freebsd-dev/sys/i386/i386/vm86.c
Robert Watson 5f419982c2 Back out alpha/alpha/trap.c:1.124, osf1_ioctl.c:1.14, osf1_misc.c:1.57,
osf1_signal.c:1.41, amd64/amd64/trap.c:1.291, linux_socket.c:1.60,
svr4_fcntl.c:1.36, svr4_ioctl.c:1.23, svr4_ipc.c:1.18, svr4_misc.c:1.81,
svr4_signal.c:1.34, svr4_stat.c:1.21, svr4_stream.c:1.55,
svr4_termios.c:1.13, svr4_ttold.c:1.15, svr4_util.h:1.10,
ext2_alloc.c:1.43, i386/i386/trap.c:1.279, vm86.c:1.58,
unaligned.c:1.12, imgact_elf.c:1.164, ffs_alloc.c:1.133:

Now that Giant is acquired in uprintf() and tprintf(), the caller no
longer leads to acquire Giant unless it also holds another mutex that
would generate a lock order reversal when calling into these functions.
Specifically not backed out is the acquisition of Giant in nfs_socket.c
and rpcclnt.c, where local mutexes are held and would otherwise violate
the lock order with Giant.

This aligns this code more with the eventual locking of ttys.

Suggested by:	bde
2005-09-28 07:03:03 +00:00

742 lines
18 KiB
C

/*-
* Copyright (c) 1997 Jonathan Lemon
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/pcb_ext.h>
#include <machine/psl.h>
#include <machine/specialreg.h>
#include <machine/sysarch.h>
extern int vm86pa;
extern struct pcb *vm86pcb;
static struct mtx vm86_lock;
extern int vm86_bioscall(struct vm86frame *);
extern void vm86_biosret(struct vm86frame *);
void vm86_prepcall(struct vm86frame);
struct system_map {
int type;
vm_offset_t start;
vm_offset_t end;
};
#define HLT 0xf4
#define CLI 0xfa
#define STI 0xfb
#define PUSHF 0x9c
#define POPF 0x9d
#define INTn 0xcd
#define IRET 0xcf
#define CALLm 0xff
#define OPERAND_SIZE_PREFIX 0x66
#define ADDRESS_SIZE_PREFIX 0x67
#define PUSH_MASK ~(PSL_VM | PSL_RF | PSL_I)
#define POP_MASK ~(PSL_VIP | PSL_VIF | PSL_VM | PSL_RF | PSL_IOPL)
static __inline caddr_t
MAKE_ADDR(u_short sel, u_short off)
{
return ((caddr_t)((sel << 4) + off));
}
static __inline void
GET_VEC(u_int vec, u_short *sel, u_short *off)
{
*sel = vec >> 16;
*off = vec & 0xffff;
}
static __inline u_int
MAKE_VEC(u_short sel, u_short off)
{
return ((sel << 16) | off);
}
static __inline void
PUSH(u_short x, struct vm86frame *vmf)
{
vmf->vmf_sp -= 2;
suword16(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
}
static __inline void
PUSHL(u_int x, struct vm86frame *vmf)
{
vmf->vmf_sp -= 4;
suword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
}
static __inline u_short
POP(struct vm86frame *vmf)
{
u_short x = fuword16(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));
vmf->vmf_sp += 2;
return (x);
}
static __inline u_int
POPL(struct vm86frame *vmf)
{
u_int x = fuword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));
vmf->vmf_sp += 4;
return (x);
}
int
vm86_emulate(vmf)
struct vm86frame *vmf;
{
struct vm86_kernel *vm86;
caddr_t addr;
u_char i_byte;
u_int temp_flags;
int inc_ip = 1;
int retcode = 0;
/*
* pcb_ext contains the address of the extension area, or zero if
* the extension is not present. (This check should not be needed,
* as we can't enter vm86 mode until we set up an extension area)
*/
if (PCPU_GET(curpcb)->pcb_ext == 0)
return (SIGBUS);
vm86 = &PCPU_GET(curpcb)->pcb_ext->ext_vm86;
if (vmf->vmf_eflags & PSL_T)
retcode = SIGTRAP;
addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
i_byte = fubyte(addr);
if (i_byte == ADDRESS_SIZE_PREFIX) {
i_byte = fubyte(++addr);
inc_ip++;
}
if (vm86->vm86_has_vme) {
switch (i_byte) {
case OPERAND_SIZE_PREFIX:
i_byte = fubyte(++addr);
inc_ip++;
switch (i_byte) {
case PUSHF:
if (vmf->vmf_eflags & PSL_VIF)
PUSHL((vmf->vmf_eflags & PUSH_MASK)
| PSL_IOPL | PSL_I, vmf);
else
PUSHL((vmf->vmf_eflags & PUSH_MASK)
| PSL_IOPL, vmf);
vmf->vmf_ip += inc_ip;
return (0);
case POPF:
temp_flags = POPL(vmf) & POP_MASK;
vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
| temp_flags | PSL_VM | PSL_I;
vmf->vmf_ip += inc_ip;
if (temp_flags & PSL_I) {
vmf->vmf_eflags |= PSL_VIF;
if (vmf->vmf_eflags & PSL_VIP)
break;
} else {
vmf->vmf_eflags &= ~PSL_VIF;
}
return (0);
}
break;
/* VME faults here if VIP is set, but does not set VIF. */
case STI:
vmf->vmf_eflags |= PSL_VIF;
vmf->vmf_ip += inc_ip;
if ((vmf->vmf_eflags & PSL_VIP) == 0) {
uprintf("fatal sti\n");
return (SIGKILL);
}
break;
/* VME if no redirection support */
case INTn:
break;
/* VME if trying to set PSL_TF, or PSL_I when VIP is set */
case POPF:
temp_flags = POP(vmf) & POP_MASK;
vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
| temp_flags | PSL_VM | PSL_I;
vmf->vmf_ip += inc_ip;
if (temp_flags & PSL_I) {
vmf->vmf_eflags |= PSL_VIF;
if (vmf->vmf_eflags & PSL_VIP)
break;
} else {
vmf->vmf_eflags &= ~PSL_VIF;
}
return (retcode);
/* VME if trying to set PSL_TF, or PSL_I when VIP is set */
case IRET:
vmf->vmf_ip = POP(vmf);
vmf->vmf_cs = POP(vmf);
temp_flags = POP(vmf) & POP_MASK;
vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
| temp_flags | PSL_VM | PSL_I;
if (temp_flags & PSL_I) {
vmf->vmf_eflags |= PSL_VIF;
if (vmf->vmf_eflags & PSL_VIP)
break;
} else {
vmf->vmf_eflags &= ~PSL_VIF;
}
return (retcode);
}
return (SIGBUS);
}
switch (i_byte) {
case OPERAND_SIZE_PREFIX:
i_byte = fubyte(++addr);
inc_ip++;
switch (i_byte) {
case PUSHF:
if (vm86->vm86_eflags & PSL_VIF)
PUSHL((vmf->vmf_flags & PUSH_MASK)
| PSL_IOPL | PSL_I, vmf);
else
PUSHL((vmf->vmf_flags & PUSH_MASK)
| PSL_IOPL, vmf);
vmf->vmf_ip += inc_ip;
return (retcode);
case POPF:
temp_flags = POPL(vmf) & POP_MASK;
vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
| temp_flags | PSL_VM | PSL_I;
vmf->vmf_ip += inc_ip;
if (temp_flags & PSL_I) {
vm86->vm86_eflags |= PSL_VIF;
if (vm86->vm86_eflags & PSL_VIP)
break;
} else {
vm86->vm86_eflags &= ~PSL_VIF;
}
return (retcode);
}
return (SIGBUS);
case CLI:
vm86->vm86_eflags &= ~PSL_VIF;
vmf->vmf_ip += inc_ip;
return (retcode);
case STI:
/* if there is a pending interrupt, go to the emulator */
vm86->vm86_eflags |= PSL_VIF;
vmf->vmf_ip += inc_ip;
if (vm86->vm86_eflags & PSL_VIP)
break;
return (retcode);
case PUSHF:
if (vm86->vm86_eflags & PSL_VIF)
PUSH((vmf->vmf_flags & PUSH_MASK)
| PSL_IOPL | PSL_I, vmf);
else
PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
vmf->vmf_ip += inc_ip;
return (retcode);
case INTn:
i_byte = fubyte(addr + 1);
if ((vm86->vm86_intmap[i_byte >> 3] & (1 << (i_byte & 7))) != 0)
break;
if (vm86->vm86_eflags & PSL_VIF)
PUSH((vmf->vmf_flags & PUSH_MASK)
| PSL_IOPL | PSL_I, vmf);
else
PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
PUSH(vmf->vmf_cs, vmf);
PUSH(vmf->vmf_ip + inc_ip + 1, vmf); /* increment IP */
GET_VEC(fuword((caddr_t)(i_byte * 4)),
&vmf->vmf_cs, &vmf->vmf_ip);
vmf->vmf_flags &= ~PSL_T;
vm86->vm86_eflags &= ~PSL_VIF;
return (retcode);
case IRET:
vmf->vmf_ip = POP(vmf);
vmf->vmf_cs = POP(vmf);
temp_flags = POP(vmf) & POP_MASK;
vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
| temp_flags | PSL_VM | PSL_I;
if (temp_flags & PSL_I) {
vm86->vm86_eflags |= PSL_VIF;
if (vm86->vm86_eflags & PSL_VIP)
break;
} else {
vm86->vm86_eflags &= ~PSL_VIF;
}
return (retcode);
case POPF:
temp_flags = POP(vmf) & POP_MASK;
vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
| temp_flags | PSL_VM | PSL_I;
vmf->vmf_ip += inc_ip;
if (temp_flags & PSL_I) {
vm86->vm86_eflags |= PSL_VIF;
if (vm86->vm86_eflags & PSL_VIP)
break;
} else {
vm86->vm86_eflags &= ~PSL_VIF;
}
return (retcode);
}
return (SIGBUS);
}
#define PGTABLE_SIZE ((1024 + 64) * 1024 / PAGE_SIZE)
#define INTMAP_SIZE 32
#define IOMAP_SIZE ctob(IOPAGES)
#define TSS_SIZE \
(sizeof(struct pcb_ext) - sizeof(struct segment_descriptor) + \
INTMAP_SIZE + IOMAP_SIZE + 1)
struct vm86_layout {
pt_entry_t vml_pgtbl[PGTABLE_SIZE];
struct pcb vml_pcb;
struct pcb_ext vml_ext;
char vml_intmap[INTMAP_SIZE];
char vml_iomap[IOMAP_SIZE];
char vml_iomap_trailer;
};
void
vm86_initialize(void)
{
int i;
u_int *addr;
struct vm86_layout *vml = (struct vm86_layout *)vm86paddr;
struct pcb *pcb;
struct pcb_ext *ext;
struct soft_segment_descriptor ssd = {
0, /* segment base address (overwritten) */
0, /* length (overwritten) */
SDT_SYS386TSS, /* segment type */
0, /* priority level */
1, /* descriptor present */
0, 0,
0, /* default 16 size */
0 /* granularity */
};
/*
* this should be a compile time error, but cpp doesn't grok sizeof().
*/
if (sizeof(struct vm86_layout) > ctob(3))
panic("struct vm86_layout exceeds space allocated in locore.s");
/*
* Below is the memory layout that we use for the vm86 region.
*
* +--------+
* | |
* | |
* | page 0 |
* | | +--------+
* | | | stack |
* +--------+ +--------+ <--------- vm86paddr
* | | |Page Tbl| 1M + 64K = 272 entries = 1088 bytes
* | | +--------+
* | | | PCB | size: ~240 bytes
* | page 1 | |PCB Ext | size: ~140 bytes (includes TSS)
* | | +--------+
* | | |int map |
* | | +--------+
* +--------+ | |
* | page 2 | | I/O |
* +--------+ | bitmap |
* | page 3 | | |
* | | +--------+
* +--------+
*/
/*
* A rudimentary PCB must be installed, in order to get to the
* PCB extension area. We use the PCB area as a scratchpad for
* data storage, the layout of which is shown below.
*
* pcb_esi = new PTD entry 0
* pcb_ebp = pointer to frame on vm86 stack
* pcb_esp = stack frame pointer at time of switch
* pcb_ebx = va of vm86 page table
* pcb_eip = argument pointer to initial call
* pcb_spare[0] = saved TSS descriptor, word 0
* pcb_space[1] = saved TSS descriptor, word 1
*/
#define new_ptd pcb_esi
#define vm86_frame pcb_ebp
#define pgtable_va pcb_ebx
pcb = &vml->vml_pcb;
ext = &vml->vml_ext;
mtx_init(&vm86_lock, "vm86 lock", NULL, MTX_DEF);
bzero(pcb, sizeof(struct pcb));
pcb->new_ptd = vm86pa | PG_V | PG_RW | PG_U;
pcb->vm86_frame = vm86paddr - sizeof(struct vm86frame);
pcb->pgtable_va = vm86paddr;
pcb->pcb_flags = PCB_VM86CALL;
pcb->pcb_ext = ext;
bzero(ext, sizeof(struct pcb_ext));
ext->ext_tss.tss_esp0 = vm86paddr;
ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
ext->ext_tss.tss_ioopt =
((u_int)vml->vml_iomap - (u_int)&ext->ext_tss) << 16;
ext->ext_iomap = vml->vml_iomap;
ext->ext_vm86.vm86_intmap = vml->vml_intmap;
if (cpu_feature & CPUID_VME)
ext->ext_vm86.vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
addr = (u_int *)ext->ext_vm86.vm86_intmap;
for (i = 0; i < (INTMAP_SIZE + IOMAP_SIZE) / sizeof(u_int); i++)
*addr++ = 0;
vml->vml_iomap_trailer = 0xff;
ssd.ssd_base = (u_int)&ext->ext_tss;
ssd.ssd_limit = TSS_SIZE - 1;
ssdtosd(&ssd, &ext->ext_tssd);
vm86pcb = pcb;
#if 0
/*
* use whatever is leftover of the vm86 page layout as a
* message buffer so we can capture early output.
*/
msgbufinit((vm_offset_t)vm86paddr + sizeof(struct vm86_layout),
ctob(3) - sizeof(struct vm86_layout));
#endif
}
vm_offset_t
vm86_getpage(struct vm86context *vmc, int pagenum)
{
int i;
for (i = 0; i < vmc->npages; i++)
if (vmc->pmap[i].pte_num == pagenum)
return (vmc->pmap[i].kva);
return (0);
}
vm_offset_t
vm86_addpage(struct vm86context *vmc, int pagenum, vm_offset_t kva)
{
int i, flags = 0;
for (i = 0; i < vmc->npages; i++)
if (vmc->pmap[i].pte_num == pagenum)
goto overlap;
if (vmc->npages == VM86_PMAPSIZE)
goto full; /* XXX grow map? */
if (kva == 0) {
kva = (vm_offset_t)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
flags = VMAP_MALLOC;
}
i = vmc->npages++;
vmc->pmap[i].flags = flags;
vmc->pmap[i].kva = kva;
vmc->pmap[i].pte_num = pagenum;
return (kva);
overlap:
panic("vm86_addpage: overlap");
full:
panic("vm86_addpage: not enough room");
}
static void
vm86_initflags(struct vm86frame *vmf)
{
int eflags = vmf->vmf_eflags;
struct vm86_kernel *vm86 = &PCPU_GET(curpcb)->pcb_ext->ext_vm86;
if (vm86->vm86_has_vme) {
eflags = (vmf->vmf_eflags & ~VME_USERCHANGE) |
(eflags & VME_USERCHANGE) | PSL_VM;
} else {
vm86->vm86_eflags = eflags; /* save VIF, VIP */
eflags = (vmf->vmf_eflags & ~VM_USERCHANGE) |
(eflags & VM_USERCHANGE) | PSL_VM;
}
vmf->vmf_eflags = eflags | PSL_VM;
}
/*
* called from vm86_bioscall, while in vm86 address space, to finalize setup.
*/
void
vm86_prepcall(struct vm86frame vmf)
{
uintptr_t addr[] = { 0xA00, 0x1000 }; /* code, stack */
u_char intcall[] = {
CLI, INTn, 0x00, STI, HLT
};
if ((vmf.vmf_trapno & PAGE_MASK) <= 0xff) {
/* interrupt call requested */
intcall[2] = (u_char)(vmf.vmf_trapno & 0xff);
memcpy((void *)addr[0], (void *)intcall, sizeof(intcall));
vmf.vmf_ip = addr[0];
vmf.vmf_cs = 0;
}
vmf.vmf_sp = addr[1] - 2; /* keep aligned */
vmf.kernel_fs = vmf.kernel_es = vmf.kernel_ds = 0;
vmf.vmf_ss = 0;
vmf.vmf_eflags = PSL_VIF | PSL_VM | PSL_USER;
vm86_initflags(&vmf);
}
/*
* vm86 trap handler; determines whether routine succeeded or not.
* Called while in vm86 space, returns to calling process.
*/
void
vm86_trap(struct vm86frame *vmf)
{
caddr_t addr;
/* "should not happen" */
if ((vmf->vmf_eflags & PSL_VM) == 0)
panic("vm86_trap called, but not in vm86 mode");
addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
if (*(u_char *)addr == HLT)
vmf->vmf_trapno = vmf->vmf_eflags & PSL_C;
else
vmf->vmf_trapno = vmf->vmf_trapno << 16;
vm86_biosret(vmf);
}
int
vm86_intcall(int intnum, struct vm86frame *vmf)
{
int retval;
if (intnum < 0 || intnum > 0xff)
return (EINVAL);
vmf->vmf_trapno = intnum;
mtx_lock(&vm86_lock);
critical_enter();
retval = vm86_bioscall(vmf);
critical_exit();
mtx_unlock(&vm86_lock);
return (retval);
}
/*
* struct vm86context contains the page table to use when making
* vm86 calls. If intnum is a valid interrupt number (0-255), then
* the "interrupt trampoline" will be used, otherwise we use the
* caller's cs:ip routine.
*/
int
vm86_datacall(intnum, vmf, vmc)
int intnum;
struct vm86frame *vmf;
struct vm86context *vmc;
{
pt_entry_t *pte = (pt_entry_t *)vm86paddr;
vm_paddr_t page;
int i, entry, retval;
mtx_lock(&vm86_lock);
for (i = 0; i < vmc->npages; i++) {
page = vtophys(vmc->pmap[i].kva & PG_FRAME);
entry = vmc->pmap[i].pte_num;
vmc->pmap[i].old_pte = pte[entry];
pte[entry] = page | PG_V | PG_RW | PG_U;
pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
}
vmf->vmf_trapno = intnum;
critical_enter();
retval = vm86_bioscall(vmf);
critical_exit();
for (i = 0; i < vmc->npages; i++) {
entry = vmc->pmap[i].pte_num;
pte[entry] = vmc->pmap[i].old_pte;
pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
}
mtx_unlock(&vm86_lock);
return (retval);
}
vm_offset_t
vm86_getaddr(vmc, sel, off)
struct vm86context *vmc;
u_short sel;
u_short off;
{
int i, page;
vm_offset_t addr;
addr = (vm_offset_t)MAKE_ADDR(sel, off);
page = addr >> PAGE_SHIFT;
for (i = 0; i < vmc->npages; i++)
if (page == vmc->pmap[i].pte_num)
return (vmc->pmap[i].kva + (addr & PAGE_MASK));
return (0);
}
int
vm86_getptr(vmc, kva, sel, off)
struct vm86context *vmc;
vm_offset_t kva;
u_short *sel;
u_short *off;
{
int i;
for (i = 0; i < vmc->npages; i++)
if (kva >= vmc->pmap[i].kva &&
kva < vmc->pmap[i].kva + PAGE_SIZE) {
*off = kva - vmc->pmap[i].kva;
*sel = vmc->pmap[i].pte_num << 8;
return (1);
}
return (0);
panic("vm86_getptr: address not found");
}
int
vm86_sysarch(td, args)
struct thread *td;
char *args;
{
int error = 0;
struct i386_vm86_args ua;
struct vm86_kernel *vm86;
if ((error = copyin(args, &ua, sizeof(struct i386_vm86_args))) != 0)
return (error);
if (td->td_pcb->pcb_ext == 0)
if ((error = i386_extend_pcb(td)) != 0)
return (error);
vm86 = &td->td_pcb->pcb_ext->ext_vm86;
switch (ua.sub_op) {
case VM86_INIT: {
struct vm86_init_args sa;
if ((error = copyin(ua.sub_args, &sa, sizeof(sa))) != 0)
return (error);
if (cpu_feature & CPUID_VME)
vm86->vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
else
vm86->vm86_has_vme = 0;
vm86->vm86_inited = 1;
vm86->vm86_debug = sa.debug;
bcopy(&sa.int_map, vm86->vm86_intmap, 32);
}
break;
#if 0
case VM86_SET_VME: {
struct vm86_vme_args sa;
if ((cpu_feature & CPUID_VME) == 0)
return (ENODEV);
if (error = copyin(ua.sub_args, &sa, sizeof(sa)))
return (error);
if (sa.state)
load_cr4(rcr4() | CR4_VME);
else
load_cr4(rcr4() & ~CR4_VME);
}
break;
#endif
case VM86_GET_VME: {
struct vm86_vme_args sa;
sa.state = (rcr4() & CR4_VME ? 1 : 0);
error = copyout(&sa, ua.sub_args, sizeof(sa));
}
break;
case VM86_INTCALL: {
struct vm86_intcall_args sa;
if ((error = suser(td)))
return (error);
if ((error = copyin(ua.sub_args, &sa, sizeof(sa))))
return (error);
if ((error = vm86_intcall(sa.intnum, &sa.vmf)))
return (error);
error = copyout(&sa, ua.sub_args, sizeof(sa));
}
break;
default:
error = EINVAL;
}
return (error);
}