC_SHA2_UNROLL_TRANSFORM
*
*/
/*** SHA-256/384/512 Machine Architecture Definitions *****************/
/*
* BYTE_ORDER NOTE:
*
* Please make sure that your system defines BYTE_ORDER. If your
* architecture is little-endian, make sure it also defines
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
* equivalent.
*
* If your system does not define the above, then you can do so by
* hand like this:
*
* \#define LITTLE_ENDIAN 1234
* \#define BIG_ENDIAN 4321
*
* And for little-endian machines, add:
*
* \#define BYTE_ORDER LITTLE_ENDIAN
*
* Or for big-endian machines:
*
* \#define BYTE_ORDER BIG_ENDIAN
*
* The FreeBSD machine this was written on defines BYTE_ORDER
* appropriately by including <sys/types.h> (which in turn includes
* <machine/endian.h> where the appropriate definitions are actually
* made).
*/
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
#ifndef BYTE_ORDER
#ifndef BIG_ENDIAN
#define BIG_ENDIAN 4321
#endif
#ifndef LITTLE_ENDIAN
#define LITTLE_ENDIAN 1234
#endif
#ifdef WORDS_BIGENDIAN
#define BYTE_ORDER BIG_ENDIAN
#else
#define BYTE_ORDER LITTLE_ENDIAN
#endif
#else
#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
#endif
#endif
/*** SHA-256/384/512 Various Length Definitions ***********************/
/* NOTE: Most of these are in sha2.h */
#define ISC_SHA256_SHORT_BLOCK_LENGTH (ISC_SHA256_BLOCK_LENGTH - 8)
#define ISC_SHA384_SHORT_BLOCK_LENGTH (ISC_SHA384_BLOCK_LENGTH - 16)
#define ISC_SHA512_SHORT_BLOCK_LENGTH (ISC_SHA512_BLOCK_LENGTH - 16)
/*** ENDIAN REVERSAL MACROS *******************************************/
#if BYTE_ORDER == LITTLE_ENDIAN
#define REVERSE32(w,x) { \
isc_uint32_t tmp = (w); \
tmp = (tmp >> 16) | (tmp << 16); \
(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
}
#ifdef WIN32
#define REVERSE64(w,x) { \
isc_uint64_t tmp = (w); \
tmp = (tmp >> 32) | (tmp << 32); \
tmp = ((tmp & 0xff00ff00ff00ff00UL) >> 8) | \
((tmp & 0x00ff00ff00ff00ffUL) << 8); \
(x) = ((tmp & 0xffff0000ffff0000UL) >> 16) | \
((tmp & 0x0000ffff0000ffffUL) << 16); \
}
#else
#define REVERSE64(w,x) { \
isc_uint64_t tmp = (w); \
tmp = (tmp >> 32) | (tmp << 32); \
tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
((tmp & 0x00ff00ff00ff00ffULL) << 8); \
(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
((tmp & 0x0000ffff0000ffffULL) << 16); \
}
#endif
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
/*
* Macro for incrementally adding the unsigned 64-bit integer n to the
* unsigned 128-bit integer (represented using a two-element array of
* 64-bit words):
*/
#define ADDINC128(w,n) { \
(w)[0] += (isc_uint64_t)(n); \
if ((w)[0] < (n)) { \
(w)[1]++; \
} \
}
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
*
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and
* S is a ROTATION) because the SHA-256/384/512 description document
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
* same "backwards" definition.
*/
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b,x) ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
/* Four of six logical functions used in SHA-256: */
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
/* Four of six logical functions used in SHA-384 and SHA-512: */
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
/*** INTERNAL FUNCTION PROTOTYPES *************************************/
/* NOTE: These should not be accessed directly from outside this
* library -- they are intended for private internal visibility/use
* only.
*/
void isc_sha512_last(isc_sha512_t *);
void isc_sha256_transform(isc_sha256_t *, const isc_uint32_t*);
void isc_sha512_transform(isc_sha512_t *, const isc_uint64_t*);
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-224 and SHA-256: */
static const isc_uint32_t K256[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Initial hash value H for SHA-224: */
static const isc_uint32_t sha224_initial_hash_value[8] = {
0xc1059ed8UL,
0x367cd507UL,
0x3070dd17UL,
0xf70e5939UL,
0xffc00b31UL,
0x68581511UL,
0x64f98fa7UL,
0xbefa4fa4UL
};
/* Initial hash value H for SHA-256: */
static const isc_uint32_t sha256_initial_hash_value[8] = {
0x6a09e667UL,
0xbb67ae85UL,
0x3c6ef372UL,
0xa54ff53aUL,
0x510e527fUL,
0x9b05688cUL,
0x1f83d9abUL,
0x5be0cd19UL
};
#ifdef WIN32
/* Hash constant words K for SHA-384 and SHA-512: */
static const isc_uint64_t K512[80] = {
0x428a2f98d728ae22UL, 0x7137449123ef65cdUL,
0xb5c0fbcfec4d3b2fUL, 0xe9b5dba58189dbbcUL,
0x3956c25bf348b538UL, 0x59f111f1b605d019UL,
0x923f82a4af194f9bUL, 0xab1c5ed5da6d8118UL,
0xd807aa98a3030242UL, 0x12835b0145706fbeUL,
0x243185be4ee4b28cUL, 0x550c7dc3d5ffb4e2UL,
0x72be5d74f27b896fUL, 0x80deb1fe3b1696b1UL,
0x9bdc06a725c71235UL, 0xc19bf174cf692694UL,
0xe49b69c19ef14ad2UL, 0xefbe4786384f25e3UL,
0x0fc19dc68b8cd5b5UL, 0x240ca1cc77ac9c65UL,
0x2de92c6f592b0275UL, 0x4a7484aa6ea6e483UL,
0x5cb0a9dcbd41fbd4UL, 0x76f988da831153b5UL,
0x983e5152ee66dfabUL, 0xa831c66d2db43210UL,
0xb00327c898fb213fUL, 0xbf597fc7beef0ee4UL,
0xc6e00bf33da88fc2UL, 0xd5a79147930aa725UL,
0x06ca6351e003826fUL, 0x142929670a0e6e70UL,
0x27b70a8546d22ffcUL, 0x2e1b21385c26c926UL,
0x4d2c6dfc5ac42aedUL, 0x53380d139d95b3dfUL,
0x650a73548baf63deUL, 0x766a0abb3c77b2a8UL,
0x81c2c92e47edaee6UL, 0x92722c851482353bUL,
0xa2bfe8a14cf10364UL, 0xa81a664bbc423001UL,
0xc24b8b70d0f89791UL, 0xc76c51a30654be30UL,
0xd192e819d6ef5218UL, 0xd69906245565a910UL,
0xf40e35855771202aUL, 0x106aa07032bbd1b8UL,
0x19a4c116b8d2d0c8UL, 0x1e376c085141ab53UL,
0x2748774cdf8eeb99UL, 0x34b0bcb5e19b48a8UL,
0x391c0cb3c5c95a63UL, 0x4ed8aa4ae3418acbUL,
0x5b9cca4f7763e373UL, 0x682e6ff3d6b2b8a3UL,
0x748f82ee5defb2fcUL, 0x78a5636f43172f60UL,
0x84c87814a1f0ab72UL, 0x8cc702081a6439ecUL,
0x90befffa23631e28UL, 0xa4506cebde82bde9UL,
0xbef9a3f7b2c67915UL, 0xc67178f2e372532bUL,
0xca273eceea26619cUL, 0xd186b8c721c0c207UL,
0xeada7dd6cde0eb1eUL, 0xf57d4f7fee6ed178UL,
0x06f067aa72176fbaUL, 0x0a637dc5a2c898a6UL,
0x113f9804bef90daeUL, 0x1b710b35131c471bUL,
0x28db77f523047d84UL, 0x32caab7b40c72493UL,
0x3c9ebe0a15c9bebcUL, 0x431d67c49c100d4cUL,
0x4cc5d4becb3e42b6UL, 0x597f299cfc657e2aUL,
0x5fcb6fab3ad6faecUL, 0x6c44198c4a475817UL
};
/* Initial hash value H for SHA-384: */
static const isc_uint64_t sha384_initial_hash_value[8] = {
0xcbbb9d5dc1059ed8UL,
0x629a292a367cd507UL,
0x9159015a3070dd17UL,
0x152fecd8f70e5939UL,
0x67332667ffc00b31UL,
0x8eb44a8768581511UL,
0xdb0c2e0d64f98fa7UL,
0x47b5481dbefa4fa4UL
};
/* Initial hash value H for SHA-512: */
static const isc_uint64_t sha512_initial_hash_value[8] = {
0x6a09e667f3bcc908U,
0xbb67ae8584caa73bUL,
0x3c6ef372fe94f82bUL,
0xa54ff53a5f1d36f1UL,
0x510e527fade682d1UL,
0x9b05688c2b3e6c1fUL,
0x1f83d9abfb41bd6bUL,
0x5be0cd19137e2179UL
};
#else
/* Hash constant words K for SHA-384 and SHA-512: */
static const isc_uint64_t K512[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
/* Initial hash value H for SHA-384: */
static const isc_uint64_t sha384_initial_hash_value[8] = {
0xcbbb9d5dc1059ed8ULL,
0x629a292a367cd507ULL,
0x9159015a3070dd17ULL,
0x152fecd8f70e5939ULL,
0x67332667ffc00b31ULL,
0x8eb44a8768581511ULL,
0xdb0c2e0d64f98fa7ULL,
0x47b5481dbefa4fa4ULL
};
/* Initial hash value H for SHA-512: */
static const isc_uint64_t sha512_initial_hash_value[8] = {
0x6a09e667f3bcc908ULL,
0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL,
0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL,
0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL,
0x5be0cd19137e2179ULL
};
#endif
/*
* Constant used by SHA256/384/512_End() functions for converting the
* digest to a readable hexadecimal character string:
*/
static const char *sha2_hex_digits = "0123456789abcdef";
/*** SHA-224: *********************************************************/
void
isc_sha224_init(isc_sha224_t *context) {
if (context == (isc_sha256_t *)0) {
return;
}
memcpy(context->state, sha224_initial_hash_value,
ISC_SHA256_DIGESTLENGTH);
memset(context->buffer, 0, ISC_SHA256_BLOCK_LENGTH);
context->bitcount = 0;
}
void
isc_sha224_invalidate(isc_sha224_t *context) {
memset(context, 0, sizeof(isc_sha224_t));
}
void
isc_sha224_update(isc_sha224_t *context, const isc_uint8_t* data, size_t len) {
isc_sha256_update((isc_sha256_t *)context, data, len);
}
void
isc_sha224_final(isc_uint8_t digest[], isc_sha224_t *context) {
isc_uint8_t sha256_digest[ISC_SHA256_DIGESTLENGTH];
isc_sha256_final(sha256_digest, (isc_sha256_t *)context);
memcpy(digest, sha256_digest, ISC_SHA224_DIGESTLENGTH);
memset(sha256_digest, 0, ISC_SHA256_DIGESTLENGTH);
}
char *
isc_sha224_end(isc_sha224_t *context, char buffer[]) {
isc_uint8_t digest[ISC_SHA224_DIGESTLENGTH], *d = digest;
unsigned int i;
/* Sanity check: */
REQUIRE(context != (isc_sha224_t *)0);
if (buffer != (char*)0) {
isc_sha224_final(digest, context);
for (i = 0; i < ISC_SHA224_DIGESTLENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
memset(context, 0, sizeof(context));
}
memset(digest, 0, ISC_SHA224_DIGESTLENGTH);
return buffer;
}
char*
isc_sha224_data(const isc_uint8_t *data, size_t len,
char digest[ISC_SHA224_DIGESTSTRINGLENGTH])
{
isc_sha224_t context;
isc_sha224_init(&context);
isc_sha224_update(&context, data, len);
return (isc_sha224_end(&context, digest));
}
/*** SHA-256: *********************************************************/
void
isc_sha256_init(isc_sha256_t *context) {
if (context == (isc_sha256_t *)0) {
return;
}
memcpy(context->state, sha256_initial_hash_value,
ISC_SHA256_DIGESTLENGTH);
memset(context->buffer, 0, ISC_SHA256_BLOCK_LENGTH);
context->bitcount = 0;
}
#ifdef ISC_SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-256 round macros: */
#if BYTE_ORDER == LITTLE_ENDIAN
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
REVERSE32(*data++, W256[j]); \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
K256[j] + W256[j]; \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
#else /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
K256[j] + (W256[j] = *data++); \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND256(a,b,c,d,e,f,g,h) \
s0 = W256[(j+1)&0x0f]; \
s0 = sigma0_256(s0); \
s1 = W256[(j+14)&0x0f]; \
s1 = sigma1_256(s1); \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
void isc_sha256_transform(isc_sha256_t *context, const isc_uint32_t* data) {
isc_uint32_t a, b, c, d, e, f, g, h, s0, s1;
isc_uint32_t T1, *W256;
int j;
W256 = (isc_uint32_t*)context->buffer;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
/* Rounds 0 to 15 (unrolled): */
ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds to 64: */
do {
ROUND256(a,b,c,d,e,f,g,h);
ROUND256(h,a,b,c,d,e,f,g);
ROUND256(g,h,a,b,c,d,e,f);
ROUND256(f,g,h,a,b,c,d,e);
ROUND256(e,f,g,h,a,b,c,d);
ROUND256(d,e,f,g,h,a,b,c);
ROUND256(c,d,e,f,g,h,a,b);
ROUND256(b,c,d,e,f,g,h,a);
} while (j < 64);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* ISC_SHA2_UNROLL_TRANSFORM */
void
isc_sha256_transform(isc_sha256_t *context, const isc_uint32_t* data) {
isc_uint32_t a, b, c, d, e, f, g, h, s0, s1;
isc_uint32_t T1, T2, *W256;
int j;
W256 = (isc_uint32_t*)context->buffer;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
#if BYTE_ORDER == LITTLE_ENDIAN
/* Copy data while converting to host byte order */
REVERSE32(*data++,W256[j]);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
/* Apply the SHA-256 compression function to update a..h with copy */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W256[(j+1)&0x0f];
s0 = sigma0_256(s0);
s1 = W256[(j+14)&0x0f];
s1 = sigma1_256(s1);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 64);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* ISC_SHA2_UNROLL_TRANSFORM */
void
isc_sha256_invalidate(isc_sha256_t *context) {
memset(context, 0, sizeof(isc_sha256_t));
}
void
isc_sha256_update(isc_sha256_t *context, const isc_uint8_t *data, size_t len) {
unsigned int freespace, usedspace;
if (len == 0U) {
/* Calling with no data is valid - we do nothing */
return;
}
/* Sanity check: */
REQUIRE(context != (isc_sha256_t *)0 && data != (isc_uint8_t*)0);
usedspace = (unsigned int)((context->bitcount >> 3) %
ISC_SHA256_BLOCK_LENGTH);
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = ISC_SHA256_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
memcpy(&context->buffer[usedspace], data, freespace);
context->bitcount += freespace << 3;
len -= freespace;
data += freespace;
isc_sha256_transform(context,
(isc_uint32_t*)context->buffer);
} else {
/* The buffer is not yet full */
memcpy(&context->buffer[usedspace], data, len);
context->bitcount += len << 3;
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= ISC_SHA256_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
memcpy(context->buffer, data, ISC_SHA256_BLOCK_LENGTH);
isc_sha256_transform(context, (isc_uint32_t*)context->buffer);
context->bitcount += ISC_SHA256_BLOCK_LENGTH << 3;
len -= ISC_SHA256_BLOCK_LENGTH;
data += ISC_SHA256_BLOCK_LENGTH;
}
if (len > 0U) {
/* There's left-overs, so save 'em */
memcpy(context->buffer, data, len);
context->bitcount += len << 3;
}
/* Clean up: */
usedspace = freespace = 0;
}
void
isc_sha256_final(isc_uint8_t digest[], isc_sha256_t *context) {
isc_uint32_t *d = (isc_uint32_t*)digest;
unsigned int usedspace;
/* Sanity check: */
REQUIRE(context != (isc_sha256_t *)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (isc_uint8_t*)0) {
usedspace = (unsigned int)((context->bitcount >> 3) %
ISC_SHA256_BLOCK_LENGTH);
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
REVERSE64(context->bitcount,context->bitcount);
#endif
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= ISC_SHA256_SHORT_BLOCK_LENGTH) {
/* Set-up for the last transform: */
memset(&context->buffer[usedspace], 0,
ISC_SHA256_SHORT_BLOCK_LENGTH - usedspace);
} else {
if (usedspace < ISC_SHA256_BLOCK_LENGTH) {
memset(&context->buffer[usedspace], 0,
ISC_SHA256_BLOCK_LENGTH -
usedspace);
}
/* Do second-to-last transform: */
isc_sha256_transform(context,
(isc_uint32_t*)context->buffer);
/* And set-up for the last transform: */
memset(context->buffer, 0,
ISC_SHA256_SHORT_BLOCK_LENGTH);
}
} else {
/* Set-up for the last transform: */
memset(context->buffer, 0, ISC_SHA256_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Set the bit count: */
*(isc_uint64_t*)&context->buffer[ISC_SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
/* Final transform: */
isc_sha256_transform(context, (isc_uint32_t*)context->buffer);
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++) {
REVERSE32(context->state[j],context->state[j]);
*d++ = context->state[j];
}
}
#else
memcpy(d, context->state, ISC_SHA256_DIGESTLENGTH);
#endif
}
/* Clean up state data: */
memset(context, 0, sizeof(context));
usedspace = 0;
}
char *
isc_sha256_end(isc_sha256_t *context, char buffer[]) {
isc_uint8_t digest[ISC_SHA256_DIGESTLENGTH], *d = digest;
unsigned int i;
/* Sanity check: */
REQUIRE(context != (isc_sha256_t *)0);
if (buffer != (char*)0) {
isc_sha256_final(digest, context);
for (i = 0; i < ISC_SHA256_DIGESTLENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
memset(context, 0, sizeof(context));
}
memset(digest, 0, ISC_SHA256_DIGESTLENGTH);
return buffer;
}
char *
isc_sha256_data(const isc_uint8_t* data, size_t len,
char digest[ISC_SHA256_DIGESTSTRINGLENGTH])
{
isc_sha256_t context;
isc_sha256_init(&context);
isc_sha256_update(&context, data, len);
return (isc_sha256_end(&context, digest));
}
/*** SHA-512: *********************************************************/
void
isc_sha512_init(isc_sha512_t *context) {
if (context == (isc_sha512_t *)0) {
return;
}
memcpy(context->state, sha512_initial_hash_value,
ISC_SHA512_DIGESTLENGTH);
memset(context->buffer, 0, ISC_SHA512_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
#ifdef ISC_SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-512 round macros: */
#if BYTE_ORDER == LITTLE_ENDIAN
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
REVERSE64(*data++, W512[j]); \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
K512[j] + W512[j]; \
(d) += T1, \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
j++
#else /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
K512[j] + (W512[j] = *data++); \
(d) += T1; \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
j++
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND512(a,b,c,d,e,f,g,h) \
s0 = W512[(j+1)&0x0f]; \
s0 = sigma0_512(s0); \
s1 = W512[(j+14)&0x0f]; \
s1 = sigma1_512(s1); \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
j++
void isc_sha512_transform(isc_sha512_t *context, const isc_uint64_t* data) {
isc_uint64_t a, b, c, d, e, f, g, h, s0, s1;
isc_uint64_t T1, *W512 = (isc_uint64_t*)context->buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds up to 79: */
do {
ROUND512(a,b,c,d,e,f,g,h);
ROUND512(h,a,b,c,d,e,f,g);
ROUND512(g,h,a,b,c,d,e,f);
ROUND512(f,g,h,a,b,c,d,e);
ROUND512(e,f,g,h,a,b,c,d);
ROUND512(d,e,f,g,h,a,b,c);
ROUND512(c,d,e,f,g,h,a,b);
ROUND512(b,c,d,e,f,g,h,a);
} while (j < 80);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* ISC_SHA2_UNROLL_TRANSFORM */
void
isc_sha512_transform(isc_sha512_t *context, const isc_uint64_t* data) {
isc_uint64_t a, b, c, d, e, f, g, h, s0, s1;
isc_uint64_t T1, T2, *W512 = (isc_uint64_t*)context->buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
REVERSE64(*data++, W512[j]);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
/* Apply the SHA-512 compression function to update a..h with copy */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W512[(j+1)&0x0f];
s0 = sigma0_512(s0);
s1 = W512[(j+14)&0x0f];
s1 = sigma1_512(s1);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 80);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* ISC_SHA2_UNROLL_TRANSFORM */
void
isc_sha512_invalidate(isc_sha512_t *context) {
memset(context, 0, sizeof(isc_sha512_t));
}
void
isc_sha512_update(isc_sha512_t *context, const isc_uint8_t *data, size_t len) {
unsigned int freespace, usedspace;
if (len == 0U) {
/* Calling with no data is valid - we do nothing */
return;
}
/* Sanity check: */
REQUIRE(context != (isc_sha512_t *)0 && data != (isc_uint8_t*)0);
usedspace = (unsigned int)((context->bitcount[0] >> 3) %
ISC_SHA512_BLOCK_LENGTH);
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = ISC_SHA512_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
memcpy(&context->buffer[usedspace], data, freespace);
ADDINC128(context->bitcount, freespace << 3);
len -= freespace;
data += freespace;
isc_sha512_transform(context,
(isc_uint64_t*)context->buffer);
} else {
/* The buffer is not yet full */
memcpy(&context->buffer[usedspace], data, len);
ADDINC128(context->bitcount, len << 3);
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= ISC_SHA512_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
memcpy(context->buffer, data, ISC_SHA512_BLOCK_LENGTH);
isc_sha512_transform(context, (isc_uint64_t*)context->buffer);
ADDINC128(context->bitcount, ISC_SHA512_BLOCK_LENGTH << 3);
len -= ISC_SHA512_BLOCK_LENGTH;
data += ISC_SHA512_BLOCK_LENGTH;
}
if (len > 0U) {
/* There's left-overs, so save 'em */
memcpy(context->buffer, data, len);
ADDINC128(context->bitcount, len << 3);
}
/* Clean up: */
usedspace = freespace = 0;
}
void isc_sha512_last(isc_sha512_t *context) {
unsigned int usedspace;
usedspace = (unsigned int)((context->bitcount[0] >> 3) %
ISC_SHA512_BLOCK_LENGTH);
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
REVERSE64(context->bitcount[0],context->bitcount[0]);
REVERSE64(context->bitcount[1],context->bitcount[1]);
#endif
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= ISC_SHA512_SHORT_BLOCK_LENGTH) {
/* Set-up for the last transform: */
memset(&context->buffer[usedspace], 0,
ISC_SHA512_SHORT_BLOCK_LENGTH - usedspace);
} else {
if (usedspace < ISC_SHA512_BLOCK_LENGTH) {
memset(&context->buffer[usedspace], 0,
ISC_SHA512_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
isc_sha512_transform(context,
(isc_uint64_t*)context->buffer);
/* And set-up for the last transform: */
memset(context->buffer, 0, ISC_SHA512_BLOCK_LENGTH - 2);
}
} else {
/* Prepare for final transform: */
memset(context->buffer, 0, ISC_SHA512_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Store the length of input data (in bits): */
*(isc_uint64_t*)&context->buffer[ISC_SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
*(isc_uint64_t*)&context->buffer[ISC_SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
/* Final transform: */
isc_sha512_transform(context, (isc_uint64_t*)context->buffer);
}
void isc_sha512_final(isc_uint8_t digest[], isc_sha512_t *context) {
isc_uint64_t *d = (isc_uint64_t*)digest;
/* Sanity check: */
REQUIRE(context != (isc_sha512_t *)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (isc_uint8_t*)0) {
isc_sha512_last(context);
/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++) {
REVERSE64(context->state[j],context->state[j]);
*d++ = context->state[j];
}
}
#else
memcpy(d, context->state, ISC_SHA512_DIGESTLENGTH);
#endif
}
/* Zero out state data */
memset(context, 0, sizeof(context));
}
char *
isc_sha512_end(isc_sha512_t *context, char buffer[]) {
isc_uint8_t digest[ISC_SHA512_DIGESTLENGTH], *d = digest;
unsigned int i;
/* Sanity check: */
REQUIRE(context != (isc_sha512_t *)0);
if (buffer != (char*)0) {
isc_sha512_final(digest, context);
for (i = 0; i < ISC_SHA512_DIGESTLENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
memset(context, 0, sizeof(context));
}
memset(digest, 0, ISC_SHA512_DIGESTLENGTH);
return buffer;
}
char *
isc_sha512_data(const isc_uint8_t *data, size_t len,
char digest[ISC_SHA512_DIGESTSTRINGLENGTH])
{
isc_sha512_t context;
isc_sha512_init(&context);
isc_sha512_update(&context, data, len);
return (isc_sha512_end(&context, digest));
}
/*** SHA-384: *********************************************************/
void
isc_sha384_init(isc_sha384_t *context) {
if (context == (isc_sha384_t *)0) {
return;
}
memcpy(context->state, sha384_initial_hash_value,
ISC_SHA512_DIGESTLENGTH);
memset(context->buffer, 0, ISC_SHA384_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
void
isc_sha384_invalidate(isc_sha384_t *context) {
memset(context, 0, sizeof(isc_sha384_t));
}
void
isc_sha384_update(isc_sha384_t *context, const isc_uint8_t* data, size_t len) {
isc_sha512_update((isc_sha512_t *)context, data, len);
}
void
isc_sha384_final(isc_uint8_t digest[], isc_sha384_t *context) {
isc_uint64_t *d = (isc_uint64_t*)digest;
/* Sanity check: */
REQUIRE(context != (isc_sha384_t *)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (isc_uint8_t*)0) {
isc_sha512_last((isc_sha512_t *)context);
/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 6; j++) {
REVERSE64(context->state[j],context->state[j]);
*d++ = context->state[j];
}
}
#else
memcpy(d, context->state, ISC_SHA384_DIGESTLENGTH);
#endif
}
/* Zero out state data */
memset(context, 0, sizeof(context));
}
char *
isc_sha384_end(isc_sha384_t *context, char buffer[]) {
isc_uint8_t digest[ISC_SHA384_DIGESTLENGTH], *d = digest;
unsigned int i;
/* Sanity check: */
REQUIRE(context != (isc_sha384_t *)0);
if (buffer != (char*)0) {
isc_sha384_final(digest, context);
for (i = 0; i < ISC_SHA384_DIGESTLENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
memset(context, 0, sizeof(context));
}
memset(digest, 0, ISC_SHA384_DIGESTLENGTH);
return buffer;
}
char*
isc_sha384_data(const isc_uint8_t *data, size_t len,
char digest[ISC_SHA384_DIGESTSTRINGLENGTH])
{
isc_sha384_t context;
isc_sha384_init(&context);
isc_sha384_update(&context, data, len);
return (isc_sha384_end(&context, digest));
}