b6b6f9cc7c
Improvements include: * Add support for reporting and handling a number of new constants in various tools, including: * CloudABI OSABI * DT_TLSDESC_* * i386, MIPS, SPARC and amd64 relocations * C++ demangler bug fixes * Man page updates * Improved input validation in several tools This update also reduces diffs against upstream as a number of fixes included in upstream were previously cherry-picked into FreeBSD. Sponsored by: The FreeBSD Foundation
1089 lines
28 KiB
Plaintext
1089 lines
28 KiB
Plaintext
/*-
|
|
* Copyright (c) 2006-2011 Joseph Koshy
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <libelf.h>
|
|
#include <string.h>
|
|
|
|
#include "_libelf.h"
|
|
|
|
ELFTC_VCSID("$Id: libelf_convert.m4 3429 2016-03-12 04:12:39Z emaste $");
|
|
|
|
/* WARNING: GENERATED FROM __file__. */
|
|
|
|
divert(-1)
|
|
|
|
# Generate conversion routines for converting between in-memory and
|
|
# file representations of Elf data structures.
|
|
#
|
|
# These conversions use the type information defined in `elf_types.m4'.
|
|
|
|
include(SRCDIR`/elf_types.m4')
|
|
|
|
# For the purposes of generating conversion code, ELF types may be
|
|
# classified according to the following characteristics:
|
|
#
|
|
# 1. Whether the ELF type can be directly mapped to an integral C
|
|
# language type. For example, the ELF_T_WORD type maps directly to
|
|
# a 'uint32_t', but ELF_T_GNUHASH lacks a matching C type.
|
|
#
|
|
# 2. Whether the type has word size dependent variants. For example,
|
|
# ELT_T_EHDR is represented using C types Elf32_Ehdr and El64_Ehdr,
|
|
# and the ELF_T_ADDR and ELF_T_OFF types have integral C types that
|
|
# can be 32- or 64- bit wide.
|
|
#
|
|
# 3. Whether the ELF types has a fixed representation or not. For
|
|
# example, the ELF_T_SYM type has a fixed size file representation,
|
|
# some types like ELF_T_NOTE and ELF_T_GNUHASH use a variable size
|
|
# representation.
|
|
#
|
|
# We use m4 macros to generate conversion code for ELF types that have
|
|
# a fixed size representation. Conversion functions for the remaining
|
|
# types are coded by hand.
|
|
#
|
|
#* Handling File and Memory Representations
|
|
#
|
|
# `In-memory' representations of an Elf data structure use natural
|
|
# alignments and native byte ordering. This allows pointer arithmetic
|
|
# and casting to work as expected. On the other hand, the `file'
|
|
# representation of an ELF data structure could possibly be packed
|
|
# tighter than its `in-memory' representation, and could be of a
|
|
# differing byte order. Reading ELF objects that are members of `ar'
|
|
# archives present an additional complication: `ar' pads file data to
|
|
# even addresses, so file data structures in an archive member
|
|
# residing inside an `ar' archive could be at misaligned memory
|
|
# addresses when brought into memory.
|
|
#
|
|
# In summary, casting the `char *' pointers that point to memory
|
|
# representations (i.e., source pointers for the *_tof() functions and
|
|
# the destination pointers for the *_tom() functions), is safe, as
|
|
# these pointers should be correctly aligned for the memory type
|
|
# already. However, pointers to file representations have to be
|
|
# treated as being potentially unaligned and no casting can be done.
|
|
|
|
# NOCVT(TYPE) -- Do not generate the cvt[] structure entry for TYPE
|
|
define(`NOCVT',`define(`NOCVT_'$1,1)')
|
|
|
|
# NOFUNC(TYPE) -- Do not generate a conversion function for TYPE
|
|
define(`NOFUNC',`define(`NOFUNC_'$1,1)')
|
|
|
|
# IGNORE(TYPE) -- Completely ignore the type.
|
|
define(`IGNORE',`NOCVT($1)NOFUNC($1)')
|
|
|
|
# Mark ELF types that should not be processed by the M4 macros below.
|
|
|
|
# Types for which we use functions with non-standard names.
|
|
IGNORE(`BYTE') # Uses a wrapper around memcpy().
|
|
IGNORE(`NOTE') # Not a fixed size type.
|
|
|
|
# Types for which we supply hand-coded functions.
|
|
NOFUNC(`GNUHASH') # A type with complex internal structure.
|
|
NOFUNC(`VDEF') # See MAKE_VERSION_CONVERTERS below.
|
|
NOFUNC(`VNEED') # ..
|
|
|
|
# Unimplemented types.
|
|
IGNORE(`MOVEP')
|
|
|
|
# ELF types that don't exist in a 32-bit world.
|
|
NOFUNC(`XWORD32')
|
|
NOFUNC(`SXWORD32')
|
|
|
|
# `Primitive' ELF types are those that are an alias for an integral
|
|
# type. As they have no internal structure, they can be copied using
|
|
# a `memcpy()', and byteswapped in straightforward way.
|
|
#
|
|
# Mark all ELF types that directly map to integral C types.
|
|
define(`PRIM_ADDR', 1)
|
|
define(`PRIM_BYTE', 1)
|
|
define(`PRIM_HALF', 1)
|
|
define(`PRIM_LWORD', 1)
|
|
define(`PRIM_OFF', 1)
|
|
define(`PRIM_SWORD', 1)
|
|
define(`PRIM_SXWORD', 1)
|
|
define(`PRIM_WORD', 1)
|
|
define(`PRIM_XWORD', 1)
|
|
|
|
# Note the primitive types that are size-dependent.
|
|
define(`SIZEDEP_ADDR', 1)
|
|
define(`SIZEDEP_OFF', 1)
|
|
|
|
# Generate conversion functions for primitive types.
|
|
#
|
|
# Macro use: MAKEPRIMFUNCS(ELFTYPE,CTYPE,TYPESIZE,SYMSIZE)
|
|
# `$1': Name of the ELF type.
|
|
# `$2': C structure name suffix.
|
|
# `$3': ELF class specifier for types, one of [`32', `64'].
|
|
# `$4': Additional ELF class specifier, one of [`', `32', `64'].
|
|
#
|
|
# Generates a pair of conversion functions.
|
|
define(`MAKEPRIMFUNCS',`
|
|
static int
|
|
_libelf_cvt_$1$4_tof(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t count, int byteswap)
|
|
{
|
|
Elf$3_$2 t, *s = (Elf$3_$2 *) (uintptr_t) src;
|
|
size_t c;
|
|
|
|
(void) dsz;
|
|
|
|
if (!byteswap) {
|
|
(void) memcpy(dst, src, count * sizeof(*s));
|
|
return (1);
|
|
}
|
|
|
|
for (c = 0; c < count; c++) {
|
|
t = *s++;
|
|
SWAP_$1$4(t);
|
|
WRITE_$1$4(dst,t);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
_libelf_cvt_$1$4_tom(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t count, int byteswap)
|
|
{
|
|
Elf$3_$2 t, *d = (Elf$3_$2 *) (uintptr_t) dst;
|
|
size_t c;
|
|
|
|
if (dsz < count * sizeof(Elf$3_$2))
|
|
return (0);
|
|
|
|
if (!byteswap) {
|
|
(void) memcpy(dst, src, count * sizeof(*d));
|
|
return (1);
|
|
}
|
|
|
|
for (c = 0; c < count; c++) {
|
|
READ_$1$4(src,t);
|
|
SWAP_$1$4(t);
|
|
*d++ = t;
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
')
|
|
|
|
#
|
|
# Handling composite ELF types
|
|
#
|
|
|
|
# SWAP_FIELD(FIELDNAME,ELFTYPE) -- Generate code to swap one field.
|
|
define(`SWAP_FIELD',
|
|
`ifdef(`SIZEDEP_'$2,
|
|
`SWAP_$2'SZ()`(t.$1);
|
|
',
|
|
`SWAP_$2(t.$1);
|
|
')')
|
|
|
|
# SWAP_MEMBERS(STRUCT) -- Iterate over a structure definition.
|
|
define(`SWAP_MEMBERS',
|
|
`ifelse($#,1,`/**/',
|
|
`SWAP_FIELD($1)SWAP_MEMBERS(shift($@))')')
|
|
|
|
# SWAP_STRUCT(CTYPE,SIZE) -- Generate code to swap an ELF structure.
|
|
define(`SWAP_STRUCT',
|
|
`pushdef(`SZ',$2)/* Swap an Elf$2_$1 */
|
|
SWAP_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')
|
|
|
|
# WRITE_FIELD(ELFTYPE,FIELDNAME) -- Generate code to write one field.
|
|
define(`WRITE_FIELD',
|
|
`ifdef(`SIZEDEP_'$2,
|
|
`WRITE_$2'SZ()`(dst,t.$1);
|
|
',
|
|
`WRITE_$2(dst,t.$1);
|
|
')')
|
|
|
|
# WRITE_MEMBERS(ELFTYPELIST) -- Iterate over a structure definition.
|
|
define(`WRITE_MEMBERS',
|
|
`ifelse($#,1,`/**/',
|
|
`WRITE_FIELD($1)WRITE_MEMBERS(shift($@))')')
|
|
|
|
# WRITE_STRUCT(CTYPE,SIZE) -- Generate code to write out an ELF structure.
|
|
define(`WRITE_STRUCT',
|
|
`pushdef(`SZ',$2)/* Write an Elf$2_$1 */
|
|
WRITE_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')
|
|
|
|
# READ_FIELD(ELFTYPE,CTYPE) -- Generate code to read one field.
|
|
define(`READ_FIELD',
|
|
`ifdef(`SIZEDEP_'$2,
|
|
`READ_$2'SZ()`(s,t.$1);
|
|
',
|
|
`READ_$2(s,t.$1);
|
|
')')
|
|
|
|
# READ_MEMBERS(ELFTYPELIST) -- Iterate over a structure definition.
|
|
define(`READ_MEMBERS',
|
|
`ifelse($#,1,`/**/',
|
|
`READ_FIELD($1)READ_MEMBERS(shift($@))')')
|
|
|
|
# READ_STRUCT(CTYPE,SIZE) -- Generate code to read an ELF structure.
|
|
define(`READ_STRUCT',
|
|
`pushdef(`SZ',$2)/* Read an Elf$2_$1 */
|
|
READ_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')
|
|
|
|
|
|
# MAKECOMPFUNCS -- Generate converters for composite ELF structures.
|
|
#
|
|
# When converting data to file representation, the source pointer will
|
|
# be naturally aligned for a data structure's in-memory
|
|
# representation. When converting data to memory, the destination
|
|
# pointer will be similarly aligned.
|
|
#
|
|
# For in-place conversions, when converting to file representations,
|
|
# the source buffer is large enough to hold `file' data. When
|
|
# converting from file to memory, we need to be careful to work
|
|
# `backwards', to avoid overwriting unconverted data.
|
|
#
|
|
# Macro use:
|
|
# `$1': Name of the ELF type.
|
|
# `$2': C structure name suffix.
|
|
# `$3': ELF class specifier, one of [`', `32', `64']
|
|
define(`MAKECOMPFUNCS', `ifdef(`NOFUNC_'$1$3,`',`
|
|
static int
|
|
_libelf_cvt_$1$3_tof(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t count, int byteswap)
|
|
{
|
|
Elf$3_$2 t, *s;
|
|
size_t c;
|
|
|
|
(void) dsz;
|
|
|
|
s = (Elf$3_$2 *) (uintptr_t) src;
|
|
for (c = 0; c < count; c++) {
|
|
t = *s++;
|
|
if (byteswap) {
|
|
SWAP_STRUCT($2,$3)
|
|
}
|
|
WRITE_STRUCT($2,$3)
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
_libelf_cvt_$1$3_tom(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t count, int byteswap)
|
|
{
|
|
Elf$3_$2 t, *d;
|
|
unsigned char *s,*s0;
|
|
size_t fsz;
|
|
|
|
fsz = elf$3_fsize(ELF_T_$1, (size_t) 1, EV_CURRENT);
|
|
d = ((Elf$3_$2 *) (uintptr_t) dst) + (count - 1);
|
|
s0 = src + (count - 1) * fsz;
|
|
|
|
if (dsz < count * sizeof(Elf$3_$2))
|
|
return (0);
|
|
|
|
while (count--) {
|
|
s = s0;
|
|
READ_STRUCT($2,$3)
|
|
if (byteswap) {
|
|
SWAP_STRUCT($2,$3)
|
|
}
|
|
*d-- = t; s0 -= fsz;
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
')')
|
|
|
|
# MAKE_TYPE_CONVERTER(ELFTYPE,CTYPE)
|
|
#
|
|
# Make type convertor functions from the type definition
|
|
# of the ELF type:
|
|
# - Skip convertors marked as `NOFUNC'.
|
|
# - Invoke `MAKEPRIMFUNCS' or `MAKECOMPFUNCS' as appropriate.
|
|
define(`MAKE_TYPE_CONVERTER',
|
|
`ifdef(`NOFUNC_'$1,`',
|
|
`ifdef(`PRIM_'$1,
|
|
`ifdef(`SIZEDEP_'$1,
|
|
`MAKEPRIMFUNCS($1,$2,32,32)dnl
|
|
MAKEPRIMFUNCS($1,$2,64,64)',
|
|
`MAKEPRIMFUNCS($1,$2,64)')',
|
|
`MAKECOMPFUNCS($1,$2,32)dnl
|
|
MAKECOMPFUNCS($1,$2,64)')')')
|
|
|
|
# MAKE_TYPE_CONVERTERS(ELFTYPELIST) -- Generate conversion functions.
|
|
define(`MAKE_TYPE_CONVERTERS',
|
|
`ifelse($#,1,`',
|
|
`MAKE_TYPE_CONVERTER($1)MAKE_TYPE_CONVERTERS(shift($@))')')
|
|
|
|
|
|
#
|
|
# Macros to generate entries for the table of convertors.
|
|
#
|
|
|
|
# CONV(ELFTYPE,SIZE,DIRECTION)
|
|
#
|
|
# Generate the name of a convertor function.
|
|
define(`CONV',
|
|
`ifdef(`NOFUNC_'$1$2,
|
|
`.$3$2 = NULL',
|
|
`ifdef(`PRIM_'$1,
|
|
`ifdef(`SIZEDEP_'$1,
|
|
`.$3$2 = _libelf_cvt_$1$2_$3',
|
|
`.$3$2 = _libelf_cvt_$1_$3')',
|
|
`.$3$2 = _libelf_cvt_$1$2_$3')')')
|
|
|
|
# CONVERTER_NAME(ELFTYPE)
|
|
#
|
|
# Generate the contents of one `struct cvt' instance.
|
|
define(`CONVERTER_NAME',
|
|
`ifdef(`NOCVT_'$1,`',
|
|
` [ELF_T_$1] = {
|
|
CONV($1,32,tof),
|
|
CONV($1,32,tom),
|
|
CONV($1,64,tof),
|
|
CONV($1,64,tom)
|
|
},
|
|
|
|
')')
|
|
|
|
# CONVERTER_NAMES(ELFTYPELIST)
|
|
#
|
|
# Generate the `struct cvt[]' array.
|
|
define(`CONVERTER_NAMES',
|
|
`ifelse($#,1,`',
|
|
`CONVERTER_NAME($1)CONVERTER_NAMES(shift($@))')')
|
|
|
|
#
|
|
# Handling ELF version sections.
|
|
#
|
|
|
|
# _FSZ(FIELD,BASETYPE) - return the file size for a field.
|
|
define(`_FSZ',
|
|
`ifelse($2,`HALF',2,
|
|
$2,`WORD',4)')
|
|
|
|
# FSZ(STRUCT) - determine the file size of a structure.
|
|
define(`FSZ',
|
|
`ifelse($#,1,0,
|
|
`eval(_FSZ($1) + FSZ(shift($@)))')')
|
|
|
|
# MAKE_VERSION_CONVERTERS(TYPE,BASE,AUX,PFX) -- Generate conversion
|
|
# functions for versioning structures.
|
|
define(`MAKE_VERSION_CONVERTERS',
|
|
`MAKE_VERSION_CONVERTER($1,$2,$3,$4,32)
|
|
MAKE_VERSION_CONVERTER($1,$2,$3,$4,64)')
|
|
|
|
# MAKE_VERSION_CONVERTOR(TYPE,CBASE,CAUX,PFX,SIZE) -- Generate a
|
|
# conversion function.
|
|
define(`MAKE_VERSION_CONVERTER',`
|
|
static int
|
|
_libelf_cvt_$1$5_tof(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t count, int byteswap)
|
|
{
|
|
Elf$5_$2 t;
|
|
Elf$5_$3 a;
|
|
const size_t verfsz = FSZ(Elf$5_$2_DEF);
|
|
const size_t auxfsz = FSZ(Elf$5_$3_DEF);
|
|
const size_t vermsz = sizeof(Elf$5_$2);
|
|
const size_t auxmsz = sizeof(Elf$5_$3);
|
|
unsigned char * const dstend = dst + dsz;
|
|
unsigned char * const srcend = src + count;
|
|
unsigned char *dtmp, *dstaux, *srcaux;
|
|
Elf$5_Word aux, anext, cnt, vnext;
|
|
|
|
for (dtmp = dst, vnext = ~0U;
|
|
vnext != 0 && dtmp + verfsz <= dstend && src + vermsz <= srcend;
|
|
dtmp += vnext, src += vnext) {
|
|
|
|
/* Read in an Elf$5_$2 structure. */
|
|
t = *((Elf$5_$2 *) (uintptr_t) src);
|
|
|
|
aux = t.$4_aux;
|
|
cnt = t.$4_cnt;
|
|
vnext = t.$4_next;
|
|
|
|
if (byteswap) {
|
|
SWAP_STRUCT($2, $5)
|
|
}
|
|
|
|
dst = dtmp;
|
|
WRITE_STRUCT($2, $5)
|
|
|
|
if (aux < verfsz)
|
|
return (0);
|
|
|
|
/* Process AUX entries. */
|
|
for (anext = ~0U, dstaux = dtmp + aux, srcaux = src + aux;
|
|
cnt != 0 && anext != 0 && dstaux + auxfsz <= dstend &&
|
|
srcaux + auxmsz <= srcend;
|
|
dstaux += anext, srcaux += anext, cnt--) {
|
|
|
|
/* Read in an Elf$5_$3 structure. */
|
|
a = *((Elf$5_$3 *) (uintptr_t) srcaux);
|
|
anext = a.$4a_next;
|
|
|
|
if (byteswap) {
|
|
pushdef(`t',`a')SWAP_STRUCT($3, $5)popdef(`t')
|
|
}
|
|
|
|
dst = dstaux;
|
|
pushdef(`t',`a')WRITE_STRUCT($3, $5)popdef(`t')
|
|
}
|
|
|
|
if (anext || cnt)
|
|
return (0);
|
|
}
|
|
|
|
if (vnext)
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
_libelf_cvt_$1$5_tom(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t count, int byteswap)
|
|
{
|
|
Elf$5_$2 t, *dp;
|
|
Elf$5_$3 a, *ap;
|
|
const size_t verfsz = FSZ(Elf$5_$2_DEF);
|
|
const size_t auxfsz = FSZ(Elf$5_$3_DEF);
|
|
const size_t vermsz = sizeof(Elf$5_$2);
|
|
const size_t auxmsz = sizeof(Elf$5_$3);
|
|
unsigned char * const dstend = dst + dsz;
|
|
unsigned char * const srcend = src + count;
|
|
unsigned char *dstaux, *s, *srcaux, *stmp;
|
|
Elf$5_Word aux, anext, cnt, vnext;
|
|
|
|
for (stmp = src, vnext = ~0U;
|
|
vnext != 0 && stmp + verfsz <= srcend && dst + vermsz <= dstend;
|
|
stmp += vnext, dst += vnext) {
|
|
|
|
/* Read in a $1 structure. */
|
|
s = stmp;
|
|
READ_STRUCT($2, $5)
|
|
if (byteswap) {
|
|
SWAP_STRUCT($2, $5)
|
|
}
|
|
|
|
dp = (Elf$5_$2 *) (uintptr_t) dst;
|
|
*dp = t;
|
|
|
|
aux = t.$4_aux;
|
|
cnt = t.$4_cnt;
|
|
vnext = t.$4_next;
|
|
|
|
if (aux < vermsz)
|
|
return (0);
|
|
|
|
/* Process AUX entries. */
|
|
for (anext = ~0U, dstaux = dst + aux, srcaux = stmp + aux;
|
|
cnt != 0 && anext != 0 && dstaux + auxmsz <= dstend &&
|
|
srcaux + auxfsz <= srcend;
|
|
dstaux += anext, srcaux += anext, cnt--) {
|
|
|
|
s = srcaux;
|
|
pushdef(`t',`a')READ_STRUCT($3, $5)popdef(`t')
|
|
|
|
if (byteswap) {
|
|
pushdef(`t',`a')SWAP_STRUCT($3, $5)popdef(`t')
|
|
}
|
|
|
|
anext = a.$4a_next;
|
|
|
|
ap = ((Elf$5_$3 *) (uintptr_t) dstaux);
|
|
*ap = a;
|
|
}
|
|
|
|
if (anext || cnt)
|
|
return (0);
|
|
}
|
|
|
|
if (vnext)
|
|
return (0);
|
|
|
|
return (1);
|
|
}')
|
|
|
|
divert(0)
|
|
|
|
/*
|
|
* C macros to byte swap integral quantities.
|
|
*/
|
|
|
|
#define SWAP_BYTE(X) do { (void) (X); } while (0)
|
|
#define SWAP_IDENT(X) do { (void) (X); } while (0)
|
|
#define SWAP_HALF(X) do { \
|
|
uint16_t _x = (uint16_t) (X); \
|
|
uint32_t _t = _x & 0xFFU; \
|
|
_t <<= 8U; _x >>= 8U; _t |= _x & 0xFFU; \
|
|
(X) = (uint16_t) _t; \
|
|
} while (0)
|
|
#define _SWAP_WORD(X, T) do { \
|
|
uint32_t _x = (uint32_t) (X); \
|
|
uint32_t _t = _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
(X) = (T) _t; \
|
|
} while (0)
|
|
#define SWAP_ADDR32(X) _SWAP_WORD(X, Elf32_Addr)
|
|
#define SWAP_OFF32(X) _SWAP_WORD(X, Elf32_Off)
|
|
#define SWAP_SWORD(X) _SWAP_WORD(X, Elf32_Sword)
|
|
#define SWAP_WORD(X) _SWAP_WORD(X, Elf32_Word)
|
|
#define _SWAP_WORD64(X, T) do { \
|
|
uint64_t _x = (uint64_t) (X); \
|
|
uint64_t _t = _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
(X) = (T) _t; \
|
|
} while (0)
|
|
#define SWAP_ADDR64(X) _SWAP_WORD64(X, Elf64_Addr)
|
|
#define SWAP_LWORD(X) _SWAP_WORD64(X, Elf64_Lword)
|
|
#define SWAP_OFF64(X) _SWAP_WORD64(X, Elf64_Off)
|
|
#define SWAP_SXWORD(X) _SWAP_WORD64(X, Elf64_Sxword)
|
|
#define SWAP_XWORD(X) _SWAP_WORD64(X, Elf64_Xword)
|
|
|
|
/*
|
|
* C macros to write out various integral values.
|
|
*
|
|
* Note:
|
|
* - The destination pointer could be unaligned.
|
|
* - Values are written out in native byte order.
|
|
* - The destination pointer is incremented after the write.
|
|
*/
|
|
#define WRITE_BYTE(P,X) do { \
|
|
unsigned char *const _p = (unsigned char *) (P); \
|
|
_p[0] = (unsigned char) (X); \
|
|
(P) = _p + 1; \
|
|
} while (0)
|
|
#define WRITE_HALF(P,X) do { \
|
|
uint16_t _t = (X); \
|
|
unsigned char *const _p = (unsigned char *) (P); \
|
|
const unsigned char *const _q = (unsigned char *) &_t; \
|
|
_p[0] = _q[0]; \
|
|
_p[1] = _q[1]; \
|
|
(P) = _p + 2; \
|
|
} while (0)
|
|
#define WRITE_WORD(P,X) do { \
|
|
uint32_t _t = (uint32_t) (X); \
|
|
unsigned char *const _p = (unsigned char *) (P); \
|
|
const unsigned char *const _q = (unsigned char *) &_t; \
|
|
_p[0] = _q[0]; \
|
|
_p[1] = _q[1]; \
|
|
_p[2] = _q[2]; \
|
|
_p[3] = _q[3]; \
|
|
(P) = _p + 4; \
|
|
} while (0)
|
|
#define WRITE_ADDR32(P,X) WRITE_WORD(P,X)
|
|
#define WRITE_OFF32(P,X) WRITE_WORD(P,X)
|
|
#define WRITE_SWORD(P,X) WRITE_WORD(P,X)
|
|
#define WRITE_WORD64(P,X) do { \
|
|
uint64_t _t = (uint64_t) (X); \
|
|
unsigned char *const _p = (unsigned char *) (P); \
|
|
const unsigned char *const _q = (unsigned char *) &_t; \
|
|
_p[0] = _q[0]; \
|
|
_p[1] = _q[1]; \
|
|
_p[2] = _q[2]; \
|
|
_p[3] = _q[3]; \
|
|
_p[4] = _q[4]; \
|
|
_p[5] = _q[5]; \
|
|
_p[6] = _q[6]; \
|
|
_p[7] = _q[7]; \
|
|
(P) = _p + 8; \
|
|
} while (0)
|
|
#define WRITE_ADDR64(P,X) WRITE_WORD64(P,X)
|
|
#define WRITE_LWORD(P,X) WRITE_WORD64(P,X)
|
|
#define WRITE_OFF64(P,X) WRITE_WORD64(P,X)
|
|
#define WRITE_SXWORD(P,X) WRITE_WORD64(P,X)
|
|
#define WRITE_XWORD(P,X) WRITE_WORD64(P,X)
|
|
#define WRITE_IDENT(P,X) do { \
|
|
(void) memcpy((P), (X), sizeof((X))); \
|
|
(P) = (P) + EI_NIDENT; \
|
|
} while (0)
|
|
|
|
/*
|
|
* C macros to read in various integral values.
|
|
*
|
|
* Note:
|
|
* - The source pointer could be unaligned.
|
|
* - Values are read in native byte order.
|
|
* - The source pointer is incremented appropriately.
|
|
*/
|
|
|
|
#define READ_BYTE(P,X) do { \
|
|
const unsigned char *const _p = \
|
|
(const unsigned char *) (P); \
|
|
(X) = _p[0]; \
|
|
(P) = (P) + 1; \
|
|
} while (0)
|
|
#define READ_HALF(P,X) do { \
|
|
uint16_t _t; \
|
|
unsigned char *const _q = (unsigned char *) &_t; \
|
|
const unsigned char *const _p = \
|
|
(const unsigned char *) (P); \
|
|
_q[0] = _p[0]; \
|
|
_q[1] = _p[1]; \
|
|
(P) = (P) + 2; \
|
|
(X) = _t; \
|
|
} while (0)
|
|
#define _READ_WORD(P,X,T) do { \
|
|
uint32_t _t; \
|
|
unsigned char *const _q = (unsigned char *) &_t; \
|
|
const unsigned char *const _p = \
|
|
(const unsigned char *) (P); \
|
|
_q[0] = _p[0]; \
|
|
_q[1] = _p[1]; \
|
|
_q[2] = _p[2]; \
|
|
_q[3] = _p[3]; \
|
|
(P) = (P) + 4; \
|
|
(X) = (T) _t; \
|
|
} while (0)
|
|
#define READ_ADDR32(P,X) _READ_WORD(P, X, Elf32_Addr)
|
|
#define READ_OFF32(P,X) _READ_WORD(P, X, Elf32_Off)
|
|
#define READ_SWORD(P,X) _READ_WORD(P, X, Elf32_Sword)
|
|
#define READ_WORD(P,X) _READ_WORD(P, X, Elf32_Word)
|
|
#define _READ_WORD64(P,X,T) do { \
|
|
uint64_t _t; \
|
|
unsigned char *const _q = (unsigned char *) &_t; \
|
|
const unsigned char *const _p = \
|
|
(const unsigned char *) (P); \
|
|
_q[0] = _p[0]; \
|
|
_q[1] = _p[1]; \
|
|
_q[2] = _p[2]; \
|
|
_q[3] = _p[3]; \
|
|
_q[4] = _p[4]; \
|
|
_q[5] = _p[5]; \
|
|
_q[6] = _p[6]; \
|
|
_q[7] = _p[7]; \
|
|
(P) = (P) + 8; \
|
|
(X) = (T) _t; \
|
|
} while (0)
|
|
#define READ_ADDR64(P,X) _READ_WORD64(P, X, Elf64_Addr)
|
|
#define READ_LWORD(P,X) _READ_WORD64(P, X, Elf64_Lword)
|
|
#define READ_OFF64(P,X) _READ_WORD64(P, X, Elf64_Off)
|
|
#define READ_SXWORD(P,X) _READ_WORD64(P, X, Elf64_Sxword)
|
|
#define READ_XWORD(P,X) _READ_WORD64(P, X, Elf64_Xword)
|
|
#define READ_IDENT(P,X) do { \
|
|
(void) memcpy((X), (P), sizeof((X))); \
|
|
(P) = (P) + EI_NIDENT; \
|
|
} while (0)
|
|
|
|
#define ROUNDUP2(V,N) (V) = ((((V) + (N) - 1)) & ~((N) - 1))
|
|
|
|
/*[*/
|
|
MAKE_TYPE_CONVERTERS(ELF_TYPE_LIST)
|
|
MAKE_VERSION_CONVERTERS(VDEF,Verdef,Verdaux,vd)
|
|
MAKE_VERSION_CONVERTERS(VNEED,Verneed,Vernaux,vn)
|
|
/*]*/
|
|
|
|
/*
|
|
* Sections of type ELF_T_BYTE are never byteswapped, consequently a
|
|
* simple memcpy suffices for both directions of conversion.
|
|
*/
|
|
|
|
static int
|
|
_libelf_cvt_BYTE_tox(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t count, int byteswap)
|
|
{
|
|
(void) byteswap;
|
|
if (dsz < count)
|
|
return (0);
|
|
if (dst != src)
|
|
(void) memcpy(dst, src, count);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Sections of type ELF_T_GNUHASH start with a header containing 4 32-bit
|
|
* words. Bloom filter data comes next, followed by hash buckets and the
|
|
* hash chain.
|
|
*
|
|
* Bloom filter words are 64 bit wide on ELFCLASS64 objects and are 32 bit
|
|
* wide on ELFCLASS32 objects. The other objects in this section are 32
|
|
* bits wide.
|
|
*
|
|
* Argument `srcsz' denotes the number of bytes to be converted. In the
|
|
* 32-bit case we need to translate `srcsz' to a count of 32-bit words.
|
|
*/
|
|
|
|
static int
|
|
_libelf_cvt_GNUHASH32_tom(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t srcsz, int byteswap)
|
|
{
|
|
return (_libelf_cvt_WORD_tom(dst, dsz, src, srcsz / sizeof(uint32_t),
|
|
byteswap));
|
|
}
|
|
|
|
static int
|
|
_libelf_cvt_GNUHASH32_tof(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t srcsz, int byteswap)
|
|
{
|
|
return (_libelf_cvt_WORD_tof(dst, dsz, src, srcsz / sizeof(uint32_t),
|
|
byteswap));
|
|
}
|
|
|
|
static int
|
|
_libelf_cvt_GNUHASH64_tom(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t srcsz, int byteswap)
|
|
{
|
|
size_t sz;
|
|
uint64_t t64, *bloom64;
|
|
Elf_GNU_Hash_Header *gh;
|
|
uint32_t n, nbuckets, nchains, maskwords, shift2, symndx, t32;
|
|
uint32_t *buckets, *chains;
|
|
|
|
sz = 4 * sizeof(uint32_t); /* File header is 4 words long. */
|
|
if (dsz < sizeof(Elf_GNU_Hash_Header) || srcsz < sz)
|
|
return (0);
|
|
|
|
/* Read in the section header and byteswap if needed. */
|
|
READ_WORD(src, nbuckets);
|
|
READ_WORD(src, symndx);
|
|
READ_WORD(src, maskwords);
|
|
READ_WORD(src, shift2);
|
|
|
|
srcsz -= sz;
|
|
|
|
if (byteswap) {
|
|
SWAP_WORD(nbuckets);
|
|
SWAP_WORD(symndx);
|
|
SWAP_WORD(maskwords);
|
|
SWAP_WORD(shift2);
|
|
}
|
|
|
|
/* Check source buffer and destination buffer sizes. */
|
|
sz = nbuckets * sizeof(uint32_t) + maskwords * sizeof(uint64_t);
|
|
if (srcsz < sz || dsz < sz + sizeof(Elf_GNU_Hash_Header))
|
|
return (0);
|
|
|
|
gh = (Elf_GNU_Hash_Header *) (uintptr_t) dst;
|
|
gh->gh_nbuckets = nbuckets;
|
|
gh->gh_symndx = symndx;
|
|
gh->gh_maskwords = maskwords;
|
|
gh->gh_shift2 = shift2;
|
|
|
|
dsz -= sizeof(Elf_GNU_Hash_Header);
|
|
dst += sizeof(Elf_GNU_Hash_Header);
|
|
|
|
bloom64 = (uint64_t *) (uintptr_t) dst;
|
|
|
|
/* Copy bloom filter data. */
|
|
for (n = 0; n < maskwords; n++) {
|
|
READ_XWORD(src, t64);
|
|
if (byteswap)
|
|
SWAP_XWORD(t64);
|
|
bloom64[n] = t64;
|
|
}
|
|
|
|
/* The hash buckets follows the bloom filter. */
|
|
dst += maskwords * sizeof(uint64_t);
|
|
buckets = (uint32_t *) (uintptr_t) dst;
|
|
|
|
for (n = 0; n < nbuckets; n++) {
|
|
READ_WORD(src, t32);
|
|
if (byteswap)
|
|
SWAP_WORD(t32);
|
|
buckets[n] = t32;
|
|
}
|
|
|
|
dst += nbuckets * sizeof(uint32_t);
|
|
|
|
/* The hash chain follows the hash buckets. */
|
|
dsz -= sz;
|
|
srcsz -= sz;
|
|
|
|
if (dsz < srcsz) /* Destination lacks space. */
|
|
return (0);
|
|
|
|
nchains = srcsz / sizeof(uint32_t);
|
|
chains = (uint32_t *) (uintptr_t) dst;
|
|
|
|
for (n = 0; n < nchains; n++) {
|
|
READ_WORD(src, t32);
|
|
if (byteswap)
|
|
SWAP_WORD(t32);
|
|
*chains++ = t32;
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
_libelf_cvt_GNUHASH64_tof(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t srcsz, int byteswap)
|
|
{
|
|
uint32_t *s32;
|
|
size_t sz, hdrsz;
|
|
uint64_t *s64, t64;
|
|
Elf_GNU_Hash_Header *gh;
|
|
uint32_t maskwords, n, nbuckets, nchains, t0, t1, t2, t3, t32;
|
|
|
|
hdrsz = 4 * sizeof(uint32_t); /* Header is 4x32 bits. */
|
|
if (dsz < hdrsz || srcsz < sizeof(Elf_GNU_Hash_Header))
|
|
return (0);
|
|
|
|
gh = (Elf_GNU_Hash_Header *) (uintptr_t) src;
|
|
|
|
t0 = nbuckets = gh->gh_nbuckets;
|
|
t1 = gh->gh_symndx;
|
|
t2 = maskwords = gh->gh_maskwords;
|
|
t3 = gh->gh_shift2;
|
|
|
|
src += sizeof(Elf_GNU_Hash_Header);
|
|
srcsz -= sizeof(Elf_GNU_Hash_Header);
|
|
dsz -= hdrsz;
|
|
|
|
sz = gh->gh_nbuckets * sizeof(uint32_t) + gh->gh_maskwords *
|
|
sizeof(uint64_t);
|
|
|
|
if (srcsz < sz || dsz < sz)
|
|
return (0);
|
|
|
|
/* Write out the header. */
|
|
if (byteswap) {
|
|
SWAP_WORD(t0);
|
|
SWAP_WORD(t1);
|
|
SWAP_WORD(t2);
|
|
SWAP_WORD(t3);
|
|
}
|
|
|
|
WRITE_WORD(dst, t0);
|
|
WRITE_WORD(dst, t1);
|
|
WRITE_WORD(dst, t2);
|
|
WRITE_WORD(dst, t3);
|
|
|
|
/* Copy the bloom filter and the hash table. */
|
|
s64 = (uint64_t *) (uintptr_t) src;
|
|
for (n = 0; n < maskwords; n++) {
|
|
t64 = *s64++;
|
|
if (byteswap)
|
|
SWAP_XWORD(t64);
|
|
WRITE_WORD64(dst, t64);
|
|
}
|
|
|
|
s32 = (uint32_t *) s64;
|
|
for (n = 0; n < nbuckets; n++) {
|
|
t32 = *s32++;
|
|
if (byteswap)
|
|
SWAP_WORD(t32);
|
|
WRITE_WORD(dst, t32);
|
|
}
|
|
|
|
srcsz -= sz;
|
|
dsz -= sz;
|
|
|
|
/* Copy out the hash chains. */
|
|
if (dsz < srcsz)
|
|
return (0);
|
|
|
|
nchains = srcsz / sizeof(uint32_t);
|
|
for (n = 0; n < nchains; n++) {
|
|
t32 = *s32++;
|
|
if (byteswap)
|
|
SWAP_WORD(t32);
|
|
WRITE_WORD(dst, t32);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Elf_Note structures comprise a fixed size header followed by variable
|
|
* length strings. The fixed size header needs to be byte swapped, but
|
|
* not the strings.
|
|
*
|
|
* Argument `count' denotes the total number of bytes to be converted.
|
|
* The destination buffer needs to be at least `count' bytes in size.
|
|
*/
|
|
static int
|
|
_libelf_cvt_NOTE_tom(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t count, int byteswap)
|
|
{
|
|
uint32_t namesz, descsz, type;
|
|
Elf_Note *en;
|
|
size_t sz, hdrsz;
|
|
|
|
if (dsz < count) /* Destination buffer is too small. */
|
|
return (0);
|
|
|
|
hdrsz = 3 * sizeof(uint32_t);
|
|
if (count < hdrsz) /* Source too small. */
|
|
return (0);
|
|
|
|
if (!byteswap) {
|
|
(void) memcpy(dst, src, count);
|
|
return (1);
|
|
}
|
|
|
|
/* Process all notes in the section. */
|
|
while (count > hdrsz) {
|
|
/* Read the note header. */
|
|
READ_WORD(src, namesz);
|
|
READ_WORD(src, descsz);
|
|
READ_WORD(src, type);
|
|
|
|
/* Translate. */
|
|
SWAP_WORD(namesz);
|
|
SWAP_WORD(descsz);
|
|
SWAP_WORD(type);
|
|
|
|
/* Copy out the translated note header. */
|
|
en = (Elf_Note *) (uintptr_t) dst;
|
|
en->n_namesz = namesz;
|
|
en->n_descsz = descsz;
|
|
en->n_type = type;
|
|
|
|
dsz -= sizeof(Elf_Note);
|
|
dst += sizeof(Elf_Note);
|
|
count -= hdrsz;
|
|
|
|
ROUNDUP2(namesz, 4U);
|
|
ROUNDUP2(descsz, 4U);
|
|
|
|
sz = namesz + descsz;
|
|
|
|
if (count < sz || dsz < sz) /* Buffers are too small. */
|
|
return (0);
|
|
|
|
(void) memcpy(dst, src, sz);
|
|
|
|
src += sz;
|
|
dst += sz;
|
|
|
|
count -= sz;
|
|
dsz -= sz;
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
_libelf_cvt_NOTE_tof(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t count, int byteswap)
|
|
{
|
|
uint32_t namesz, descsz, type;
|
|
Elf_Note *en;
|
|
size_t sz;
|
|
|
|
if (dsz < count)
|
|
return (0);
|
|
|
|
if (!byteswap) {
|
|
(void) memcpy(dst, src, count);
|
|
return (1);
|
|
}
|
|
|
|
while (count > sizeof(Elf_Note)) {
|
|
|
|
en = (Elf_Note *) (uintptr_t) src;
|
|
namesz = en->n_namesz;
|
|
descsz = en->n_descsz;
|
|
type = en->n_type;
|
|
|
|
sz = namesz;
|
|
ROUNDUP2(sz, 4U);
|
|
sz += descsz;
|
|
ROUNDUP2(sz, 4U);
|
|
|
|
SWAP_WORD(namesz);
|
|
SWAP_WORD(descsz);
|
|
SWAP_WORD(type);
|
|
|
|
WRITE_WORD(dst, namesz);
|
|
WRITE_WORD(dst, descsz);
|
|
WRITE_WORD(dst, type);
|
|
|
|
src += sizeof(Elf_Note);
|
|
count -= sizeof(Elf_Note);
|
|
|
|
if (count < sz)
|
|
sz = count;
|
|
|
|
(void) memcpy(dst, src, sz);
|
|
|
|
src += sz;
|
|
dst += sz;
|
|
count -= sz;
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
struct converters {
|
|
int (*tof32)(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t cnt, int byteswap);
|
|
int (*tom32)(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t cnt, int byteswap);
|
|
int (*tof64)(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t cnt, int byteswap);
|
|
int (*tom64)(unsigned char *dst, size_t dsz, unsigned char *src,
|
|
size_t cnt, int byteswap);
|
|
};
|
|
|
|
|
|
static struct converters cvt[ELF_T_NUM] = {
|
|
/*[*/
|
|
CONVERTER_NAMES(ELF_TYPE_LIST)
|
|
/*]*/
|
|
|
|
/*
|
|
* Types that need hand-coded converters follow.
|
|
*/
|
|
|
|
[ELF_T_BYTE] = {
|
|
.tof32 = _libelf_cvt_BYTE_tox,
|
|
.tom32 = _libelf_cvt_BYTE_tox,
|
|
.tof64 = _libelf_cvt_BYTE_tox,
|
|
.tom64 = _libelf_cvt_BYTE_tox
|
|
},
|
|
|
|
[ELF_T_NOTE] = {
|
|
.tof32 = _libelf_cvt_NOTE_tof,
|
|
.tom32 = _libelf_cvt_NOTE_tom,
|
|
.tof64 = _libelf_cvt_NOTE_tof,
|
|
.tom64 = _libelf_cvt_NOTE_tom
|
|
}
|
|
};
|
|
|
|
int (*_libelf_get_translator(Elf_Type t, int direction, int elfclass))
|
|
(unsigned char *_dst, size_t dsz, unsigned char *_src, size_t _cnt,
|
|
int _byteswap)
|
|
{
|
|
assert(elfclass == ELFCLASS32 || elfclass == ELFCLASS64);
|
|
assert(direction == ELF_TOFILE || direction == ELF_TOMEMORY);
|
|
|
|
if (t >= ELF_T_NUM ||
|
|
(elfclass != ELFCLASS32 && elfclass != ELFCLASS64) ||
|
|
(direction != ELF_TOFILE && direction != ELF_TOMEMORY))
|
|
return (NULL);
|
|
|
|
return ((elfclass == ELFCLASS32) ?
|
|
(direction == ELF_TOFILE ? cvt[t].tof32 : cvt[t].tom32) :
|
|
(direction == ELF_TOFILE ? cvt[t].tof64 : cvt[t].tom64));
|
|
}
|