freebsd-dev/sys/dev/bge/if_bge.c
Glen Barber 37a107a407 Revert r267961, r267973:
These changes prevent sysctl(8) from returning proper output,
such as:

 1) no output from sysctl(8)
 2) erroneously returning ENOMEM with tools like truss(1)
    or uname(1)
 truss: can not get etype: Cannot allocate memory
2014-06-27 22:05:21 +00:00

6775 lines
199 KiB
C

/*-
* Copyright (c) 2001 Wind River Systems
* Copyright (c) 1997, 1998, 1999, 2001
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
*
* The Broadcom BCM5700 is based on technology originally developed by
* Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
* MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
* two on-board MIPS R4000 CPUs and can have as much as 16MB of external
* SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
* frames, highly configurable RX filtering, and 16 RX and TX queues
* (which, along with RX filter rules, can be used for QOS applications).
* Other features, such as TCP segmentation, may be available as part
* of value-added firmware updates. Unlike the Tigon I and Tigon II,
* firmware images can be stored in hardware and need not be compiled
* into the driver.
*
* The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
* function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
*
* The BCM5701 is a single-chip solution incorporating both the BCM5700
* MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
* does not support external SSRAM.
*
* Broadcom also produces a variation of the BCM5700 under the "Altima"
* brand name, which is functionally similar but lacks PCI-X support.
*
* Without external SSRAM, you can only have at most 4 TX rings,
* and the use of the mini RX ring is disabled. This seems to imply
* that these features are simply not available on the BCM5701. As a
* result, this driver does not implement any support for the mini RX
* ring.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include "miidevs.h"
#include <dev/mii/brgphyreg.h>
#ifdef __sparc64__
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/openfirm.h>
#include <machine/ofw_machdep.h>
#include <machine/ver.h>
#endif
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/bge/if_bgereg.h>
#define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP)
#define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
MODULE_DEPEND(bge, pci, 1, 1, 1);
MODULE_DEPEND(bge, ether, 1, 1, 1);
MODULE_DEPEND(bge, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/*
* Various supported device vendors/types and their names. Note: the
* spec seems to indicate that the hardware still has Alteon's vendor
* ID burned into it, though it will always be overriden by the vendor
* ID in the EEPROM. Just to be safe, we cover all possibilities.
*/
static const struct bge_type {
uint16_t bge_vid;
uint16_t bge_did;
} bge_devs[] = {
{ ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 },
{ ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 },
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 },
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 },
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 },
{ APPLE_VENDORID, APPLE_DEVICE_BCM5701 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5700 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5701 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702X },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703X },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704C },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704S },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705F },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705K },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705M },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5714C },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5714S },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5715 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5715S },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5717 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5718 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5719 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5720 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5721 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5722 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5723 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5725 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5727 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5750 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5750M },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5751 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5751F },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5751M },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5752 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5752M },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5753 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5753F },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5753M },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5754 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5754M },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5755 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5755M },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5756 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5761 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5761E },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5761S },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5762 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5764 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5780 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5780S },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5781 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5782 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5784 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5785F },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5785G },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5786 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5787 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5787F },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5787M },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5788 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5789 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5901 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5903M },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5906 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5906M },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57760 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57761 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57762 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57764 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57765 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57766 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57767 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57780 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57781 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57782 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57785 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57786 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57787 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57788 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57790 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57791 },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57795 },
{ SK_VENDORID, SK_DEVICEID_ALTIMA },
{ TC_VENDORID, TC_DEVICEID_3C996 },
{ FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 },
{ FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 },
{ FJTSU_VENDORID, FJTSU_DEVICEID_PP250450 },
{ 0, 0 }
};
static const struct bge_vendor {
uint16_t v_id;
const char *v_name;
} bge_vendors[] = {
{ ALTEON_VENDORID, "Alteon" },
{ ALTIMA_VENDORID, "Altima" },
{ APPLE_VENDORID, "Apple" },
{ BCOM_VENDORID, "Broadcom" },
{ SK_VENDORID, "SysKonnect" },
{ TC_VENDORID, "3Com" },
{ FJTSU_VENDORID, "Fujitsu" },
{ 0, NULL }
};
static const struct bge_revision {
uint32_t br_chipid;
const char *br_name;
} bge_revisions[] = {
{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
{ BGE_CHIPID_BCM5703_A0, "BCM5703 A0" },
{ BGE_CHIPID_BCM5703_A1, "BCM5703 A1" },
{ BGE_CHIPID_BCM5703_A2, "BCM5703 A2" },
{ BGE_CHIPID_BCM5703_A3, "BCM5703 A3" },
{ BGE_CHIPID_BCM5703_B0, "BCM5703 B0" },
{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
{ BGE_CHIPID_BCM5722_A0, "BCM5722 A0" },
{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
/* 5754 and 5787 share the same ASIC ID */
{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
{ 0, NULL }
};
/*
* Some defaults for major revisions, so that newer steppings
* that we don't know about have a shot at working.
*/
static const struct bge_revision bge_majorrevs[] = {
{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
/* 5754 and 5787 share the same ASIC ID */
{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
{ 0, NULL }
};
#define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO)
#define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
#define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
#define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
#define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
#define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
#define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5717_PLUS)
#define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_57765_PLUS)
static uint32_t bge_chipid(device_t);
static const struct bge_vendor * bge_lookup_vendor(uint16_t);
static const struct bge_revision * bge_lookup_rev(uint32_t);
typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
static int bge_probe(device_t);
static int bge_attach(device_t);
static int bge_detach(device_t);
static int bge_suspend(device_t);
static int bge_resume(device_t);
static void bge_release_resources(struct bge_softc *);
static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int bge_dma_alloc(struct bge_softc *);
static void bge_dma_free(struct bge_softc *);
static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
static void bge_devinfo(struct bge_softc *);
static int bge_mbox_reorder(struct bge_softc *);
static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
static void bge_txeof(struct bge_softc *, uint16_t);
static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
static int bge_rxeof(struct bge_softc *, uint16_t, int);
static void bge_asf_driver_up (struct bge_softc *);
static void bge_tick(void *);
static void bge_stats_clear_regs(struct bge_softc *);
static void bge_stats_update(struct bge_softc *);
static void bge_stats_update_regs(struct bge_softc *);
static struct mbuf *bge_check_short_dma(struct mbuf *);
static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
uint16_t *, uint16_t *);
static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
static void bge_intr(void *);
static int bge_msi_intr(void *);
static void bge_intr_task(void *, int);
static void bge_start_locked(struct ifnet *);
static void bge_start(struct ifnet *);
static int bge_ioctl(struct ifnet *, u_long, caddr_t);
static void bge_init_locked(struct bge_softc *);
static void bge_init(void *);
static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
static void bge_stop(struct bge_softc *);
static void bge_watchdog(struct bge_softc *);
static int bge_shutdown(device_t);
static int bge_ifmedia_upd_locked(struct ifnet *);
static int bge_ifmedia_upd(struct ifnet *);
static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
static void bge_setpromisc(struct bge_softc *);
static void bge_setmulti(struct bge_softc *);
static void bge_setvlan(struct bge_softc *);
static __inline void bge_rxreuse_std(struct bge_softc *, int);
static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
static int bge_newbuf_std(struct bge_softc *, int);
static int bge_newbuf_jumbo(struct bge_softc *, int);
static int bge_init_rx_ring_std(struct bge_softc *);
static void bge_free_rx_ring_std(struct bge_softc *);
static int bge_init_rx_ring_jumbo(struct bge_softc *);
static void bge_free_rx_ring_jumbo(struct bge_softc *);
static void bge_free_tx_ring(struct bge_softc *);
static int bge_init_tx_ring(struct bge_softc *);
static int bge_chipinit(struct bge_softc *);
static int bge_blockinit(struct bge_softc *);
static uint32_t bge_dma_swap_options(struct bge_softc *);
static int bge_has_eaddr(struct bge_softc *);
static uint32_t bge_readmem_ind(struct bge_softc *, int);
static void bge_writemem_ind(struct bge_softc *, int, int);
static void bge_writembx(struct bge_softc *, int, int);
#ifdef notdef
static uint32_t bge_readreg_ind(struct bge_softc *, int);
#endif
static void bge_writemem_direct(struct bge_softc *, int, int);
static void bge_writereg_ind(struct bge_softc *, int, int);
static int bge_miibus_readreg(device_t, int, int);
static int bge_miibus_writereg(device_t, int, int, int);
static void bge_miibus_statchg(device_t);
#ifdef DEVICE_POLLING
static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
#endif
#define BGE_RESET_SHUTDOWN 0
#define BGE_RESET_START 1
#define BGE_RESET_SUSPEND 2
static void bge_sig_post_reset(struct bge_softc *, int);
static void bge_sig_legacy(struct bge_softc *, int);
static void bge_sig_pre_reset(struct bge_softc *, int);
static void bge_stop_fw(struct bge_softc *);
static int bge_reset(struct bge_softc *);
static void bge_link_upd(struct bge_softc *);
static void bge_ape_lock_init(struct bge_softc *);
static void bge_ape_read_fw_ver(struct bge_softc *);
static int bge_ape_lock(struct bge_softc *, int);
static void bge_ape_unlock(struct bge_softc *, int);
static void bge_ape_send_event(struct bge_softc *, uint32_t);
static void bge_ape_driver_state_change(struct bge_softc *, int);
/*
* The BGE_REGISTER_DEBUG option is only for low-level debugging. It may
* leak information to untrusted users. It is also known to cause alignment
* traps on certain architectures.
*/
#ifdef BGE_REGISTER_DEBUG
static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
#endif
static void bge_add_sysctls(struct bge_softc *);
static void bge_add_sysctl_stats_regs(struct bge_softc *,
struct sysctl_ctx_list *, struct sysctl_oid_list *);
static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
struct sysctl_oid_list *);
static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
static device_method_t bge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, bge_probe),
DEVMETHOD(device_attach, bge_attach),
DEVMETHOD(device_detach, bge_detach),
DEVMETHOD(device_shutdown, bge_shutdown),
DEVMETHOD(device_suspend, bge_suspend),
DEVMETHOD(device_resume, bge_resume),
/* MII interface */
DEVMETHOD(miibus_readreg, bge_miibus_readreg),
DEVMETHOD(miibus_writereg, bge_miibus_writereg),
DEVMETHOD(miibus_statchg, bge_miibus_statchg),
DEVMETHOD_END
};
static driver_t bge_driver = {
"bge",
bge_methods,
sizeof(struct bge_softc)
};
static devclass_t bge_devclass;
DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
static int bge_allow_asf = 1;
TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
"Allow ASF mode if available");
#define SPARC64_BLADE_1500_MODEL "SUNW,Sun-Blade-1500"
#define SPARC64_BLADE_1500_PATH_BGE "/pci@1f,700000/network@2"
#define SPARC64_BLADE_2500_MODEL "SUNW,Sun-Blade-2500"
#define SPARC64_BLADE_2500_PATH_BGE "/pci@1c,600000/network@3"
#define SPARC64_OFW_SUBVENDOR "subsystem-vendor-id"
static int
bge_has_eaddr(struct bge_softc *sc)
{
#ifdef __sparc64__
char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
device_t dev;
uint32_t subvendor;
dev = sc->bge_dev;
/*
* The on-board BGEs found in sun4u machines aren't fitted with
* an EEPROM which means that we have to obtain the MAC address
* via OFW and that some tests will always fail. We distinguish
* such BGEs by the subvendor ID, which also has to be obtained
* from OFW instead of the PCI configuration space as the latter
* indicates Broadcom as the subvendor of the netboot interface.
* For early Blade 1500 and 2500 we even have to check the OFW
* device path as the subvendor ID always defaults to Broadcom
* there.
*/
if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
&subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
(subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
return (0);
memset(buf, 0, sizeof(buf));
if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
return (0);
if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
return (0);
}
#endif
return (1);
}
static uint32_t
bge_readmem_ind(struct bge_softc *sc, int off)
{
device_t dev;
uint32_t val;
if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
return (0);
dev = sc->bge_dev;
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
return (val);
}
static void
bge_writemem_ind(struct bge_softc *sc, int off, int val)
{
device_t dev;
if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
return;
dev = sc->bge_dev;
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
}
#ifdef notdef
static uint32_t
bge_readreg_ind(struct bge_softc *sc, int off)
{
device_t dev;
dev = sc->bge_dev;
pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
}
#endif
static void
bge_writereg_ind(struct bge_softc *sc, int off, int val)
{
device_t dev;
dev = sc->bge_dev;
pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
}
static void
bge_writemem_direct(struct bge_softc *sc, int off, int val)
{
CSR_WRITE_4(sc, off, val);
}
static void
bge_writembx(struct bge_softc *sc, int off, int val)
{
if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
CSR_WRITE_4(sc, off, val);
if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
CSR_READ_4(sc, off);
}
/*
* Clear all stale locks and select the lock for this driver instance.
*/
static void
bge_ape_lock_init(struct bge_softc *sc)
{
uint32_t bit, regbase;
int i;
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
regbase = BGE_APE_LOCK_GRANT;
else
regbase = BGE_APE_PER_LOCK_GRANT;
/* Clear any stale locks. */
for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
switch (i) {
case BGE_APE_LOCK_PHY0:
case BGE_APE_LOCK_PHY1:
case BGE_APE_LOCK_PHY2:
case BGE_APE_LOCK_PHY3:
bit = BGE_APE_LOCK_GRANT_DRIVER0;
break;
default:
if (sc->bge_func_addr == 0)
bit = BGE_APE_LOCK_GRANT_DRIVER0;
else
bit = (1 << sc->bge_func_addr);
}
APE_WRITE_4(sc, regbase + 4 * i, bit);
}
/* Select the PHY lock based on the device's function number. */
switch (sc->bge_func_addr) {
case 0:
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
break;
case 1:
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
break;
case 2:
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
break;
case 3:
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
break;
default:
device_printf(sc->bge_dev,
"PHY lock not supported on this function\n");
}
}
/*
* Check for APE firmware, set flags, and print version info.
*/
static void
bge_ape_read_fw_ver(struct bge_softc *sc)
{
const char *fwtype;
uint32_t apedata, features;
/* Check for a valid APE signature in shared memory. */
apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
if (apedata != BGE_APE_SEG_SIG_MAGIC) {
sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
return;
}
/* Check if APE firmware is running. */
apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
device_printf(sc->bge_dev, "APE signature found "
"but FW status not ready! 0x%08x\n", apedata);
return;
}
sc->bge_mfw_flags |= BGE_MFW_ON_APE;
/* Fetch the APE firwmare type and version. */
apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
fwtype = "NCSI";
} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
fwtype = "DASH";
} else
fwtype = "UNKN";
/* Print the APE firmware version. */
device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
fwtype,
(apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
(apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
(apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
(apedata & BGE_APE_FW_VERSION_BLDMSK));
}
static int
bge_ape_lock(struct bge_softc *sc, int locknum)
{
uint32_t bit, gnt, req, status;
int i, off;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
return (0);
/* Lock request/grant registers have different bases. */
if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
req = BGE_APE_LOCK_REQ;
gnt = BGE_APE_LOCK_GRANT;
} else {
req = BGE_APE_PER_LOCK_REQ;
gnt = BGE_APE_PER_LOCK_GRANT;
}
off = 4 * locknum;
switch (locknum) {
case BGE_APE_LOCK_GPIO:
/* Lock required when using GPIO. */
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
return (0);
if (sc->bge_func_addr == 0)
bit = BGE_APE_LOCK_REQ_DRIVER0;
else
bit = (1 << sc->bge_func_addr);
break;
case BGE_APE_LOCK_GRC:
/* Lock required to reset the device. */
if (sc->bge_func_addr == 0)
bit = BGE_APE_LOCK_REQ_DRIVER0;
else
bit = (1 << sc->bge_func_addr);
break;
case BGE_APE_LOCK_MEM:
/* Lock required when accessing certain APE memory. */
if (sc->bge_func_addr == 0)
bit = BGE_APE_LOCK_REQ_DRIVER0;
else
bit = (1 << sc->bge_func_addr);
break;
case BGE_APE_LOCK_PHY0:
case BGE_APE_LOCK_PHY1:
case BGE_APE_LOCK_PHY2:
case BGE_APE_LOCK_PHY3:
/* Lock required when accessing PHYs. */
bit = BGE_APE_LOCK_REQ_DRIVER0;
break;
default:
return (EINVAL);
}
/* Request a lock. */
APE_WRITE_4(sc, req + off, bit);
/* Wait up to 1 second to acquire lock. */
for (i = 0; i < 20000; i++) {
status = APE_READ_4(sc, gnt + off);
if (status == bit)
break;
DELAY(50);
}
/* Handle any errors. */
if (status != bit) {
device_printf(sc->bge_dev, "APE lock %d request failed! "
"request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
locknum, req + off, bit & 0xFFFF, gnt + off,
status & 0xFFFF);
/* Revoke the lock request. */
APE_WRITE_4(sc, gnt + off, bit);
return (EBUSY);
}
return (0);
}
static void
bge_ape_unlock(struct bge_softc *sc, int locknum)
{
uint32_t bit, gnt;
int off;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
return;
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
gnt = BGE_APE_LOCK_GRANT;
else
gnt = BGE_APE_PER_LOCK_GRANT;
off = 4 * locknum;
switch (locknum) {
case BGE_APE_LOCK_GPIO:
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
return;
if (sc->bge_func_addr == 0)
bit = BGE_APE_LOCK_GRANT_DRIVER0;
else
bit = (1 << sc->bge_func_addr);
break;
case BGE_APE_LOCK_GRC:
if (sc->bge_func_addr == 0)
bit = BGE_APE_LOCK_GRANT_DRIVER0;
else
bit = (1 << sc->bge_func_addr);
break;
case BGE_APE_LOCK_MEM:
if (sc->bge_func_addr == 0)
bit = BGE_APE_LOCK_GRANT_DRIVER0;
else
bit = (1 << sc->bge_func_addr);
break;
case BGE_APE_LOCK_PHY0:
case BGE_APE_LOCK_PHY1:
case BGE_APE_LOCK_PHY2:
case BGE_APE_LOCK_PHY3:
bit = BGE_APE_LOCK_GRANT_DRIVER0;
break;
default:
return;
}
APE_WRITE_4(sc, gnt + off, bit);
}
/*
* Send an event to the APE firmware.
*/
static void
bge_ape_send_event(struct bge_softc *sc, uint32_t event)
{
uint32_t apedata;
int i;
/* NCSI does not support APE events. */
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
return;
/* Wait up to 1ms for APE to service previous event. */
for (i = 10; i > 0; i--) {
if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
break;
apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
BGE_APE_EVENT_STATUS_EVENT_PENDING);
bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
break;
}
bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
DELAY(100);
}
if (i == 0)
device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
event);
}
static void
bge_ape_driver_state_change(struct bge_softc *sc, int kind)
{
uint32_t apedata, event;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
return;
switch (kind) {
case BGE_RESET_START:
/* If this is the first load, clear the load counter. */
apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
else {
apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
}
APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
BGE_APE_HOST_SEG_SIG_MAGIC);
APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
BGE_APE_HOST_SEG_LEN_MAGIC);
/* Add some version info if bge(4) supports it. */
APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
BGE_APE_HOST_BEHAV_NO_PHYLOCK);
APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
BGE_APE_HOST_DRVR_STATE_START);
event = BGE_APE_EVENT_STATUS_STATE_START;
break;
case BGE_RESET_SHUTDOWN:
APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
BGE_APE_HOST_DRVR_STATE_UNLOAD);
event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
break;
case BGE_RESET_SUSPEND:
event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
break;
default:
return;
}
bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
BGE_APE_EVENT_STATUS_STATE_CHNGE);
}
/*
* Map a single buffer address.
*/
static void
bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct bge_dmamap_arg *ctx;
if (error)
return;
KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
ctx = arg;
ctx->bge_busaddr = segs->ds_addr;
}
static uint8_t
bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
{
uint32_t access, byte = 0;
int i;
/* Lock. */
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
for (i = 0; i < 8000; i++) {
if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
break;
DELAY(20);
}
if (i == 8000)
return (1);
/* Enable access. */
access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
for (i = 0; i < BGE_TIMEOUT * 10; i++) {
DELAY(10);
if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
DELAY(10);
break;
}
}
if (i == BGE_TIMEOUT * 10) {
if_printf(sc->bge_ifp, "nvram read timed out\n");
return (1);
}
/* Get result. */
byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
/* Disable access. */
CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
/* Unlock. */
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
CSR_READ_4(sc, BGE_NVRAM_SWARB);
return (0);
}
/*
* Read a sequence of bytes from NVRAM.
*/
static int
bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
{
int err = 0, i;
uint8_t byte = 0;
if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
return (1);
for (i = 0; i < cnt; i++) {
err = bge_nvram_getbyte(sc, off + i, &byte);
if (err)
break;
*(dest + i) = byte;
}
return (err ? 1 : 0);
}
/*
* Read a byte of data stored in the EEPROM at address 'addr.' The
* BCM570x supports both the traditional bitbang interface and an
* auto access interface for reading the EEPROM. We use the auto
* access method.
*/
static uint8_t
bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
{
int i;
uint32_t byte = 0;
/*
* Enable use of auto EEPROM access so we can avoid
* having to use the bitbang method.
*/
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
/* Reset the EEPROM, load the clock period. */
CSR_WRITE_4(sc, BGE_EE_ADDR,
BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
DELAY(20);
/* Issue the read EEPROM command. */
CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
/* Wait for completion */
for(i = 0; i < BGE_TIMEOUT * 10; i++) {
DELAY(10);
if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
break;
}
if (i == BGE_TIMEOUT * 10) {
device_printf(sc->bge_dev, "EEPROM read timed out\n");
return (1);
}
/* Get result. */
byte = CSR_READ_4(sc, BGE_EE_DATA);
*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
return (0);
}
/*
* Read a sequence of bytes from the EEPROM.
*/
static int
bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
{
int i, error = 0;
uint8_t byte = 0;
for (i = 0; i < cnt; i++) {
error = bge_eeprom_getbyte(sc, off + i, &byte);
if (error)
break;
*(dest + i) = byte;
}
return (error ? 1 : 0);
}
static int
bge_miibus_readreg(device_t dev, int phy, int reg)
{
struct bge_softc *sc;
uint32_t val;
int i;
sc = device_get_softc(dev);
if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
return (0);
/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
CSR_WRITE_4(sc, BGE_MI_MODE,
sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
DELAY(80);
}
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
BGE_MIPHY(phy) | BGE_MIREG(reg));
/* Poll for the PHY register access to complete. */
for (i = 0; i < BGE_TIMEOUT; i++) {
DELAY(10);
val = CSR_READ_4(sc, BGE_MI_COMM);
if ((val & BGE_MICOMM_BUSY) == 0) {
DELAY(5);
val = CSR_READ_4(sc, BGE_MI_COMM);
break;
}
}
if (i == BGE_TIMEOUT) {
device_printf(sc->bge_dev,
"PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
phy, reg, val);
val = 0;
}
/* Restore the autopoll bit if necessary. */
if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
DELAY(80);
}
bge_ape_unlock(sc, sc->bge_phy_ape_lock);
if (val & BGE_MICOMM_READFAIL)
return (0);
return (val & 0xFFFF);
}
static int
bge_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct bge_softc *sc;
int i;
sc = device_get_softc(dev);
if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
(reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
return (0);
if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
return (0);
/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
CSR_WRITE_4(sc, BGE_MI_MODE,
sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
DELAY(80);
}
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
for (i = 0; i < BGE_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
DELAY(5);
CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
break;
}
}
/* Restore the autopoll bit if necessary. */
if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
DELAY(80);
}
bge_ape_unlock(sc, sc->bge_phy_ape_lock);
if (i == BGE_TIMEOUT)
device_printf(sc->bge_dev,
"PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
phy, reg, val);
return (0);
}
static void
bge_miibus_statchg(device_t dev)
{
struct bge_softc *sc;
struct mii_data *mii;
uint32_t mac_mode, rx_mode, tx_mode;
sc = device_get_softc(dev);
if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
mii = device_get_softc(sc->bge_miibus);
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->bge_link = 1;
break;
case IFM_1000_T:
case IFM_1000_SX:
case IFM_2500_SX:
if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
sc->bge_link = 1;
else
sc->bge_link = 0;
break;
default:
sc->bge_link = 0;
break;
}
} else
sc->bge_link = 0;
if (sc->bge_link == 0)
return;
/*
* APE firmware touches these registers to keep the MAC
* connected to the outside world. Try to keep the
* accesses atomic.
*/
/* Set the port mode (MII/GMII) to match the link speed. */
mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
mac_mode |= BGE_PORTMODE_GMII;
else
mac_mode |= BGE_PORTMODE_MII;
/* Set MAC flow control behavior to match link flow control settings. */
tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
} else
mac_mode |= BGE_MACMODE_HALF_DUPLEX;
CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
DELAY(40);
CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
}
/*
* Intialize a standard receive ring descriptor.
*/
static int
bge_newbuf_std(struct bge_softc *sc, int i)
{
struct mbuf *m;
struct bge_rx_bd *r;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int error, nsegs;
if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
(sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MJUM9BYTES;
} else {
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
}
if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
m_adj(m, ETHER_ALIGN);
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
if (error != 0) {
m_freem(m);
return (error);
}
if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
sc->bge_cdata.bge_rx_std_dmamap[i]);
}
map = sc->bge_cdata.bge_rx_std_dmamap[i];
sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
sc->bge_cdata.bge_rx_std_sparemap = map;
sc->bge_cdata.bge_rx_std_chain[i] = m;
sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
r->bge_flags = BGE_RXBDFLAG_END;
r->bge_len = segs[0].ds_len;
r->bge_idx = i;
bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
return (0);
}
/*
* Initialize a jumbo receive ring descriptor. This allocates
* a jumbo buffer from the pool managed internally by the driver.
*/
static int
bge_newbuf_jumbo(struct bge_softc *sc, int i)
{
bus_dma_segment_t segs[BGE_NSEG_JUMBO];
bus_dmamap_t map;
struct bge_extrx_bd *r;
struct mbuf *m;
int error, nsegs;
MGETHDR(m, M_NOWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
m_cljget(m, M_NOWAIT, MJUM9BYTES);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
return (ENOBUFS);
}
m->m_len = m->m_pkthdr.len = MJUM9BYTES;
if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
m_adj(m, ETHER_ALIGN);
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
if (error != 0) {
m_freem(m);
return (error);
}
if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
}
map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
sc->bge_cdata.bge_rx_jumbo_sparemap;
sc->bge_cdata.bge_rx_jumbo_sparemap = map;
sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
/*
* Fill in the extended RX buffer descriptor.
*/
r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
r->bge_idx = i;
r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
switch (nsegs) {
case 4:
r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
r->bge_len3 = segs[3].ds_len;
sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
case 3:
r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
r->bge_len2 = segs[2].ds_len;
sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
case 2:
r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
r->bge_len1 = segs[1].ds_len;
sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
case 1:
r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
r->bge_len0 = segs[0].ds_len;
sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
break;
default:
panic("%s: %d segments\n", __func__, nsegs);
}
bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
return (0);
}
static int
bge_init_rx_ring_std(struct bge_softc *sc)
{
int error, i;
bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
sc->bge_std = 0;
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
if ((error = bge_newbuf_std(sc, i)) != 0)
return (error);
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
}
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
sc->bge_std = 0;
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
return (0);
}
static void
bge_free_rx_ring_std(struct bge_softc *sc)
{
int i;
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
sc->bge_cdata.bge_rx_std_dmamap[i],
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
sc->bge_cdata.bge_rx_std_dmamap[i]);
m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
sc->bge_cdata.bge_rx_std_chain[i] = NULL;
}
bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
sizeof(struct bge_rx_bd));
}
}
static int
bge_init_rx_ring_jumbo(struct bge_softc *sc)
{
struct bge_rcb *rcb;
int error, i;
bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
sc->bge_jumbo = 0;
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
if ((error = bge_newbuf_jumbo(sc, i)) != 0)
return (error);
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
}
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
sc->bge_jumbo = 0;
/* Enable the jumbo receive producer ring. */
rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
return (0);
}
static void
bge_free_rx_ring_jumbo(struct bge_softc *sc)
{
int i;
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
sc->bge_cdata.bge_rx_jumbo_dmamap[i],
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
}
bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
sizeof(struct bge_extrx_bd));
}
}
static void
bge_free_tx_ring(struct bge_softc *sc)
{
int i;
if (sc->bge_ldata.bge_tx_ring == NULL)
return;
for (i = 0; i < BGE_TX_RING_CNT; i++) {
if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
sc->bge_cdata.bge_tx_dmamap[i],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
sc->bge_cdata.bge_tx_dmamap[i]);
m_freem(sc->bge_cdata.bge_tx_chain[i]);
sc->bge_cdata.bge_tx_chain[i] = NULL;
}
bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
sizeof(struct bge_tx_bd));
}
}
static int
bge_init_tx_ring(struct bge_softc *sc)
{
sc->bge_txcnt = 0;
sc->bge_tx_saved_considx = 0;
bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
/* Initialize transmit producer index for host-memory send ring. */
sc->bge_tx_prodidx = 0;
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
/* 5700 b2 errata */
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
/* NIC-memory send ring not used; initialize to zero. */
bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
/* 5700 b2 errata */
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
return (0);
}
static void
bge_setpromisc(struct bge_softc *sc)
{
struct ifnet *ifp;
BGE_LOCK_ASSERT(sc);
ifp = sc->bge_ifp;
/* Enable or disable promiscuous mode as needed. */
if (ifp->if_flags & IFF_PROMISC)
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
else
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
}
static void
bge_setmulti(struct bge_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t hashes[4] = { 0, 0, 0, 0 };
int h, i;
BGE_LOCK_ASSERT(sc);
ifp = sc->bge_ifp;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
for (i = 0; i < 4; i++)
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
return;
}
/* First, zot all the existing filters. */
for (i = 0; i < 4; i++)
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
/* Now program new ones. */
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
}
if_maddr_runlock(ifp);
for (i = 0; i < 4; i++)
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
}
static void
bge_setvlan(struct bge_softc *sc)
{
struct ifnet *ifp;
BGE_LOCK_ASSERT(sc);
ifp = sc->bge_ifp;
/* Enable or disable VLAN tag stripping as needed. */
if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
else
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
}
static void
bge_sig_pre_reset(struct bge_softc *sc, int type)
{
/*
* Some chips don't like this so only do this if ASF is enabled
*/
if (sc->bge_asf_mode)
bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
switch (type) {
case BGE_RESET_START:
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
BGE_FW_DRV_STATE_START);
break;
case BGE_RESET_SHUTDOWN:
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
BGE_FW_DRV_STATE_UNLOAD);
break;
case BGE_RESET_SUSPEND:
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
BGE_FW_DRV_STATE_SUSPEND);
break;
}
}
if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
bge_ape_driver_state_change(sc, type);
}
static void
bge_sig_post_reset(struct bge_softc *sc, int type)
{
if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
switch (type) {
case BGE_RESET_START:
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
BGE_FW_DRV_STATE_START_DONE);
/* START DONE */
break;
case BGE_RESET_SHUTDOWN:
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
BGE_FW_DRV_STATE_UNLOAD_DONE);
break;
}
}
if (type == BGE_RESET_SHUTDOWN)
bge_ape_driver_state_change(sc, type);
}
static void
bge_sig_legacy(struct bge_softc *sc, int type)
{
if (sc->bge_asf_mode) {
switch (type) {
case BGE_RESET_START:
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
BGE_FW_DRV_STATE_START);
break;
case BGE_RESET_SHUTDOWN:
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
BGE_FW_DRV_STATE_UNLOAD);
break;
}
}
}
static void
bge_stop_fw(struct bge_softc *sc)
{
int i;
if (sc->bge_asf_mode) {
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
for (i = 0; i < 100; i++ ) {
if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
BGE_RX_CPU_DRV_EVENT))
break;
DELAY(10);
}
}
}
static uint32_t
bge_dma_swap_options(struct bge_softc *sc)
{
uint32_t dma_options;
dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
#if BYTE_ORDER == BIG_ENDIAN
dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
#endif
return (dma_options);
}
/*
* Do endian, PCI and DMA initialization.
*/
static int
bge_chipinit(struct bge_softc *sc)
{
uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
uint16_t val;
int i;
/* Set endianness before we access any non-PCI registers. */
misc_ctl = BGE_INIT;
if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
/*
* Clear the MAC statistics block in the NIC's
* internal memory.
*/
for (i = BGE_STATS_BLOCK;
i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
BGE_MEMWIN_WRITE(sc, i, 0);
for (i = BGE_STATUS_BLOCK;
i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
BGE_MEMWIN_WRITE(sc, i, 0);
if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
/*
* Fix data corruption caused by non-qword write with WB.
* Fix master abort in PCI mode.
* Fix PCI latency timer.
*/
val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
val |= (1 << 10) | (1 << 12) | (1 << 13);
pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
}
if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
sc->bge_asicrev == BGE_ASICREV_BCM57766) {
/*
* For the 57766 and non Ax versions of 57765, bootcode
* needs to setup the PCIE Fast Training Sequence (FTS)
* value to prevent transmit hangs.
*/
if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
BGE_CPMU_PADRNG_CTL_RDIV2);
}
}
/*
* Set up the PCI DMA control register.
*/
dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
if (sc->bge_flags & BGE_FLAG_PCIE) {
if (sc->bge_mps >= 256)
dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
else
dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
} else if (sc->bge_flags & BGE_FLAG_PCIX) {
if (BGE_IS_5714_FAMILY(sc)) {
/* 256 bytes for read and write. */
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
/*
* In the BCM5703, the DMA read watermark should
* be set to less than or equal to the maximum
* memory read byte count of the PCI-X command
* register.
*/
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
/* 1536 bytes for read, 384 bytes for write. */
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
} else {
/* 384 bytes for read and write. */
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
0x0F;
}
if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
sc->bge_asicrev == BGE_ASICREV_BCM5704) {
uint32_t tmp;
/* Set ONE_DMA_AT_ONCE for hardware workaround. */
tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
if (tmp == 6 || tmp == 7)
dma_rw_ctl |=
BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
/* Set PCI-X DMA write workaround. */
dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
}
} else {
/* Conventional PCI bus: 256 bytes for read and write. */
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750)
dma_rw_ctl |= 0x0F;
}
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
sc->bge_asicrev == BGE_ASICREV_BCM5701)
dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
BGE_PCIDMARWCTL_ASRT_ALL_BE;
if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
sc->bge_asicrev == BGE_ASICREV_BCM5704)
dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
if (BGE_IS_5717_PLUS(sc)) {
dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
/*
* Enable HW workaround for controllers that misinterpret
* a status tag update and leave interrupts permanently
* disabled.
*/
if (!BGE_IS_57765_PLUS(sc) &&
sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
sc->bge_asicrev != BGE_ASICREV_BCM5762)
dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
}
pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
/*
* Set up general mode register.
*/
mode_ctl = bge_dma_swap_options(sc);
if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
sc->bge_asicrev == BGE_ASICREV_BCM5762) {
/* Retain Host-2-BMC settings written by APE firmware. */
mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
(BGE_MODECTL_BYTESWAP_B2HRX_DATA |
BGE_MODECTL_WORDSWAP_B2HRX_DATA |
BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
}
mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
BGE_MODECTL_TX_NO_PHDR_CSUM;
/*
* BCM5701 B5 have a bug causing data corruption when using
* 64-bit DMA reads, which can be terminated early and then
* completed later as 32-bit accesses, in combination with
* certain bridges.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
mode_ctl |= BGE_MODECTL_FORCE_PCI32;
/*
* Tell the firmware the driver is running
*/
if (sc->bge_asf_mode & ASF_STACKUP)
mode_ctl |= BGE_MODECTL_STACKUP;
CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
/*
* Disable memory write invalidate. Apparently it is not supported
* properly by these devices. Also ensure that INTx isn't disabled,
* as these chips need it even when using MSI.
*/
PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
/* Set the timer prescaler (always 66 MHz). */
CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
DELAY(40); /* XXX */
/* Put PHY into ready state */
BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
DELAY(40);
}
return (0);
}
static int
bge_blockinit(struct bge_softc *sc)
{
struct bge_rcb *rcb;
bus_size_t vrcb;
bge_hostaddr taddr;
uint32_t dmactl, rdmareg, val;
int i, limit;
/*
* Initialize the memory window pointer register so that
* we can access the first 32K of internal NIC RAM. This will
* allow us to set up the TX send ring RCBs and the RX return
* ring RCBs, plus other things which live in NIC memory.
*/
CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
/* Note: the BCM5704 has a smaller mbuf space than other chips. */
if (!(BGE_IS_5705_PLUS(sc))) {
/* Configure mbuf memory pool */
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
else
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
/* Configure DMA resource pool */
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
BGE_DMA_DESCRIPTORS);
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
}
/* Configure mbuf pool watermarks */
if (BGE_IS_5717_PLUS(sc)) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
if (sc->bge_ifp->if_mtu > ETHERMTU) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
} else {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
}
} else if (!BGE_IS_5705_PLUS(sc)) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
} else {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
}
/* Configure DMA resource watermarks */
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
/* Enable buffer manager */
val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
/*
* Change the arbitration algorithm of TXMBUF read request to
* round-robin instead of priority based for BCM5719. When
* TXFIFO is almost empty, RDMA will hold its request until
* TXFIFO is not almost empty.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
val |= BGE_BMANMODE_NO_TX_UNDERRUN;
CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
/* Poll for buffer manager start indication */
for (i = 0; i < BGE_TIMEOUT; i++) {
DELAY(10);
if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
break;
}
if (i == BGE_TIMEOUT) {
device_printf(sc->bge_dev, "buffer manager failed to start\n");
return (ENXIO);
}
/* Enable flow-through queues */
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
/* Wait until queue initialization is complete */
for (i = 0; i < BGE_TIMEOUT; i++) {
DELAY(10);
if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
break;
}
if (i == BGE_TIMEOUT) {
device_printf(sc->bge_dev, "flow-through queue init failed\n");
return (ENXIO);
}
/*
* Summary of rings supported by the controller:
*
* Standard Receive Producer Ring
* - This ring is used to feed receive buffers for "standard"
* sized frames (typically 1536 bytes) to the controller.
*
* Jumbo Receive Producer Ring
* - This ring is used to feed receive buffers for jumbo sized
* frames (i.e. anything bigger than the "standard" frames)
* to the controller.
*
* Mini Receive Producer Ring
* - This ring is used to feed receive buffers for "mini"
* sized frames to the controller.
* - This feature required external memory for the controller
* but was never used in a production system. Should always
* be disabled.
*
* Receive Return Ring
* - After the controller has placed an incoming frame into a
* receive buffer that buffer is moved into a receive return
* ring. The driver is then responsible to passing the
* buffer up to the stack. Many versions of the controller
* support multiple RR rings.
*
* Send Ring
* - This ring is used for outgoing frames. Many versions of
* the controller support multiple send rings.
*/
/* Initialize the standard receive producer ring control block. */
rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
rcb->bge_hostaddr.bge_addr_lo =
BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
rcb->bge_hostaddr.bge_addr_hi =
BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
if (BGE_IS_5717_PLUS(sc)) {
/*
* Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
* Bits 15-2 : Maximum RX frame size
* Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
* Bit 0 : Reserved
*/
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
} else if (BGE_IS_5705_PLUS(sc)) {
/*
* Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
* Bits 15-2 : Reserved (should be 0)
* Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
* Bit 0 : Reserved
*/
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
} else {
/*
* Ring size is always XXX entries
* Bits 31-16: Maximum RX frame size
* Bits 15-2 : Reserved (should be 0)
* Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
* Bit 0 : Reserved
*/
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
}
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
sc->bge_asicrev == BGE_ASICREV_BCM5720)
rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
else
rcb->bge_nicaddr = BGE_STD_RX_RINGS;
/* Write the standard receive producer ring control block. */
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
/* Reset the standard receive producer ring producer index. */
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
/*
* Initialize the jumbo RX producer ring control
* block. We set the 'ring disabled' bit in the
* flags field until we're actually ready to start
* using this ring (i.e. once we set the MTU
* high enough to require it).
*/
if (BGE_IS_JUMBO_CAPABLE(sc)) {
rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
/* Get the jumbo receive producer ring RCB parameters. */
rcb->bge_hostaddr.bge_addr_lo =
BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
rcb->bge_hostaddr.bge_addr_hi =
BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
sc->bge_cdata.bge_rx_jumbo_ring_map,
BUS_DMASYNC_PREREAD);
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
sc->bge_asicrev == BGE_ASICREV_BCM5720)
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
else
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
rcb->bge_hostaddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
rcb->bge_hostaddr.bge_addr_lo);
/* Program the jumbo receive producer ring RCB parameters. */
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
/* Reset the jumbo receive producer ring producer index. */
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
}
/* Disable the mini receive producer ring RCB. */
if (BGE_IS_5700_FAMILY(sc)) {
rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
rcb->bge_maxlen_flags);
/* Reset the mini receive producer ring producer index. */
bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
}
/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
(CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
}
/*
* The BD ring replenish thresholds control how often the
* hardware fetches new BD's from the producer rings in host
* memory. Setting the value too low on a busy system can
* starve the hardware and recue the throughpout.
*
* Set the BD ring replentish thresholds. The recommended
* values are 1/8th the number of descriptors allocated to
* each ring.
* XXX The 5754 requires a lower threshold, so it might be a
* requirement of all 575x family chips. The Linux driver sets
* the lower threshold for all 5705 family chips as well, but there
* are reports that it might not need to be so strict.
*
* XXX Linux does some extra fiddling here for the 5906 parts as
* well.
*/
if (BGE_IS_5705_PLUS(sc))
val = 8;
else
val = BGE_STD_RX_RING_CNT / 8;
CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
if (BGE_IS_JUMBO_CAPABLE(sc))
CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
BGE_JUMBO_RX_RING_CNT/8);
if (BGE_IS_5717_PLUS(sc)) {
CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
}
/*
* Disable all send rings by setting the 'ring disabled' bit
* in the flags field of all the TX send ring control blocks,
* located in NIC memory.
*/
if (!BGE_IS_5705_PLUS(sc))
/* 5700 to 5704 had 16 send rings. */
limit = BGE_TX_RINGS_EXTSSRAM_MAX;
else if (BGE_IS_57765_PLUS(sc) ||
sc->bge_asicrev == BGE_ASICREV_BCM5762)
limit = 2;
else if (BGE_IS_5717_PLUS(sc))
limit = 4;
else
limit = 1;
vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
for (i = 0; i < limit; i++) {
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
vrcb += sizeof(struct bge_rcb);
}
/* Configure send ring RCB 0 (we use only the first ring) */
vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
sc->bge_asicrev == BGE_ASICREV_BCM5720)
RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
else
RCB_WRITE_4(sc, vrcb, bge_nicaddr,
BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
/*
* Disable all receive return rings by setting the
* 'ring diabled' bit in the flags field of all the receive
* return ring control blocks, located in NIC memory.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
sc->bge_asicrev == BGE_ASICREV_BCM5720) {
/* Should be 17, use 16 until we get an SRAM map. */
limit = 16;
} else if (!BGE_IS_5705_PLUS(sc))
limit = BGE_RX_RINGS_MAX;
else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
BGE_IS_57765_PLUS(sc))
limit = 4;
else
limit = 1;
/* Disable all receive return rings. */
vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
for (i = 0; i < limit; i++) {
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
BGE_RCB_FLAG_RING_DISABLED);
RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
(i * (sizeof(uint64_t))), 0);
vrcb += sizeof(struct bge_rcb);
}
/*
* Set up receive return ring 0. Note that the NIC address
* for RX return rings is 0x0. The return rings live entirely
* within the host, so the nicaddr field in the RCB isn't used.
*/
vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
/* Set random backoff seed for TX */
CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
(IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
BGE_TX_BACKOFF_SEED_MASK);
/* Set inter-packet gap */
val = 0x2620;
if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
sc->bge_asicrev == BGE_ASICREV_BCM5762)
val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
(BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
/*
* Specify which ring to use for packets that don't match
* any RX rules.
*/
CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
/*
* Configure number of RX lists. One interrupt distribution
* list, sixteen active lists, one bad frames class.
*/
CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
/* Inialize RX list placement stats mask. */
CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
/* Disable host coalescing until we get it set up */
CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
/* Poll to make sure it's shut down. */
for (i = 0; i < BGE_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
break;
}
if (i == BGE_TIMEOUT) {
device_printf(sc->bge_dev,
"host coalescing engine failed to idle\n");
return (ENXIO);
}
/* Set up host coalescing defaults */
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
if (!(BGE_IS_5705_PLUS(sc))) {
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
}
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
/* Set up address of statistics block */
if (!(BGE_IS_5705_PLUS(sc))) {
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
}
/* Set up address of status block */
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
/* Set up status block size. */
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
val = BGE_STATBLKSZ_FULL;
bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
} else {
val = BGE_STATBLKSZ_32BYTE;
bzero(sc->bge_ldata.bge_status_block, 32);
}
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
sc->bge_cdata.bge_status_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Turn on host coalescing state machine */
CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
/* Turn on RX BD completion state machine and enable attentions */
CSR_WRITE_4(sc, BGE_RBDC_MODE,
BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
/* Turn on RX list placement state machine */
CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
/* Turn on RX list selector state machine. */
if (!(BGE_IS_5705_PLUS(sc)))
CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
/* Turn on DMA, clear stats. */
val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
BGE_MACMODE_FRMHDR_DMA_ENB;
if (sc->bge_flags & BGE_FLAG_TBI)
val |= BGE_PORTMODE_TBI;
else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
val |= BGE_PORTMODE_GMII;
else
val |= BGE_PORTMODE_MII;
/* Allow APE to send/receive frames. */
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
CSR_WRITE_4(sc, BGE_MAC_MODE, val);
DELAY(40);
/* Set misc. local control, enable interrupts on attentions */
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
#ifdef notdef
/* Assert GPIO pins for PHY reset */
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
#endif
/* Turn on DMA completion state machine */
if (!(BGE_IS_5705_PLUS(sc)))
CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
/* Enable host coalescing bug fix. */
if (BGE_IS_5755_PLUS(sc))
val |= BGE_WDMAMODE_STATUS_TAG_FIX;
/* Request larger DMA burst size to get better performance. */
if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
val |= BGE_WDMAMODE_BURST_ALL_DATA;
/* Turn on write DMA state machine */
CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
DELAY(40);
/* Turn on read DMA state machine */
val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
sc->bge_asicrev == BGE_ASICREV_BCM57780)
val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
if (sc->bge_flags & BGE_FLAG_PCIE)
val |= BGE_RDMAMODE_FIFO_LONG_BURST;
if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
val |= BGE_RDMAMODE_TSO4_ENABLE;
if (sc->bge_flags & BGE_FLAG_TSO3 ||
sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
sc->bge_asicrev == BGE_ASICREV_BCM57780)
val |= BGE_RDMAMODE_TSO6_ENABLE;
}
if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
sc->bge_asicrev == BGE_ASICREV_BCM5762) {
val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
BGE_RDMAMODE_H2BNC_VLAN_DET;
/*
* Allow multiple outstanding read requests from
* non-LSO read DMA engine.
*/
val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
}
if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
rdmareg = BGE_RDMA_RSRVCTRL_REG2;
else
rdmareg = BGE_RDMA_RSRVCTRL;
dmactl = CSR_READ_4(sc, rdmareg);
/*
* Adjust tx margin to prevent TX data corruption and
* fix internal FIFO overflow.
*/
if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
sc->bge_asicrev == BGE_ASICREV_BCM5762) {
dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
BGE_RDMA_RSRVCTRL_TXMRGN_320B;
}
/*
* Enable fix for read DMA FIFO overruns.
* The fix is to limit the number of RX BDs
* the hardware would fetch at a fime.
*/
CSR_WRITE_4(sc, rdmareg, dmactl |
BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
}
if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
/*
* Allow 4KB burst length reads for non-LSO frames.
* Enable 512B burst length reads for buffer descriptors.
*/
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
}
CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
DELAY(40);
if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
if ((val & 0xFFFF) > BGE_FRAMELEN)
break;
if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
break;
}
if (i != BGE_NUM_RDMA_CHANNELS / 2) {
val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
val |= BGE_RDMA_TX_LENGTH_WA_5719;
else
val |= BGE_RDMA_TX_LENGTH_WA_5720;
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
}
}
/* Turn on RX data completion state machine */
CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
/* Turn on RX BD initiator state machine */
CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
/* Turn on RX data and RX BD initiator state machine */
CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
/* Turn on Mbuf cluster free state machine */
if (!(BGE_IS_5705_PLUS(sc)))
CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
/* Turn on send BD completion state machine */
CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
/* Turn on send data completion state machine */
val = BGE_SDCMODE_ENABLE;
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
val |= BGE_SDCMODE_CDELAY;
CSR_WRITE_4(sc, BGE_SDC_MODE, val);
/* Turn on send data initiator state machine */
if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
BGE_SDIMODE_HW_LSO_PRE_DMA);
else
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
/* Turn on send BD initiator state machine */
CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
/* Turn on send BD selector state machine */
CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
/* ack/clear link change events */
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
BGE_MACSTAT_LINK_CHANGED);
CSR_WRITE_4(sc, BGE_MI_STS, 0);
/*
* Enable attention when the link has changed state for
* devices that use auto polling.
*/
if (sc->bge_flags & BGE_FLAG_TBI) {
CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
} else {
if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
DELAY(80);
}
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
BGE_EVTENB_MI_INTERRUPT);
}
/*
* Clear any pending link state attention.
* Otherwise some link state change events may be lost until attention
* is cleared by bge_intr() -> bge_link_upd() sequence.
* It's not necessary on newer BCM chips - perhaps enabling link
* state change attentions implies clearing pending attention.
*/
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
BGE_MACSTAT_LINK_CHANGED);
/* Enable link state change attentions. */
BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
return (0);
}
static const struct bge_revision *
bge_lookup_rev(uint32_t chipid)
{
const struct bge_revision *br;
for (br = bge_revisions; br->br_name != NULL; br++) {
if (br->br_chipid == chipid)
return (br);
}
for (br = bge_majorrevs; br->br_name != NULL; br++) {
if (br->br_chipid == BGE_ASICREV(chipid))
return (br);
}
return (NULL);
}
static const struct bge_vendor *
bge_lookup_vendor(uint16_t vid)
{
const struct bge_vendor *v;
for (v = bge_vendors; v->v_name != NULL; v++)
if (v->v_id == vid)
return (v);
return (NULL);
}
static uint32_t
bge_chipid(device_t dev)
{
uint32_t id;
id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
BGE_PCIMISCCTL_ASICREV_SHIFT;
if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
/*
* Find the ASCI revision. Different chips use different
* registers.
*/
switch (pci_get_device(dev)) {
case BCOM_DEVICEID_BCM5717:
case BCOM_DEVICEID_BCM5718:
case BCOM_DEVICEID_BCM5719:
case BCOM_DEVICEID_BCM5720:
case BCOM_DEVICEID_BCM5725:
case BCOM_DEVICEID_BCM5727:
case BCOM_DEVICEID_BCM5762:
case BCOM_DEVICEID_BCM57764:
case BCOM_DEVICEID_BCM57767:
case BCOM_DEVICEID_BCM57787:
id = pci_read_config(dev,
BGE_PCI_GEN2_PRODID_ASICREV, 4);
break;
case BCOM_DEVICEID_BCM57761:
case BCOM_DEVICEID_BCM57762:
case BCOM_DEVICEID_BCM57765:
case BCOM_DEVICEID_BCM57766:
case BCOM_DEVICEID_BCM57781:
case BCOM_DEVICEID_BCM57782:
case BCOM_DEVICEID_BCM57785:
case BCOM_DEVICEID_BCM57786:
case BCOM_DEVICEID_BCM57791:
case BCOM_DEVICEID_BCM57795:
id = pci_read_config(dev,
BGE_PCI_GEN15_PRODID_ASICREV, 4);
break;
default:
id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
}
}
return (id);
}
/*
* Probe for a Broadcom chip. Check the PCI vendor and device IDs
* against our list and return its name if we find a match.
*
* Note that since the Broadcom controller contains VPD support, we
* try to get the device name string from the controller itself instead
* of the compiled-in string. It guarantees we'll always announce the
* right product name. We fall back to the compiled-in string when
* VPD is unavailable or corrupt.
*/
static int
bge_probe(device_t dev)
{
char buf[96];
char model[64];
const struct bge_revision *br;
const char *pname;
struct bge_softc *sc;
const struct bge_type *t = bge_devs;
const struct bge_vendor *v;
uint32_t id;
uint16_t did, vid;
sc = device_get_softc(dev);
sc->bge_dev = dev;
vid = pci_get_vendor(dev);
did = pci_get_device(dev);
while(t->bge_vid != 0) {
if ((vid == t->bge_vid) && (did == t->bge_did)) {
id = bge_chipid(dev);
br = bge_lookup_rev(id);
if (bge_has_eaddr(sc) &&
pci_get_vpd_ident(dev, &pname) == 0)
snprintf(model, sizeof(model), "%s", pname);
else {
v = bge_lookup_vendor(vid);
snprintf(model, sizeof(model), "%s %s",
v != NULL ? v->v_name : "Unknown",
br != NULL ? br->br_name :
"NetXtreme/NetLink Ethernet Controller");
}
snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
model, br != NULL ? "" : "unknown ", id);
device_set_desc_copy(dev, buf);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
static void
bge_dma_free(struct bge_softc *sc)
{
int i;
/* Destroy DMA maps for RX buffers. */
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
if (sc->bge_cdata.bge_rx_std_dmamap[i])
bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
sc->bge_cdata.bge_rx_std_dmamap[i]);
}
if (sc->bge_cdata.bge_rx_std_sparemap)
bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
sc->bge_cdata.bge_rx_std_sparemap);
/* Destroy DMA maps for jumbo RX buffers. */
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
}
if (sc->bge_cdata.bge_rx_jumbo_sparemap)
bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
sc->bge_cdata.bge_rx_jumbo_sparemap);
/* Destroy DMA maps for TX buffers. */
for (i = 0; i < BGE_TX_RING_CNT; i++) {
if (sc->bge_cdata.bge_tx_dmamap[i])
bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
sc->bge_cdata.bge_tx_dmamap[i]);
}
if (sc->bge_cdata.bge_rx_mtag)
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
if (sc->bge_cdata.bge_mtag_jumbo)
bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
if (sc->bge_cdata.bge_tx_mtag)
bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
/* Destroy standard RX ring. */
if (sc->bge_ldata.bge_rx_std_ring_paddr)
bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
sc->bge_cdata.bge_rx_std_ring_map);
if (sc->bge_ldata.bge_rx_std_ring)
bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
sc->bge_ldata.bge_rx_std_ring,
sc->bge_cdata.bge_rx_std_ring_map);
if (sc->bge_cdata.bge_rx_std_ring_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
/* Destroy jumbo RX ring. */
if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
sc->bge_cdata.bge_rx_jumbo_ring_map);
if (sc->bge_ldata.bge_rx_jumbo_ring)
bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
sc->bge_ldata.bge_rx_jumbo_ring,
sc->bge_cdata.bge_rx_jumbo_ring_map);
if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
/* Destroy RX return ring. */
if (sc->bge_ldata.bge_rx_return_ring_paddr)
bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
sc->bge_cdata.bge_rx_return_ring_map);
if (sc->bge_ldata.bge_rx_return_ring)
bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
sc->bge_ldata.bge_rx_return_ring,
sc->bge_cdata.bge_rx_return_ring_map);
if (sc->bge_cdata.bge_rx_return_ring_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
/* Destroy TX ring. */
if (sc->bge_ldata.bge_tx_ring_paddr)
bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
sc->bge_cdata.bge_tx_ring_map);
if (sc->bge_ldata.bge_tx_ring)
bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
sc->bge_ldata.bge_tx_ring,
sc->bge_cdata.bge_tx_ring_map);
if (sc->bge_cdata.bge_tx_ring_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
/* Destroy status block. */
if (sc->bge_ldata.bge_status_block_paddr)
bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
sc->bge_cdata.bge_status_map);
if (sc->bge_ldata.bge_status_block)
bus_dmamem_free(sc->bge_cdata.bge_status_tag,
sc->bge_ldata.bge_status_block,
sc->bge_cdata.bge_status_map);
if (sc->bge_cdata.bge_status_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
/* Destroy statistics block. */
if (sc->bge_ldata.bge_stats_paddr)
bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
sc->bge_cdata.bge_stats_map);
if (sc->bge_ldata.bge_stats)
bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
sc->bge_ldata.bge_stats,
sc->bge_cdata.bge_stats_map);
if (sc->bge_cdata.bge_stats_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
if (sc->bge_cdata.bge_buffer_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
/* Destroy the parent tag. */
if (sc->bge_cdata.bge_parent_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
}
static int
bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
bus_addr_t *paddr, const char *msg)
{
struct bge_dmamap_arg ctx;
int error;
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
if (error != 0) {
device_printf(sc->bge_dev,
"could not create %s dma tag\n", msg);
return (ENOMEM);
}
/* Allocate DMA'able memory for ring. */
error = bus_dmamem_alloc(*tag, (void **)ring,
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
if (error != 0) {
device_printf(sc->bge_dev,
"could not allocate DMA'able memory for %s\n", msg);
return (ENOMEM);
}
/* Load the address of the ring. */
ctx.bge_busaddr = 0;
error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
&ctx, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->bge_dev,
"could not load DMA'able memory for %s\n", msg);
return (ENOMEM);
}
*paddr = ctx.bge_busaddr;
return (0);
}
static int
bge_dma_alloc(struct bge_softc *sc)
{
bus_addr_t lowaddr;
bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
int i, error;
lowaddr = BUS_SPACE_MAXADDR;
if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
lowaddr = BGE_DMA_MAXADDR;
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
if (error != 0) {
device_printf(sc->bge_dev,
"could not allocate parent dma tag\n");
return (ENOMEM);
}
/* Create tag for standard RX ring. */
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
&sc->bge_cdata.bge_rx_std_ring_tag,
(uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
&sc->bge_cdata.bge_rx_std_ring_map,
&sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
if (error)
return (error);
/* Create tag for RX return ring. */
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
&sc->bge_cdata.bge_rx_return_ring_tag,
(uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
&sc->bge_cdata.bge_rx_return_ring_map,
&sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
if (error)
return (error);
/* Create tag for TX ring. */
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
&sc->bge_cdata.bge_tx_ring_tag,
(uint8_t **)&sc->bge_ldata.bge_tx_ring,
&sc->bge_cdata.bge_tx_ring_map,
&sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
if (error)
return (error);
/*
* Create tag for status block.
* Because we only use single Tx/Rx/Rx return ring, use
* minimum status block size except BCM5700 AX/BX which
* seems to want to see full status block size regardless
* of configured number of ring.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
sbsz = BGE_STATUS_BLK_SZ;
else
sbsz = 32;
error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
&sc->bge_cdata.bge_status_tag,
(uint8_t **)&sc->bge_ldata.bge_status_block,
&sc->bge_cdata.bge_status_map,
&sc->bge_ldata.bge_status_block_paddr, "status block");
if (error)
return (error);
/* Create tag for statistics block. */
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
&sc->bge_cdata.bge_stats_tag,
(uint8_t **)&sc->bge_ldata.bge_stats,
&sc->bge_cdata.bge_stats_map,
&sc->bge_ldata.bge_stats_paddr, "statistics block");
if (error)
return (error);
/* Create tag for jumbo RX ring. */
if (BGE_IS_JUMBO_CAPABLE(sc)) {
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
&sc->bge_cdata.bge_rx_jumbo_ring_tag,
(uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
&sc->bge_cdata.bge_rx_jumbo_ring_map,
&sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
if (error)
return (error);
}
/* Create parent tag for buffers. */
if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
/*
* XXX
* watchdog timeout issue was observed on BCM5704 which
* lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
* Both limiting DMA address space to 32bits and flushing
* mailbox write seem to address the issue.
*/
if (sc->bge_pcixcap != 0)
lowaddr = BUS_SPACE_MAXADDR_32BIT;
}
error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
&sc->bge_cdata.bge_buffer_tag);
if (error != 0) {
device_printf(sc->bge_dev,
"could not allocate buffer dma tag\n");
return (ENOMEM);
}
/* Create tag for Tx mbufs. */
if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
txsegsz = BGE_TSOSEG_SZ;
txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
} else {
txsegsz = MCLBYTES;
txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
}
error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
&sc->bge_cdata.bge_tx_mtag);
if (error) {
device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
return (ENOMEM);
}
/* Create tag for Rx mbufs. */
if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
rxmaxsegsz = MJUM9BYTES;
else
rxmaxsegsz = MCLBYTES;
error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
if (error) {
device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
return (ENOMEM);
}
/* Create DMA maps for RX buffers. */
error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
&sc->bge_cdata.bge_rx_std_sparemap);
if (error) {
device_printf(sc->bge_dev,
"can't create spare DMA map for RX\n");
return (ENOMEM);
}
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
&sc->bge_cdata.bge_rx_std_dmamap[i]);
if (error) {
device_printf(sc->bge_dev,
"can't create DMA map for RX\n");
return (ENOMEM);
}
}
/* Create DMA maps for TX buffers. */
for (i = 0; i < BGE_TX_RING_CNT; i++) {
error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
&sc->bge_cdata.bge_tx_dmamap[i]);
if (error) {
device_printf(sc->bge_dev,
"can't create DMA map for TX\n");
return (ENOMEM);
}
}
/* Create tags for jumbo RX buffers. */
if (BGE_IS_JUMBO_CAPABLE(sc)) {
error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
if (error) {
device_printf(sc->bge_dev,
"could not allocate jumbo dma tag\n");
return (ENOMEM);
}
/* Create DMA maps for jumbo RX buffers. */
error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
if (error) {
device_printf(sc->bge_dev,
"can't create spare DMA map for jumbo RX\n");
return (ENOMEM);
}
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
if (error) {
device_printf(sc->bge_dev,
"can't create DMA map for jumbo RX\n");
return (ENOMEM);
}
}
}
return (0);
}
/*
* Return true if this device has more than one port.
*/
static int
bge_has_multiple_ports(struct bge_softc *sc)
{
device_t dev = sc->bge_dev;
u_int b, d, f, fscan, s;
d = pci_get_domain(dev);
b = pci_get_bus(dev);
s = pci_get_slot(dev);
f = pci_get_function(dev);
for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
return (1);
return (0);
}
/*
* Return true if MSI can be used with this device.
*/
static int
bge_can_use_msi(struct bge_softc *sc)
{
int can_use_msi = 0;
if (sc->bge_msi == 0)
return (0);
/* Disable MSI for polling(4). */
#ifdef DEVICE_POLLING
return (0);
#endif
switch (sc->bge_asicrev) {
case BGE_ASICREV_BCM5714_A0:
case BGE_ASICREV_BCM5714:
/*
* Apparently, MSI doesn't work when these chips are
* configured in single-port mode.
*/
if (bge_has_multiple_ports(sc))
can_use_msi = 1;
break;
case BGE_ASICREV_BCM5750:
if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
sc->bge_chiprev != BGE_CHIPREV_5750_BX)
can_use_msi = 1;
break;
default:
if (BGE_IS_575X_PLUS(sc))
can_use_msi = 1;
}
return (can_use_msi);
}
static int
bge_mbox_reorder(struct bge_softc *sc)
{
/* Lists of PCI bridges that are known to reorder mailbox writes. */
static const struct mbox_reorder {
const uint16_t vendor;
const uint16_t device;
const char *desc;
} mbox_reorder_lists[] = {
{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
};
devclass_t pci, pcib;
device_t bus, dev;
int i;
pci = devclass_find("pci");
pcib = devclass_find("pcib");
dev = sc->bge_dev;
bus = device_get_parent(dev);
for (;;) {
dev = device_get_parent(bus);
bus = device_get_parent(dev);
if (device_get_devclass(dev) != pcib)
break;
for (i = 0; i < nitems(mbox_reorder_lists); i++) {
if (pci_get_vendor(dev) ==
mbox_reorder_lists[i].vendor &&
pci_get_device(dev) ==
mbox_reorder_lists[i].device) {
device_printf(sc->bge_dev,
"enabling MBOX workaround for %s\n",
mbox_reorder_lists[i].desc);
return (1);
}
}
if (device_get_devclass(bus) != pci)
break;
}
return (0);
}
static void
bge_devinfo(struct bge_softc *sc)
{
uint32_t cfg, clk;
device_printf(sc->bge_dev,
"CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
if (sc->bge_flags & BGE_FLAG_PCIE)
printf("PCI-E\n");
else if (sc->bge_flags & BGE_FLAG_PCIX) {
printf("PCI-X ");
cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
clk = 133;
else {
clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
switch (clk) {
case 0:
clk = 33;
break;
case 2:
clk = 50;
break;
case 4:
clk = 66;
break;
case 6:
clk = 100;
break;
case 7:
clk = 133;
break;
}
}
printf("%u MHz\n", clk);
} else {
if (sc->bge_pcixcap != 0)
printf("PCI on PCI-X ");
else
printf("PCI ");
cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
clk = 66;
else
clk = 33;
if (cfg & BGE_PCISTATE_32BIT_BUS)
printf("%u MHz; 32bit\n", clk);
else
printf("%u MHz; 64bit\n", clk);
}
}
static int
bge_attach(device_t dev)
{
struct ifnet *ifp;
struct bge_softc *sc;
uint32_t hwcfg = 0, misccfg, pcistate;
u_char eaddr[ETHER_ADDR_LEN];
int capmask, error, reg, rid, trys;
sc = device_get_softc(dev);
sc->bge_dev = dev;
BGE_LOCK_INIT(sc, device_get_nameunit(dev));
TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
pci_enable_busmaster(dev);
/*
* Allocate control/status registers.
*/
rid = PCIR_BAR(0);
sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->bge_res == NULL) {
device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
error = ENXIO;
goto fail;
}
/* Save various chip information. */
sc->bge_func_addr = pci_get_function(dev);
sc->bge_chipid = bge_chipid(dev);
sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
/* Set default PHY address. */
sc->bge_phy_addr = 1;
/*
* PHY address mapping for various devices.
*
* | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
* ---------+-------+-------+-------+-------+
* BCM57XX | 1 | X | X | X |
* BCM5704 | 1 | X | 1 | X |
* BCM5717 | 1 | 8 | 2 | 9 |
* BCM5719 | 1 | 8 | 2 | 9 |
* BCM5720 | 1 | 8 | 2 | 9 |
*
* | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
* ---------+-------+-------+-------+-------+
* BCM57XX | X | X | X | X |
* BCM5704 | X | X | X | X |
* BCM5717 | X | X | X | X |
* BCM5719 | 3 | 10 | 4 | 11 |
* BCM5720 | X | X | X | X |
*
* Other addresses may respond but they are not
* IEEE compliant PHYs and should be ignored.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
sc->bge_asicrev == BGE_ASICREV_BCM5720) {
if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
if (CSR_READ_4(sc, BGE_SGDIG_STS) &
BGE_SGDIGSTS_IS_SERDES)
sc->bge_phy_addr = sc->bge_func_addr + 8;
else
sc->bge_phy_addr = sc->bge_func_addr + 1;
} else {
if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
BGE_CPMU_PHY_STRAP_IS_SERDES)
sc->bge_phy_addr = sc->bge_func_addr + 8;
else
sc->bge_phy_addr = sc->bge_func_addr + 1;
}
}
if (bge_has_eaddr(sc))
sc->bge_flags |= BGE_FLAG_EADDR;
/* Save chipset family. */
switch (sc->bge_asicrev) {
case BGE_ASICREV_BCM5762:
case BGE_ASICREV_BCM57765:
case BGE_ASICREV_BCM57766:
sc->bge_flags |= BGE_FLAG_57765_PLUS;
/* FALLTHROUGH */
case BGE_ASICREV_BCM5717:
case BGE_ASICREV_BCM5719:
case BGE_ASICREV_BCM5720:
sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
BGE_FLAG_JUMBO_FRAME;
if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
sc->bge_asicrev == BGE_ASICREV_BCM5720) {
/*
* Enable work around for DMA engine miscalculation
* of TXMBUF available space.
*/
sc->bge_flags |= BGE_FLAG_RDMA_BUG;
if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
/* Jumbo frame on BCM5719 A0 does not work. */
sc->bge_flags &= ~BGE_FLAG_JUMBO;
}
}
break;
case BGE_ASICREV_BCM5755:
case BGE_ASICREV_BCM5761:
case BGE_ASICREV_BCM5784:
case BGE_ASICREV_BCM5785:
case BGE_ASICREV_BCM5787:
case BGE_ASICREV_BCM57780:
sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
BGE_FLAG_5705_PLUS;
break;
case BGE_ASICREV_BCM5700:
case BGE_ASICREV_BCM5701:
case BGE_ASICREV_BCM5703:
case BGE_ASICREV_BCM5704:
sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
break;
case BGE_ASICREV_BCM5714_A0:
case BGE_ASICREV_BCM5780:
case BGE_ASICREV_BCM5714:
sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
/* FALLTHROUGH */
case BGE_ASICREV_BCM5750:
case BGE_ASICREV_BCM5752:
case BGE_ASICREV_BCM5906:
sc->bge_flags |= BGE_FLAG_575X_PLUS;
/* FALLTHROUGH */
case BGE_ASICREV_BCM5705:
sc->bge_flags |= BGE_FLAG_5705_PLUS;
break;
}
/* Identify chips with APE processor. */
switch (sc->bge_asicrev) {
case BGE_ASICREV_BCM5717:
case BGE_ASICREV_BCM5719:
case BGE_ASICREV_BCM5720:
case BGE_ASICREV_BCM5761:
case BGE_ASICREV_BCM5762:
sc->bge_flags |= BGE_FLAG_APE;
break;
}
/* Chips with APE need BAR2 access for APE registers/memory. */
if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
rid = PCIR_BAR(2);
sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->bge_res2 == NULL) {
device_printf (sc->bge_dev,
"couldn't map BAR2 memory\n");
error = ENXIO;
goto fail;
}
/* Enable APE register/memory access by host driver. */
pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
bge_ape_lock_init(sc);
bge_ape_read_fw_ver(sc);
}
/* Add SYSCTLs, requires the chipset family to be set. */
bge_add_sysctls(sc);
/* Identify the chips that use an CPMU. */
if (BGE_IS_5717_PLUS(sc) ||
sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
sc->bge_asicrev == BGE_ASICREV_BCM57780)
sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
else
sc->bge_mi_mode = BGE_MIMODE_BASE;
/* Enable auto polling for BCM570[0-5]. */
if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
/*
* All Broadcom controllers have 4GB boundary DMA bug.
* Whenever an address crosses a multiple of the 4GB boundary
* (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
* from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
* state machine will lockup and cause the device to hang.
*/
sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
/* BCM5755 or higher and BCM5906 have short DMA bug. */
if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
/*
* BCM5719 cannot handle DMA requests for DMA segments that
* have larger than 4KB in size. However the maximum DMA
* segment size created in DMA tag is 4KB for TSO, so we
* wouldn't encounter the issue here.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
misccfg == BGE_MISCCFG_BOARD_ID_5788M)
sc->bge_flags |= BGE_FLAG_5788;
}
capmask = BMSR_DEFCAPMASK;
if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
(misccfg == 0x4000 || misccfg == 0x8000)) ||
(sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
pci_get_vendor(dev) == BCOM_VENDORID &&
(pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
(pci_get_vendor(dev) == BCOM_VENDORID &&
(pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
sc->bge_asicrev == BGE_ASICREV_BCM5906) {
/* These chips are 10/100 only. */
capmask &= ~BMSR_EXTSTAT;
sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
}
/*
* Some controllers seem to require a special firmware to use
* TSO. But the firmware is not available to FreeBSD and Linux
* claims that the TSO performed by the firmware is slower than
* hardware based TSO. Moreover the firmware based TSO has one
* known bug which can't handle TSO if Ethernet header + IP/TCP
* header is greater than 80 bytes. A workaround for the TSO
* bug exist but it seems it's too expensive than not using
* TSO at all. Some hardwares also have the TSO bug so limit
* the TSO to the controllers that are not affected TSO issues
* (e.g. 5755 or higher).
*/
if (BGE_IS_5717_PLUS(sc)) {
/* BCM5717 requires different TSO configuration. */
sc->bge_flags |= BGE_FLAG_TSO3;
if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
/* TSO on BCM5719 A0 does not work. */
sc->bge_flags &= ~BGE_FLAG_TSO3;
}
} else if (BGE_IS_5755_PLUS(sc)) {
/*
* BCM5754 and BCM5787 shares the same ASIC id so
* explicit device id check is required.
* Due to unknown reason TSO does not work on BCM5755M.
*/
if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
sc->bge_flags |= BGE_FLAG_TSO;
}
/*
* Check if this is a PCI-X or PCI Express device.
*/
if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
/*
* Found a PCI Express capabilities register, this
* must be a PCI Express device.
*/
sc->bge_flags |= BGE_FLAG_PCIE;
sc->bge_expcap = reg;
/* Extract supported maximum payload size. */
sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
PCIER_DEVICE_CAP, 2);
sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
sc->bge_asicrev == BGE_ASICREV_BCM5720)
sc->bge_expmrq = 2048;
else
sc->bge_expmrq = 4096;
pci_set_max_read_req(dev, sc->bge_expmrq);
} else {
/*
* Check if the device is in PCI-X Mode.
* (This bit is not valid on PCI Express controllers.)
*/
if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
sc->bge_pcixcap = reg;
if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
BGE_PCISTATE_PCI_BUSMODE) == 0)
sc->bge_flags |= BGE_FLAG_PCIX;
}
/*
* The 40bit DMA bug applies to the 5714/5715 controllers and is
* not actually a MAC controller bug but an issue with the embedded
* PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
*/
if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
sc->bge_flags |= BGE_FLAG_40BIT_BUG;
/*
* Some PCI-X bridges are known to trigger write reordering to
* the mailbox registers. Typical phenomena is watchdog timeouts
* caused by out-of-order TX completions. Enable workaround for
* PCI-X devices that live behind these bridges.
* Note, PCI-X controllers can run in PCI mode so we can't use
* BGE_FLAG_PCIX flag to detect PCI-X controllers.
*/
if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
/*
* Allocate the interrupt, using MSI if possible. These devices
* support 8 MSI messages, but only the first one is used in
* normal operation.
*/
rid = 0;
if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
sc->bge_msicap = reg;
reg = 1;
if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
rid = 1;
sc->bge_flags |= BGE_FLAG_MSI;
}
}
/*
* All controllers except BCM5700 supports tagged status but
* we use tagged status only for MSI case on BCM5717. Otherwise
* MSI on BCM5717 does not work.
*/
#ifndef DEVICE_POLLING
if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
#endif
sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
if (sc->bge_irq == NULL) {
device_printf(sc->bge_dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
bge_devinfo(sc);
sc->bge_asf_mode = 0;
/* No ASF if APE present. */
if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
BGE_SRAM_DATA_SIG_MAGIC)) {
if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
BGE_HWCFG_ASF) {
sc->bge_asf_mode |= ASF_ENABLE;
sc->bge_asf_mode |= ASF_STACKUP;
if (BGE_IS_575X_PLUS(sc))
sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
}
}
}
bge_stop_fw(sc);
bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
if (bge_reset(sc)) {
device_printf(sc->bge_dev, "chip reset failed\n");
error = ENXIO;
goto fail;
}
bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
if (bge_chipinit(sc)) {
device_printf(sc->bge_dev, "chip initialization failed\n");
error = ENXIO;
goto fail;
}
error = bge_get_eaddr(sc, eaddr);
if (error) {
device_printf(sc->bge_dev,
"failed to read station address\n");
error = ENXIO;
goto fail;
}
/* 5705 limits RX return ring to 512 entries. */
if (BGE_IS_5717_PLUS(sc))
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
else if (BGE_IS_5705_PLUS(sc))
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
else
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
if (bge_dma_alloc(sc)) {
device_printf(sc->bge_dev,
"failed to allocate DMA resources\n");
error = ENXIO;
goto fail;
}
/* Set default tuneable values. */
sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
sc->bge_rx_coal_ticks = 150;
sc->bge_tx_coal_ticks = 150;
sc->bge_rx_max_coal_bds = 10;
sc->bge_tx_max_coal_bds = 10;
/* Initialize checksum features to use. */
sc->bge_csum_features = BGE_CSUM_FEATURES;
if (sc->bge_forced_udpcsum != 0)
sc->bge_csum_features |= CSUM_UDP;
/* Set up ifnet structure */
ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(sc->bge_dev, "failed to if_alloc()\n");
error = ENXIO;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = bge_ioctl;
ifp->if_start = bge_start;
ifp->if_init = bge_init;
ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
ifp->if_hwassist = sc->bge_csum_features;
ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_MTU;
if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
ifp->if_hwassist |= CSUM_TSO;
ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
}
#ifdef IFCAP_VLAN_HWCSUM
ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
#endif
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/*
* 5700 B0 chips do not support checksumming correctly due
* to hardware bugs.
*/
if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
ifp->if_capabilities &= ~IFCAP_HWCSUM;
ifp->if_capenable &= ~IFCAP_HWCSUM;
ifp->if_hwassist = 0;
}
/*
* Figure out what sort of media we have by checking the
* hardware config word in the first 32k of NIC internal memory,
* or fall back to examining the EEPROM if necessary.
* Note: on some BCM5700 cards, this value appears to be unset.
* If that's the case, we have to rely on identifying the NIC
* by its PCI subsystem ID, as we do below for the SysKonnect
* SK-9D41.
*/
if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
(sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
sizeof(hwcfg))) {
device_printf(sc->bge_dev, "failed to read EEPROM\n");
error = ENXIO;
goto fail;
}
hwcfg = ntohl(hwcfg);
}
/* The SysKonnect SK-9D41 is a 1000baseSX card. */
if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
if (BGE_IS_5705_PLUS(sc)) {
sc->bge_flags |= BGE_FLAG_MII_SERDES;
sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
} else
sc->bge_flags |= BGE_FLAG_TBI;
}
/* Set various PHY bug flags. */
if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
sc->bge_chiprev == BGE_CHIPREV_5704_AX)
sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
if (pci_get_subvendor(dev) == DELL_VENDORID)
sc->bge_phy_flags |= BGE_PHY_NO_3LED;
if ((BGE_IS_5705_PLUS(sc)) &&
sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
!BGE_IS_5717_PLUS(sc)) {
if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
sc->bge_asicrev == BGE_ASICREV_BCM5787) {
if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
} else
sc->bge_phy_flags |= BGE_PHY_BER_BUG;
}
/*
* Don't enable Ethernet@WireSpeed for the 5700 or the
* 5705 A0 and A1 chips.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
(sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
(sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
if (sc->bge_flags & BGE_FLAG_TBI) {
ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
bge_ifmedia_sts);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
0, NULL);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
} else {
/*
* Do transceiver setup and tell the firmware the
* driver is down so we can try to get access the
* probe if ASF is running. Retry a couple of times
* if we get a conflict with the ASF firmware accessing
* the PHY.
*/
trys = 0;
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
again:
bge_asf_driver_up(sc);
error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
bge_ifmedia_sts, capmask, sc->bge_phy_addr, MII_OFFSET_ANY,
MIIF_DOPAUSE);
if (error != 0) {
if (trys++ < 4) {
device_printf(sc->bge_dev, "Try again\n");
bge_miibus_writereg(sc->bge_dev,
sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
goto again;
}
device_printf(sc->bge_dev, "attaching PHYs failed\n");
goto fail;
}
/*
* Now tell the firmware we are going up after probing the PHY
*/
if (sc->bge_asf_mode & ASF_STACKUP)
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
}
/*
* When using the BCM5701 in PCI-X mode, data corruption has
* been observed in the first few bytes of some received packets.
* Aligning the packet buffer in memory eliminates the corruption.
* Unfortunately, this misaligns the packet payloads. On platforms
* which do not support unaligned accesses, we will realign the
* payloads by copying the received packets.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
sc->bge_flags & BGE_FLAG_PCIX)
sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/* Tell upper layer we support long frames. */
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
/*
* Hookup IRQ last.
*/
if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
/* Take advantage of single-shot MSI. */
CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
~BGE_MSIMODE_ONE_SHOT_DISABLE);
sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->bge_tq);
if (sc->bge_tq == NULL) {
device_printf(dev, "could not create taskqueue.\n");
ether_ifdetach(ifp);
error = ENOMEM;
goto fail;
}
error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
"%s taskq", device_get_nameunit(sc->bge_dev));
if (error != 0) {
device_printf(dev, "could not start threads.\n");
ether_ifdetach(ifp);
goto fail;
}
error = bus_setup_intr(dev, sc->bge_irq,
INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
&sc->bge_intrhand);
} else
error = bus_setup_intr(dev, sc->bge_irq,
INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
&sc->bge_intrhand);
if (error) {
ether_ifdetach(ifp);
device_printf(sc->bge_dev, "couldn't set up irq\n");
}
fail:
if (error)
bge_detach(dev);
return (error);
}
static int
bge_detach(device_t dev)
{
struct bge_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->bge_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
if (device_is_attached(dev)) {
ether_ifdetach(ifp);
BGE_LOCK(sc);
bge_stop(sc);
BGE_UNLOCK(sc);
callout_drain(&sc->bge_stat_ch);
}
if (sc->bge_tq)
taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
if (sc->bge_flags & BGE_FLAG_TBI)
ifmedia_removeall(&sc->bge_ifmedia);
else if (sc->bge_miibus != NULL) {
bus_generic_detach(dev);
device_delete_child(dev, sc->bge_miibus);
}
bge_release_resources(sc);
return (0);
}
static void
bge_release_resources(struct bge_softc *sc)
{
device_t dev;
dev = sc->bge_dev;
if (sc->bge_tq != NULL)
taskqueue_free(sc->bge_tq);
if (sc->bge_intrhand != NULL)
bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
if (sc->bge_irq != NULL) {
bus_release_resource(dev, SYS_RES_IRQ,
rman_get_rid(sc->bge_irq), sc->bge_irq);
pci_release_msi(dev);
}
if (sc->bge_res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
rman_get_rid(sc->bge_res), sc->bge_res);
if (sc->bge_res2 != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
rman_get_rid(sc->bge_res2), sc->bge_res2);
if (sc->bge_ifp != NULL)
if_free(sc->bge_ifp);
bge_dma_free(sc);
if (mtx_initialized(&sc->bge_mtx)) /* XXX */
BGE_LOCK_DESTROY(sc);
}
static int
bge_reset(struct bge_softc *sc)
{
device_t dev;
uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
void (*write_op)(struct bge_softc *, int, int);
uint16_t devctl;
int i;
dev = sc->bge_dev;
mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
(sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
if (sc->bge_flags & BGE_FLAG_PCIE)
write_op = bge_writemem_direct;
else
write_op = bge_writemem_ind;
} else
write_op = bge_writereg_ind;
if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
sc->bge_asicrev != BGE_ASICREV_BCM5701) {
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
for (i = 0; i < 8000; i++) {
if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
BGE_NVRAMSWARB_GNT1)
break;
DELAY(20);
}
if (i == 8000) {
if (bootverbose)
device_printf(dev, "NVRAM lock timedout!\n");
}
}
/* Take APE lock when performing reset. */
bge_ape_lock(sc, BGE_APE_LOCK_GRC);
/* Save some important PCI state. */
cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
command = pci_read_config(dev, BGE_PCI_CMD, 4);
pci_write_config(dev, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
/* Disable fastboot on controllers that support it. */
if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
BGE_IS_5755_PLUS(sc)) {
if (bootverbose)
device_printf(dev, "Disabling fastboot\n");
CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
}
/*
* Write the magic number to SRAM at offset 0xB50.
* When firmware finishes its initialization it will
* write ~BGE_SRAM_FW_MB_MAGIC to the same location.
*/
bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
/* XXX: Broadcom Linux driver. */
if (sc->bge_flags & BGE_FLAG_PCIE) {
if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
(sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */
CSR_WRITE_4(sc, 0x7E2C, 0x20);
}
if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
/* Prevent PCIE link training during global reset */
CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
reset |= 1 << 29;
}
}
if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
val = CSR_READ_4(sc, BGE_VCPU_STATUS);
CSR_WRITE_4(sc, BGE_VCPU_STATUS,
val | BGE_VCPU_STATUS_DRV_RESET);
val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
}
/*
* Set GPHY Power Down Override to leave GPHY
* powered up in D0 uninitialized.
*/
if (BGE_IS_5705_PLUS(sc) &&
(sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
/* Issue global reset */
write_op(sc, BGE_MISC_CFG, reset);
if (sc->bge_flags & BGE_FLAG_PCIE)
DELAY(100 * 1000);
else
DELAY(1000);
/* XXX: Broadcom Linux driver. */
if (sc->bge_flags & BGE_FLAG_PCIE) {
if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
DELAY(500000); /* wait for link training to complete */
val = pci_read_config(dev, 0xC4, 4);
pci_write_config(dev, 0xC4, val | (1 << 15), 4);
}
devctl = pci_read_config(dev,
sc->bge_expcap + PCIER_DEVICE_CTL, 2);
/* Clear enable no snoop and disable relaxed ordering. */
devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
PCIEM_CTL_NOSNOOP_ENABLE);
pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
devctl, 2);
pci_set_max_read_req(dev, sc->bge_expmrq);
/* Clear error status. */
pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
PCIEM_STA_CORRECTABLE_ERROR |
PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
PCIEM_STA_UNSUPPORTED_REQ, 2);
}
/* Reset some of the PCI state that got zapped by reset. */
pci_write_config(dev, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
(sc->bge_flags & BGE_FLAG_PCIX) != 0)
val |= BGE_PCISTATE_RETRY_SAME_DMA;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
pci_write_config(dev, BGE_PCI_CMD, command, 4);
/*
* Disable PCI-X relaxed ordering to ensure status block update
* comes first then packet buffer DMA. Otherwise driver may
* read stale status block.
*/
if (sc->bge_flags & BGE_FLAG_PCIX) {
devctl = pci_read_config(dev,
sc->bge_pcixcap + PCIXR_COMMAND, 2);
devctl &= ~PCIXM_COMMAND_ERO;
if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
devctl &= ~PCIXM_COMMAND_MAX_READ;
devctl |= PCIXM_COMMAND_MAX_READ_2048;
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
PCIXM_COMMAND_MAX_READ);
devctl |= PCIXM_COMMAND_MAX_READ_2048;
}
pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
devctl, 2);
}
/* Re-enable MSI, if necessary, and enable the memory arbiter. */
if (BGE_IS_5714_FAMILY(sc)) {
/* This chip disables MSI on reset. */
if (sc->bge_flags & BGE_FLAG_MSI) {
val = pci_read_config(dev,
sc->bge_msicap + PCIR_MSI_CTRL, 2);
pci_write_config(dev,
sc->bge_msicap + PCIR_MSI_CTRL,
val | PCIM_MSICTRL_MSI_ENABLE, 2);
val = CSR_READ_4(sc, BGE_MSI_MODE);
CSR_WRITE_4(sc, BGE_MSI_MODE,
val | BGE_MSIMODE_ENABLE);
}
val = CSR_READ_4(sc, BGE_MARB_MODE);
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
} else
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
/* Fix up byte swapping. */
CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
val = CSR_READ_4(sc, BGE_MAC_MODE);
val = (val & ~mac_mode_mask) | mac_mode;
CSR_WRITE_4(sc, BGE_MAC_MODE, val);
DELAY(40);
bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
for (i = 0; i < BGE_TIMEOUT; i++) {
val = CSR_READ_4(sc, BGE_VCPU_STATUS);
if (val & BGE_VCPU_STATUS_INIT_DONE)
break;
DELAY(100);
}
if (i == BGE_TIMEOUT) {
device_printf(dev, "reset timed out\n");
return (1);
}
} else {
/*
* Poll until we see the 1's complement of the magic number.
* This indicates that the firmware initialization is complete.
* We expect this to fail if no chip containing the Ethernet
* address is fitted though.
*/
for (i = 0; i < BGE_TIMEOUT; i++) {
DELAY(10);
val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
if (val == ~BGE_SRAM_FW_MB_MAGIC)
break;
}
if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
device_printf(dev,
"firmware handshake timed out, found 0x%08x\n",
val);
/* BCM57765 A0 needs additional time before accessing. */
if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
DELAY(10 * 1000); /* XXX */
}
/*
* The 5704 in TBI mode apparently needs some special
* adjustment to insure the SERDES drive level is set
* to 1.2V.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
sc->bge_flags & BGE_FLAG_TBI) {
val = CSR_READ_4(sc, BGE_SERDES_CFG);
val = (val & ~0xFFF) | 0x880;
CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
}
/* XXX: Broadcom Linux driver. */
if (sc->bge_flags & BGE_FLAG_PCIE &&
!BGE_IS_5717_PLUS(sc) &&
sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
sc->bge_asicrev != BGE_ASICREV_BCM5785) {
/* Enable Data FIFO protection. */
val = CSR_READ_4(sc, 0x7C00);
CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
}
if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
return (0);
}
static __inline void
bge_rxreuse_std(struct bge_softc *sc, int i)
{
struct bge_rx_bd *r;
r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
r->bge_flags = BGE_RXBDFLAG_END;
r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
r->bge_idx = i;
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
}
static __inline void
bge_rxreuse_jumbo(struct bge_softc *sc, int i)
{
struct bge_extrx_bd *r;
r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
r->bge_idx = i;
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
}
/*
* Frame reception handling. This is called if there's a frame
* on the receive return list.
*
* Note: we have to be able to handle two possibilities here:
* 1) the frame is from the jumbo receive ring
* 2) the frame is from the standard receive ring
*/
static int
bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
{
struct ifnet *ifp;
int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
uint16_t rx_cons;
rx_cons = sc->bge_rx_saved_considx;
/* Nothing to do. */
if (rx_cons == rx_prod)
return (rx_npkts);
ifp = sc->bge_ifp;
bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
if (BGE_IS_JUMBO_CAPABLE(sc) &&
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
(MCLBYTES - ETHER_ALIGN))
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
while (rx_cons != rx_prod) {
struct bge_rx_bd *cur_rx;
uint32_t rxidx;
struct mbuf *m = NULL;
uint16_t vlan_tag = 0;
int have_tag = 0;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif
cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
rxidx = cur_rx->bge_idx;
BGE_INC(rx_cons, sc->bge_return_ring_cnt);
if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
have_tag = 1;
vlan_tag = cur_rx->bge_vlan_tag;
}
if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
jumbocnt++;
m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
bge_rxreuse_jumbo(sc, rxidx);
continue;
}
if (bge_newbuf_jumbo(sc, rxidx) != 0) {
bge_rxreuse_jumbo(sc, rxidx);
ifp->if_iqdrops++;
continue;
}
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
} else {
stdcnt++;
m = sc->bge_cdata.bge_rx_std_chain[rxidx];
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
bge_rxreuse_std(sc, rxidx);
continue;
}
if (bge_newbuf_std(sc, rxidx) != 0) {
bge_rxreuse_std(sc, rxidx);
ifp->if_iqdrops++;
continue;
}
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
}
ifp->if_ipackets++;
#ifndef __NO_STRICT_ALIGNMENT
/*
* For architectures with strict alignment we must make sure
* the payload is aligned.
*/
if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
bcopy(m->m_data, m->m_data + ETHER_ALIGN,
cur_rx->bge_len);
m->m_data += ETHER_ALIGN;
}
#endif
m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
m->m_pkthdr.rcvif = ifp;
if (ifp->if_capenable & IFCAP_RXCSUM)
bge_rxcsum(sc, cur_rx, m);
/*
* If we received a packet with a vlan tag,
* attach that information to the packet.
*/
if (have_tag) {
m->m_pkthdr.ether_vtag = vlan_tag;
m->m_flags |= M_VLANTAG;
}
if (holdlck != 0) {
BGE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
BGE_LOCK(sc);
} else
(*ifp->if_input)(ifp, m);
rx_npkts++;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
return (rx_npkts);
}
bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
if (stdcnt > 0)
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
if (jumbocnt > 0)
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
sc->bge_rx_saved_considx = rx_cons;
bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
if (stdcnt)
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
if (jumbocnt)
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
#ifdef notyet
/*
* This register wraps very quickly under heavy packet drops.
* If you need correct statistics, you can enable this check.
*/
if (BGE_IS_5705_PLUS(sc))
ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
#endif
return (rx_npkts);
}
static void
bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
{
if (BGE_IS_5717_PLUS(sc)) {
if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((cur_rx->bge_error_flag &
BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
m->m_pkthdr.csum_data =
cur_rx->bge_tcp_udp_csum;
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
CSUM_PSEUDO_HDR;
}
}
} else {
if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
m->m_pkthdr.csum_data =
cur_rx->bge_tcp_udp_csum;
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
CSUM_PSEUDO_HDR;
}
}
}
static void
bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
{
struct bge_tx_bd *cur_tx;
struct ifnet *ifp;
BGE_LOCK_ASSERT(sc);
/* Nothing to do. */
if (sc->bge_tx_saved_considx == tx_cons)
return;
ifp = sc->bge_ifp;
bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
while (sc->bge_tx_saved_considx != tx_cons) {
uint32_t idx;
idx = sc->bge_tx_saved_considx;
cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
ifp->if_opackets++;
if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
sc->bge_cdata.bge_tx_dmamap[idx],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
sc->bge_cdata.bge_tx_dmamap[idx]);
m_freem(sc->bge_cdata.bge_tx_chain[idx]);
sc->bge_cdata.bge_tx_chain[idx] = NULL;
}
sc->bge_txcnt--;
BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
}
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (sc->bge_txcnt == 0)
sc->bge_timer = 0;
}
#ifdef DEVICE_POLLING
static int
bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct bge_softc *sc = ifp->if_softc;
uint16_t rx_prod, tx_cons;
uint32_t statusword;
int rx_npkts = 0;
BGE_LOCK(sc);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
BGE_UNLOCK(sc);
return (rx_npkts);
}
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
sc->bge_cdata.bge_status_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* Fetch updates from the status block. */
rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
statusword = sc->bge_ldata.bge_status_block->bge_status;
/* Clear the status so the next pass only sees the changes. */
sc->bge_ldata.bge_status_block->bge_status = 0;
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
sc->bge_cdata.bge_status_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
sc->bge_link_evt++;
if (cmd == POLL_AND_CHECK_STATUS)
if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
bge_link_upd(sc);
sc->rxcycles = count;
rx_npkts = bge_rxeof(sc, rx_prod, 1);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
BGE_UNLOCK(sc);
return (rx_npkts);
}
bge_txeof(sc, tx_cons);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bge_start_locked(ifp);
BGE_UNLOCK(sc);
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
static int
bge_msi_intr(void *arg)
{
struct bge_softc *sc;
sc = (struct bge_softc *)arg;
/*
* This interrupt is not shared and controller already
* disabled further interrupt.
*/
taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
return (FILTER_HANDLED);
}
static void
bge_intr_task(void *arg, int pending)
{
struct bge_softc *sc;
struct ifnet *ifp;
uint32_t status, status_tag;
uint16_t rx_prod, tx_cons;
sc = (struct bge_softc *)arg;
ifp = sc->bge_ifp;
BGE_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
BGE_UNLOCK(sc);
return;
}
/* Get updated status block. */
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
sc->bge_cdata.bge_status_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* Save producer/consumer indices. */
rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
status = sc->bge_ldata.bge_status_block->bge_status;
status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
/* Dirty the status flag. */
sc->bge_ldata.bge_status_block->bge_status = 0;
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
sc->bge_cdata.bge_status_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
status_tag = 0;
if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
bge_link_upd(sc);
/* Let controller work. */
bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
sc->bge_rx_saved_considx != rx_prod) {
/* Check RX return ring producer/consumer. */
BGE_UNLOCK(sc);
bge_rxeof(sc, rx_prod, 0);
BGE_LOCK(sc);
}
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/* Check TX ring producer/consumer. */
bge_txeof(sc, tx_cons);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bge_start_locked(ifp);
}
BGE_UNLOCK(sc);
}
static void
bge_intr(void *xsc)
{
struct bge_softc *sc;
struct ifnet *ifp;
uint32_t statusword;
uint16_t rx_prod, tx_cons;
sc = xsc;
BGE_LOCK(sc);
ifp = sc->bge_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
BGE_UNLOCK(sc);
return;
}
#endif
/*
* Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't
* disable interrupts by writing nonzero like we used to, since with
* our current organization this just gives complications and
* pessimizations for re-enabling interrupts. We used to have races
* instead of the necessary complications. Disabling interrupts
* would just reduce the chance of a status update while we are
* running (by switching to the interrupt-mode coalescence
* parameters), but this chance is already very low so it is more
* efficient to get another interrupt than prevent it.
*
* We do the ack first to ensure another interrupt if there is a
* status update after the ack. We don't check for the status
* changing later because it is more efficient to get another
* interrupt than prevent it, not quite as above (not checking is
* a smaller optimization than not toggling the interrupt enable,
* since checking doesn't involve PCI accesses and toggling require
* the status check). So toggling would probably be a pessimization
* even with MSI. It would only be needed for using a task queue.
*/
bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
/*
* Do the mandatory PCI flush as well as get the link status.
*/
statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
/* Make sure the descriptor ring indexes are coherent. */
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
sc->bge_cdata.bge_status_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
sc->bge_ldata.bge_status_block->bge_status = 0;
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
sc->bge_cdata.bge_status_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
statusword || sc->bge_link_evt)
bge_link_upd(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/* Check RX return ring producer/consumer. */
bge_rxeof(sc, rx_prod, 1);
}
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/* Check TX ring producer/consumer. */
bge_txeof(sc, tx_cons);
}
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bge_start_locked(ifp);
BGE_UNLOCK(sc);
}
static void
bge_asf_driver_up(struct bge_softc *sc)
{
if (sc->bge_asf_mode & ASF_STACKUP) {
/* Send ASF heartbeat aprox. every 2s */
if (sc->bge_asf_count)
sc->bge_asf_count --;
else {
sc->bge_asf_count = 2;
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
BGE_FW_CMD_DRV_ALIVE);
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
BGE_FW_HB_TIMEOUT_SEC);
CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
BGE_RX_CPU_DRV_EVENT);
}
}
}
static void
bge_tick(void *xsc)
{
struct bge_softc *sc = xsc;
struct mii_data *mii = NULL;
BGE_LOCK_ASSERT(sc);
/* Synchronize with possible callout reset/stop. */
if (callout_pending(&sc->bge_stat_ch) ||
!callout_active(&sc->bge_stat_ch))
return;
if (BGE_IS_5705_PLUS(sc))
bge_stats_update_regs(sc);
else
bge_stats_update(sc);
/* XXX Add APE heartbeat check here? */
if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
mii = device_get_softc(sc->bge_miibus);
/*
* Do not touch PHY if we have link up. This could break
* IPMI/ASF mode or produce extra input errors
* (extra errors was reported for bcm5701 & bcm5704).
*/
if (!sc->bge_link)
mii_tick(mii);
} else {
/*
* Since in TBI mode auto-polling can't be used we should poll
* link status manually. Here we register pending link event
* and trigger interrupt.
*/
#ifdef DEVICE_POLLING
/* In polling mode we poll link state in bge_poll(). */
if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
#endif
{
sc->bge_link_evt++;
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
sc->bge_flags & BGE_FLAG_5788)
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
else
BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
}
}
bge_asf_driver_up(sc);
bge_watchdog(sc);
callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
}
static void
bge_stats_update_regs(struct bge_softc *sc)
{
struct ifnet *ifp;
struct bge_mac_stats *stats;
uint32_t val;
ifp = sc->bge_ifp;
stats = &sc->bge_mac_stats;
stats->ifHCOutOctets +=
CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
stats->etherStatsCollisions +=
CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
stats->outXonSent +=
CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
stats->outXoffSent +=
CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
stats->dot3StatsInternalMacTransmitErrors +=
CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
stats->dot3StatsSingleCollisionFrames +=
CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
stats->dot3StatsMultipleCollisionFrames +=
CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
stats->dot3StatsDeferredTransmissions +=
CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
stats->dot3StatsExcessiveCollisions +=
CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
stats->dot3StatsLateCollisions +=
CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
stats->ifHCOutUcastPkts +=
CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
stats->ifHCOutMulticastPkts +=
CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
stats->ifHCOutBroadcastPkts +=
CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
stats->ifHCInOctets +=
CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
stats->etherStatsFragments +=
CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
stats->ifHCInUcastPkts +=
CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
stats->ifHCInMulticastPkts +=
CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
stats->ifHCInBroadcastPkts +=
CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
stats->dot3StatsFCSErrors +=
CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
stats->dot3StatsAlignmentErrors +=
CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
stats->xonPauseFramesReceived +=
CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
stats->xoffPauseFramesReceived +=
CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
stats->macControlFramesReceived +=
CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
stats->xoffStateEntered +=
CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
stats->dot3StatsFramesTooLong +=
CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
stats->etherStatsJabbers +=
CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
stats->etherStatsUndersizePkts +=
CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
stats->FramesDroppedDueToFilters +=
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
stats->DmaWriteQueueFull +=
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
stats->DmaWriteHighPriQueueFull +=
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
stats->NoMoreRxBDs +=
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
/*
* XXX
* Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
* counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
* includes number of unwanted multicast frames. This comes
* from silicon bug and known workaround to get rough(not
* exact) counter is to enable interrupt on MBUF low water
* attention. This can be accomplished by setting
* BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
* BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
* BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
* However that change would generate more interrupts and
* there are still possibilities of losing multiple frames
* during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
* Given that the workaround still would not get correct
* counter I don't think it's worth to implement it. So
* ignore reading the counter on controllers that have the
* silicon bug.
*/
if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
stats->InputDiscards +=
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
stats->InputErrors +=
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
stats->RecvThresholdHit +=
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
ifp->if_collisions = (u_long)stats->etherStatsCollisions;
ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
stats->InputErrors);
if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
/*
* If controller transmitted more than BGE_NUM_RDMA_CHANNELS
* frames, it's safe to disable workaround for DMA engine's
* miscalculation of TXMBUF space.
*/
if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
else
val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
}
}
}
static void
bge_stats_clear_regs(struct bge_softc *sc)
{
CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
}
static void
bge_stats_update(struct bge_softc *sc)
{
struct ifnet *ifp;
bus_size_t stats;
uint32_t cnt; /* current register value */
ifp = sc->bge_ifp;
stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
#define READ_STAT(sc, stats, stat) \
CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
sc->bge_tx_collisions = cnt;
cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
sc->bge_rx_nobds = cnt;
cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
sc->bge_rx_inerrs = cnt;
cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
sc->bge_rx_discards = cnt;
cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
sc->bge_tx_discards = cnt;
#undef READ_STAT
}
/*
* Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
* The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
* but when such padded frames employ the bge IP/TCP checksum offload,
* the hardware checksum assist gives incorrect results (possibly
* from incorporating its own padding into the UDP/TCP checksum; who knows).
* If we pad such runts with zeros, the onboard checksum comes out correct.
*/
static __inline int
bge_cksum_pad(struct mbuf *m)
{
int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
struct mbuf *last;
/* If there's only the packet-header and we can pad there, use it. */
if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
M_TRAILINGSPACE(m) >= padlen) {
last = m;
} else {
/*
* Walk packet chain to find last mbuf. We will either
* pad there, or append a new mbuf and pad it.
*/
for (last = m; last->m_next != NULL; last = last->m_next);
if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
/* Allocate new empty mbuf, pad it. Compact later. */
struct mbuf *n;
MGET(n, M_NOWAIT, MT_DATA);
if (n == NULL)
return (ENOBUFS);
n->m_len = 0;
last->m_next = n;
last = n;
}
}
/* Now zero the pad area, to avoid the bge cksum-assist bug. */
memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
last->m_len += padlen;
m->m_pkthdr.len += padlen;
return (0);
}
static struct mbuf *
bge_check_short_dma(struct mbuf *m)
{
struct mbuf *n;
int found;
/*
* If device receive two back-to-back send BDs with less than
* or equal to 8 total bytes then the device may hang. The two
* back-to-back send BDs must in the same frame for this failure
* to occur. Scan mbuf chains and see whether two back-to-back
* send BDs are there. If this is the case, allocate new mbuf
* and copy the frame to workaround the silicon bug.
*/
for (n = m, found = 0; n != NULL; n = n->m_next) {
if (n->m_len < 8) {
found++;
if (found > 1)
break;
continue;
}
found = 0;
}
if (found > 1) {
n = m_defrag(m, M_NOWAIT);
if (n == NULL)
m_freem(m);
} else
n = m;
return (n);
}
static struct mbuf *
bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
uint16_t *flags)
{
struct ip *ip;
struct tcphdr *tcp;
struct mbuf *n;
uint16_t hlen;
uint32_t poff;
if (M_WRITABLE(m) == 0) {
/* Get a writable copy. */
n = m_dup(m, M_NOWAIT);
m_freem(m);
if (n == NULL)
return (NULL);
m = n;
}
m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
if (m == NULL)
return (NULL);
ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
m = m_pullup(m, poff + sizeof(struct tcphdr));
if (m == NULL)
return (NULL);
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
m = m_pullup(m, poff + (tcp->th_off << 2));
if (m == NULL)
return (NULL);
/*
* It seems controller doesn't modify IP length and TCP pseudo
* checksum. These checksum computed by upper stack should be 0.
*/
*mss = m->m_pkthdr.tso_segsz;
ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
ip->ip_sum = 0;
ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
/* Clear pseudo checksum computed by TCP stack. */
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
tcp->th_sum = 0;
/*
* Broadcom controllers uses different descriptor format for
* TSO depending on ASIC revision. Due to TSO-capable firmware
* license issue and lower performance of firmware based TSO
* we only support hardware based TSO.
*/
/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
if (sc->bge_flags & BGE_FLAG_TSO3) {
/*
* For BCM5717 and newer controllers, hardware based TSO
* uses the 14 lower bits of the bge_mss field to store the
* MSS and the upper 2 bits to store the lowest 2 bits of
* the IP/TCP header length. The upper 6 bits of the header
* length are stored in the bge_flags[14:10,4] field. Jumbo
* frames are supported.
*/
*mss |= ((hlen & 0x3) << 14);
*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
} else {
/*
* For BCM5755 and newer controllers, hardware based TSO uses
* the lower 11 bits to store the MSS and the upper 5 bits to
* store the IP/TCP header length. Jumbo frames are not
* supported.
*/
*mss |= (hlen << 11);
}
return (m);
}
/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
static int
bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
{
bus_dma_segment_t segs[BGE_NSEG_NEW];
bus_dmamap_t map;
struct bge_tx_bd *d;
struct mbuf *m = *m_head;
uint32_t idx = *txidx;
uint16_t csum_flags, mss, vlan_tag;
int nsegs, i, error;
csum_flags = 0;
mss = 0;
vlan_tag = 0;
if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
m->m_next != NULL) {
*m_head = bge_check_short_dma(m);
if (*m_head == NULL)
return (ENOBUFS);
m = *m_head;
}
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
if (*m_head == NULL)
return (ENOBUFS);
csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
BGE_TXBDFLAG_CPU_POST_DMA;
} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
if (m->m_pkthdr.csum_flags & CSUM_IP)
csum_flags |= BGE_TXBDFLAG_IP_CSUM;
if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
(error = bge_cksum_pad(m)) != 0) {
m_freem(m);
*m_head = NULL;
return (error);
}
}
}
if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
m->m_pkthdr.len > ETHER_MAX_LEN)
csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
if (sc->bge_forced_collapse > 0 &&
(sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
/*
* Forcedly collapse mbuf chains to overcome hardware
* limitation which only support a single outstanding
* DMA read operation.
*/
if (sc->bge_forced_collapse == 1)
m = m_defrag(m, M_NOWAIT);
else
m = m_collapse(m, M_NOWAIT,
sc->bge_forced_collapse);
if (m == NULL)
m = *m_head;
*m_head = m;
}
}
map = sc->bge_cdata.bge_tx_dmamap[idx];
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
&nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
m, segs, &nsegs, BUS_DMA_NOWAIT);
if (error) {
m_freem(m);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
/* Check if we have enough free send BDs. */
if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
return (ENOBUFS);
}
bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
if (m->m_flags & M_VLANTAG) {
csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
vlan_tag = m->m_pkthdr.ether_vtag;
}
if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
(m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
/*
* 5725 family of devices corrupts TSO packets when TSO DMA
* buffers cross into regions which are within MSS bytes of
* a 4GB boundary. If we encounter the condition, drop the
* packet.
*/
for (i = 0; ; i++) {
d = &sc->bge_ldata.bge_tx_ring[idx];
d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
d->bge_len = segs[i].ds_len;
if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
d->bge_addr.bge_addr_lo)
break;
d->bge_flags = csum_flags;
d->bge_vlan_tag = vlan_tag;
d->bge_mss = mss;
if (i == nsegs - 1)
break;
BGE_INC(idx, BGE_TX_RING_CNT);
}
if (i != nsegs - 1) {
bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
} else {
for (i = 0; ; i++) {
d = &sc->bge_ldata.bge_tx_ring[idx];
d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
d->bge_len = segs[i].ds_len;
d->bge_flags = csum_flags;
d->bge_vlan_tag = vlan_tag;
d->bge_mss = mss;
if (i == nsegs - 1)
break;
BGE_INC(idx, BGE_TX_RING_CNT);
}
}
/* Mark the last segment as end of packet... */
d->bge_flags |= BGE_TXBDFLAG_END;
/*
* Insure that the map for this transmission
* is placed at the array index of the last descriptor
* in this chain.
*/
sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
sc->bge_cdata.bge_tx_dmamap[idx] = map;
sc->bge_cdata.bge_tx_chain[idx] = m;
sc->bge_txcnt += nsegs;
BGE_INC(idx, BGE_TX_RING_CNT);
*txidx = idx;
return (0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
static void
bge_start_locked(struct ifnet *ifp)
{
struct bge_softc *sc;
struct mbuf *m_head;
uint32_t prodidx;
int count;
sc = ifp->if_softc;
BGE_LOCK_ASSERT(sc);
if (!sc->bge_link ||
(ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
prodidx = sc->bge_tx_prodidx;
for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (bge_encap(sc, &m_head, &prodidx)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
++count;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
#ifdef ETHER_BPF_MTAP
ETHER_BPF_MTAP(ifp, m_head);
#else
BPF_MTAP(ifp, m_head);
#endif
}
if (count > 0) {
bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
/* Transmit. */
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
/* 5700 b2 errata */
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
sc->bge_tx_prodidx = prodidx;
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->bge_timer = BGE_TX_TIMEOUT;
}
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
static void
bge_start(struct ifnet *ifp)
{
struct bge_softc *sc;
sc = ifp->if_softc;
BGE_LOCK(sc);
bge_start_locked(ifp);
BGE_UNLOCK(sc);
}
static void
bge_init_locked(struct bge_softc *sc)
{
struct ifnet *ifp;
uint16_t *m;
uint32_t mode;
BGE_LOCK_ASSERT(sc);
ifp = sc->bge_ifp;
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
/* Cancel pending I/O and flush buffers. */
bge_stop(sc);
bge_stop_fw(sc);
bge_sig_pre_reset(sc, BGE_RESET_START);
bge_reset(sc);
bge_sig_legacy(sc, BGE_RESET_START);
bge_sig_post_reset(sc, BGE_RESET_START);
bge_chipinit(sc);
/*
* Init the various state machines, ring
* control blocks and firmware.
*/
if (bge_blockinit(sc)) {
device_printf(sc->bge_dev, "initialization failure\n");
return;
}
ifp = sc->bge_ifp;
/* Specify MTU. */
CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN +
(ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
/* Load our MAC address. */
m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
/* Program promiscuous mode. */
bge_setpromisc(sc);
/* Program multicast filter. */
bge_setmulti(sc);
/* Program VLAN tag stripping. */
bge_setvlan(sc);
/* Override UDP checksum offloading. */
if (sc->bge_forced_udpcsum == 0)
sc->bge_csum_features &= ~CSUM_UDP;
else
sc->bge_csum_features |= CSUM_UDP;
if (ifp->if_capabilities & IFCAP_TXCSUM &&
ifp->if_capenable & IFCAP_TXCSUM) {
ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
ifp->if_hwassist |= sc->bge_csum_features;
}
/* Init RX ring. */
if (bge_init_rx_ring_std(sc) != 0) {
device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
bge_stop(sc);
return;
}
/*
* Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
* memory to insure that the chip has in fact read the first
* entry of the ring.
*/
if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
uint32_t v, i;
for (i = 0; i < 10; i++) {
DELAY(20);
v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
if (v == (MCLBYTES - ETHER_ALIGN))
break;
}
if (i == 10)
device_printf (sc->bge_dev,
"5705 A0 chip failed to load RX ring\n");
}
/* Init jumbo RX ring. */
if (BGE_IS_JUMBO_CAPABLE(sc) &&
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
(MCLBYTES - ETHER_ALIGN)) {
if (bge_init_rx_ring_jumbo(sc) != 0) {
device_printf(sc->bge_dev,
"no memory for jumbo Rx buffers.\n");
bge_stop(sc);
return;
}
}
/* Init our RX return ring index. */
sc->bge_rx_saved_considx = 0;
/* Init our RX/TX stat counters. */
sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
/* Init TX ring. */
bge_init_tx_ring(sc);
/* Enable TX MAC state machine lockup fix. */
mode = CSR_READ_4(sc, BGE_TX_MODE);
if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
sc->bge_asicrev == BGE_ASICREV_BCM5762) {
mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
mode |= CSR_READ_4(sc, BGE_TX_MODE) &
(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
}
/* Turn on transmitter. */
CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
DELAY(100);
/* Turn on receiver. */
mode = CSR_READ_4(sc, BGE_RX_MODE);
if (BGE_IS_5755_PLUS(sc))
mode |= BGE_RXMODE_IPV6_ENABLE;
if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
mode |= BGE_RXMODE_IPV4_FRAG_FIX;
CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
DELAY(10);
/*
* Set the number of good frames to receive after RX MBUF
* Low Watermark has been reached. After the RX MAC receives
* this number of frames, it will drop subsequent incoming
* frames until the MBUF High Watermark is reached.
*/
if (BGE_IS_57765_PLUS(sc))
CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
else
CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
/* Clear MAC statistics. */
if (BGE_IS_5705_PLUS(sc))
bge_stats_clear_regs(sc);
/* Tell firmware we're alive. */
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
#ifdef DEVICE_POLLING
/* Disable interrupts if we are polling. */
if (ifp->if_capenable & IFCAP_POLLING) {
BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_MASK_PCI_INTR);
bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
} else
#endif
/* Enable host interrupts. */
{
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
}
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
bge_ifmedia_upd_locked(ifp);
callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
}
static void
bge_init(void *xsc)
{
struct bge_softc *sc = xsc;
BGE_LOCK(sc);
bge_init_locked(sc);
BGE_UNLOCK(sc);
}
/*
* Set media options.
*/
static int
bge_ifmedia_upd(struct ifnet *ifp)
{
struct bge_softc *sc = ifp->if_softc;
int res;
BGE_LOCK(sc);
res = bge_ifmedia_upd_locked(ifp);
BGE_UNLOCK(sc);
return (res);
}
static int
bge_ifmedia_upd_locked(struct ifnet *ifp)
{
struct bge_softc *sc = ifp->if_softc;
struct mii_data *mii;
struct mii_softc *miisc;
struct ifmedia *ifm;
BGE_LOCK_ASSERT(sc);
ifm = &sc->bge_ifmedia;
/* If this is a 1000baseX NIC, enable the TBI port. */
if (sc->bge_flags & BGE_FLAG_TBI) {
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
switch(IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
/*
* The BCM5704 ASIC appears to have a special
* mechanism for programming the autoneg
* advertisement registers in TBI mode.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
uint32_t sgdig;
sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
if (sgdig & BGE_SGDIGSTS_DONE) {
CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
sgdig |= BGE_SGDIGCFG_AUTO |
BGE_SGDIGCFG_PAUSE_CAP |
BGE_SGDIGCFG_ASYM_PAUSE;
CSR_WRITE_4(sc, BGE_SGDIG_CFG,
sgdig | BGE_SGDIGCFG_SEND);
DELAY(5);
CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
}
}
break;
case IFM_1000_SX:
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
BGE_CLRBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_HALF_DUPLEX);
} else {
BGE_SETBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_HALF_DUPLEX);
}
DELAY(40);
break;
default:
return (EINVAL);
}
return (0);
}
sc->bge_link_evt++;
mii = device_get_softc(sc->bge_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
mii_mediachg(mii);
/*
* Force an interrupt so that we will call bge_link_upd
* if needed and clear any pending link state attention.
* Without this we are not getting any further interrupts
* for link state changes and thus will not UP the link and
* not be able to send in bge_start_locked. The only
* way to get things working was to receive a packet and
* get an RX intr.
* bge_tick should help for fiber cards and we might not
* need to do this here if BGE_FLAG_TBI is set but as
* we poll for fiber anyway it should not harm.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
sc->bge_flags & BGE_FLAG_5788)
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
else
BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
return (0);
}
/*
* Report current media status.
*/
static void
bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct bge_softc *sc = ifp->if_softc;
struct mii_data *mii;
BGE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
BGE_UNLOCK(sc);
return;
}
if (sc->bge_flags & BGE_FLAG_TBI) {
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (CSR_READ_4(sc, BGE_MAC_STS) &
BGE_MACSTAT_TBI_PCS_SYNCHED)
ifmr->ifm_status |= IFM_ACTIVE;
else {
ifmr->ifm_active |= IFM_NONE;
BGE_UNLOCK(sc);
return;
}
ifmr->ifm_active |= IFM_1000_SX;
if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
ifmr->ifm_active |= IFM_HDX;
else
ifmr->ifm_active |= IFM_FDX;
BGE_UNLOCK(sc);
return;
}
mii = device_get_softc(sc->bge_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
BGE_UNLOCK(sc);
}
static int
bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct bge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int flags, mask, error = 0;
switch (command) {
case SIOCSIFMTU:
if (BGE_IS_JUMBO_CAPABLE(sc) ||
(sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
if (ifr->ifr_mtu < ETHERMIN ||
ifr->ifr_mtu > BGE_JUMBO_MTU) {
error = EINVAL;
break;
}
} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
error = EINVAL;
break;
}
BGE_LOCK(sc);
if (ifp->if_mtu != ifr->ifr_mtu) {
ifp->if_mtu = ifr->ifr_mtu;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
bge_init_locked(sc);
}
}
BGE_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
BGE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
/*
* If only the state of the PROMISC flag changed,
* then just use the 'set promisc mode' command
* instead of reinitializing the entire NIC. Doing
* a full re-init means reloading the firmware and
* waiting for it to start up, which may take a
* second or two. Similarly for ALLMULTI.
*/
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
flags = ifp->if_flags ^ sc->bge_if_flags;
if (flags & IFF_PROMISC)
bge_setpromisc(sc);
if (flags & IFF_ALLMULTI)
bge_setmulti(sc);
} else
bge_init_locked(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
bge_stop(sc);
}
}
sc->bge_if_flags = ifp->if_flags;
BGE_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
BGE_LOCK(sc);
bge_setmulti(sc);
BGE_UNLOCK(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
if (sc->bge_flags & BGE_FLAG_TBI) {
error = ifmedia_ioctl(ifp, ifr,
&sc->bge_ifmedia, command);
} else {
mii = device_get_softc(sc->bge_miibus);
error = ifmedia_ioctl(ifp, ifr,
&mii->mii_media, command);
}
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
error = ether_poll_register(bge_poll, ifp);
if (error)
return (error);
BGE_LOCK(sc);
BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_MASK_PCI_INTR);
bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
ifp->if_capenable |= IFCAP_POLLING;
BGE_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupt even in error case */
BGE_LOCK(sc);
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_MASK_PCI_INTR);
bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
ifp->if_capenable &= ~IFCAP_POLLING;
BGE_UNLOCK(sc);
}
}
#endif
if ((mask & IFCAP_TXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= sc->bge_csum_features;
else
ifp->if_hwassist &= ~sc->bge_csum_features;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM) != 0)
ifp->if_capenable ^= IFCAP_RXCSUM;
if ((mask & IFCAP_TSO4) != 0 &&
(ifp->if_capabilities & IFCAP_TSO4) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((ifp->if_capenable & IFCAP_TSO4) != 0)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
}
if (mask & IFCAP_VLAN_MTU) {
ifp->if_capenable ^= IFCAP_VLAN_MTU;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
bge_init(sc);
}
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
BGE_LOCK(sc);
bge_setvlan(sc);
BGE_UNLOCK(sc);
}
#ifdef VLAN_CAPABILITIES
VLAN_CAPABILITIES(ifp);
#endif
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
bge_watchdog(struct bge_softc *sc)
{
struct ifnet *ifp;
uint32_t status;
BGE_LOCK_ASSERT(sc);
if (sc->bge_timer == 0 || --sc->bge_timer)
return;
/* If pause frames are active then don't reset the hardware. */
if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
status = CSR_READ_4(sc, BGE_RX_STS);
if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
/*
* If link partner has us in XOFF state then wait for
* the condition to clear.
*/
CSR_WRITE_4(sc, BGE_RX_STS, status);
sc->bge_timer = BGE_TX_TIMEOUT;
return;
} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
(status & BGE_RXSTAT_RCVD_XON) != 0) {
/*
* If link partner has us in XOFF state then wait for
* the condition to clear.
*/
CSR_WRITE_4(sc, BGE_RX_STS, status);
sc->bge_timer = BGE_TX_TIMEOUT;
return;
}
/*
* Any other condition is unexpected and the controller
* should be reset.
*/
}
ifp = sc->bge_ifp;
if_printf(ifp, "watchdog timeout -- resetting\n");
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
bge_init_locked(sc);
ifp->if_oerrors++;
}
static void
bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
{
int i;
BGE_CLRBIT(sc, reg, bit);
for (i = 0; i < BGE_TIMEOUT; i++) {
if ((CSR_READ_4(sc, reg) & bit) == 0)
return;
DELAY(100);
}
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
bge_stop(struct bge_softc *sc)
{
struct ifnet *ifp;
BGE_LOCK_ASSERT(sc);
ifp = sc->bge_ifp;
callout_stop(&sc->bge_stat_ch);
/* Disable host interrupts. */
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
/*
* Tell firmware we're shutting down.
*/
bge_stop_fw(sc);
bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
/*
* Disable all of the receiver blocks.
*/
bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
if (BGE_IS_5700_FAMILY(sc))
bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
/*
* Disable all of the transmit blocks.
*/
bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
if (BGE_IS_5700_FAMILY(sc))
bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
/*
* Shut down all of the memory managers and related
* state machines.
*/
bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
if (BGE_IS_5700_FAMILY(sc))
bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
if (!(BGE_IS_5705_PLUS(sc))) {
BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
}
/* Update MAC statistics. */
if (BGE_IS_5705_PLUS(sc))
bge_stats_update_regs(sc);
bge_reset(sc);
bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
/*
* Keep the ASF firmware running if up.
*/
if (sc->bge_asf_mode & ASF_STACKUP)
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
else
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
/* Free the RX lists. */
bge_free_rx_ring_std(sc);
/* Free jumbo RX list. */
if (BGE_IS_JUMBO_CAPABLE(sc))
bge_free_rx_ring_jumbo(sc);
/* Free TX buffers. */
bge_free_tx_ring(sc);
sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
/* Clear MAC's link state (PHY may still have link UP). */
if (bootverbose && sc->bge_link)
if_printf(sc->bge_ifp, "link DOWN\n");
sc->bge_link = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
bge_shutdown(device_t dev)
{
struct bge_softc *sc;
sc = device_get_softc(dev);
BGE_LOCK(sc);
bge_stop(sc);
BGE_UNLOCK(sc);
return (0);
}
static int
bge_suspend(device_t dev)
{
struct bge_softc *sc;
sc = device_get_softc(dev);
BGE_LOCK(sc);
bge_stop(sc);
BGE_UNLOCK(sc);
return (0);
}
static int
bge_resume(device_t dev)
{
struct bge_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
BGE_LOCK(sc);
ifp = sc->bge_ifp;
if (ifp->if_flags & IFF_UP) {
bge_init_locked(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
bge_start_locked(ifp);
}
BGE_UNLOCK(sc);
return (0);
}
static void
bge_link_upd(struct bge_softc *sc)
{
struct mii_data *mii;
uint32_t link, status;
BGE_LOCK_ASSERT(sc);
/* Clear 'pending link event' flag. */
sc->bge_link_evt = 0;
/*
* Process link state changes.
* Grrr. The link status word in the status block does
* not work correctly on the BCM5700 rev AX and BX chips,
* according to all available information. Hence, we have
* to enable MII interrupts in order to properly obtain
* async link changes. Unfortunately, this also means that
* we have to read the MAC status register to detect link
* changes, thereby adding an additional register access to
* the interrupt handler.
*
* XXX: perhaps link state detection procedure used for
* BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
status = CSR_READ_4(sc, BGE_MAC_STS);
if (status & BGE_MACSTAT_MI_INTERRUPT) {
mii = device_get_softc(sc->bge_miibus);
mii_pollstat(mii);
if (!sc->bge_link &&
mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->bge_link++;
if (bootverbose)
if_printf(sc->bge_ifp, "link UP\n");
} else if (sc->bge_link &&
(!(mii->mii_media_status & IFM_ACTIVE) ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
sc->bge_link = 0;
if (bootverbose)
if_printf(sc->bge_ifp, "link DOWN\n");
}
/* Clear the interrupt. */
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
BGE_EVTENB_MI_INTERRUPT);
bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
BRGPHY_MII_ISR);
bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
BRGPHY_MII_IMR, BRGPHY_INTRS);
}
return;
}
if (sc->bge_flags & BGE_FLAG_TBI) {
status = CSR_READ_4(sc, BGE_MAC_STS);
if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
if (!sc->bge_link) {
sc->bge_link++;
if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
BGE_CLRBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_TBI_SEND_CFGS);
DELAY(40);
}
CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
if (bootverbose)
if_printf(sc->bge_ifp, "link UP\n");
if_link_state_change(sc->bge_ifp,
LINK_STATE_UP);
}
} else if (sc->bge_link) {
sc->bge_link = 0;
if (bootverbose)
if_printf(sc->bge_ifp, "link DOWN\n");
if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
}
} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
/*
* Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
* in status word always set. Workaround this bug by reading
* PHY link status directly.
*/
link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
if (link != sc->bge_link ||
sc->bge_asicrev == BGE_ASICREV_BCM5700) {
mii = device_get_softc(sc->bge_miibus);
mii_pollstat(mii);
if (!sc->bge_link &&
mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->bge_link++;
if (bootverbose)
if_printf(sc->bge_ifp, "link UP\n");
} else if (sc->bge_link &&
(!(mii->mii_media_status & IFM_ACTIVE) ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
sc->bge_link = 0;
if (bootverbose)
if_printf(sc->bge_ifp, "link DOWN\n");
}
}
} else {
/*
* For controllers that call mii_tick, we have to poll
* link status.
*/
mii = device_get_softc(sc->bge_miibus);
mii_pollstat(mii);
bge_miibus_statchg(sc->bge_dev);
}
/* Disable MAC attention when link is up. */
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
BGE_MACSTAT_LINK_CHANGED);
}
static void
bge_add_sysctls(struct bge_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
char tn[32];
int unit;
ctx = device_get_sysctl_ctx(sc->bge_dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
#ifdef BGE_REGISTER_DEBUG
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
"Debug Information");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
"MAC Register Read");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
"APE Register Read");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
"Memory Read");
#endif
unit = device_get_unit(sc->bge_dev);
/*
* A common design characteristic for many Broadcom client controllers
* is that they only support a single outstanding DMA read operation
* on the PCIe bus. This means that it will take twice as long to fetch
* a TX frame that is split into header and payload buffers as it does
* to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
* these controllers, coalescing buffers to reduce the number of memory
* reads is effective way to get maximum performance(about 940Mbps).
* Without collapsing TX buffers the maximum TCP bulk transfer
* performance is about 850Mbps. However forcing coalescing mbufs
* consumes a lot of CPU cycles, so leave it off by default.
*/
sc->bge_forced_collapse = 0;
snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
CTLFLAG_RW, &sc->bge_forced_collapse, 0,
"Number of fragmented TX buffers of a frame allowed before "
"forced collapsing");
sc->bge_msi = 1;
snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
TUNABLE_INT_FETCH(tn, &sc->bge_msi);
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
/*
* It seems all Broadcom controllers have a bug that can generate UDP
* datagrams with checksum value 0 when TX UDP checksum offloading is
* enabled. Generating UDP checksum value 0 is RFC 768 violation.
* Even though the probability of generating such UDP datagrams is
* low, I don't want to see FreeBSD boxes to inject such datagrams
* into network so disable UDP checksum offloading by default. Users
* still override this behavior by setting a sysctl variable,
* dev.bge.0.forced_udpcsum.
*/
sc->bge_forced_udpcsum = 0;
snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
"Enable UDP checksum offloading even if controller can "
"generate UDP checksum value 0");
if (BGE_IS_5705_PLUS(sc))
bge_add_sysctl_stats_regs(sc, ctx, children);
else
bge_add_sysctl_stats(sc, ctx, children);
}
#define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
desc)
static void
bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *parent)
{
struct sysctl_oid *tree;
struct sysctl_oid_list *children, *schildren;
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "BGE Statistics");
schildren = children = SYSCTL_CHILDREN(tree);
BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
children, COSFramesDroppedDueToFilters,
"FramesDroppedDueToFilters");
BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
children, nicNoMoreRxBDs, "NoMoreRxBDs");
BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
children, ifInDiscards, "InputDiscards");
BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
children, ifInErrors, "InputErrors");
BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
children, nicRecvThresholdHit, "RecvThresholdHit");
BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
children, nicDmaReadQueueFull, "DmaReadQueueFull");
BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
children, nicRingStatusUpdate, "RingStatusUpdate");
BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
children, nicInterrupts, "Interrupts");
BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
children, nicAvoidedInterrupts, "AvoidedInterrupts");
BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
children, nicSendThresholdHit, "SendThresholdHit");
tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "BGE RX Statistics");
children = SYSCTL_CHILDREN(tree);
BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
children, rxstats.ifHCInOctets, "ifHCInOctets");
BGE_SYSCTL_STAT(sc, ctx, "Fragments",
children, rxstats.etherStatsFragments, "Fragments");
BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
children, rxstats.ifHCInUcastPkts, "UnicastPkts");
BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
children, rxstats.dot3StatsFCSErrors, "FCSErrors");
BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
children, rxstats.xoffPauseFramesReceived,
"xoffPauseFramesReceived");
BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
children, rxstats.macControlFramesReceived,
"ControlFramesReceived");
BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
children, rxstats.xoffStateEntered, "xoffStateEntered");
BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
children, rxstats.etherStatsJabbers, "Jabbers");
BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
children, rxstats.inRangeLengthError, "inRangeLengthError");
BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
children, rxstats.outRangeLengthError, "outRangeLengthError");
tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "BGE TX Statistics");
children = SYSCTL_CHILDREN(tree);
BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
children, txstats.ifHCOutOctets, "ifHCOutOctets");
BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
children, txstats.etherStatsCollisions, "Collisions");
BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
children, txstats.outXonSent, "XonSent");
BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
children, txstats.outXoffSent, "XoffSent");
BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
children, txstats.flowControlDone, "flowControlDone");
BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
children, txstats.dot3StatsInternalMacTransmitErrors,
"InternalMacTransmitErrors");
BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
children, txstats.dot3StatsSingleCollisionFrames,
"SingleCollisionFrames");
BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
children, txstats.dot3StatsMultipleCollisionFrames,
"MultipleCollisionFrames");
BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
children, txstats.dot3StatsDeferredTransmissions,
"DeferredTransmissions");
BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
children, txstats.dot3StatsExcessiveCollisions,
"ExcessiveCollisions");
BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
children, txstats.dot3StatsLateCollisions,
"LateCollisions");
BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
children, txstats.ifHCOutUcastPkts, "UnicastPkts");
BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
children, txstats.dot3StatsCarrierSenseErrors,
"CarrierSenseErrors");
BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
children, txstats.ifOutDiscards, "Discards");
BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
children, txstats.ifOutErrors, "Errors");
}
#undef BGE_SYSCTL_STAT
#define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d) \
SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
static void
bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *parent)
{
struct sysctl_oid *tree;
struct sysctl_oid_list *child, *schild;
struct bge_mac_stats *stats;
stats = &sc->bge_mac_stats;
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "BGE Statistics");
schild = child = SYSCTL_CHILDREN(tree);
BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
&stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
&stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
&stats->DmaWriteHighPriQueueFull,
"NIC DMA Write High Priority Queue Full");
BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
&stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
&stats->InputDiscards, "Discarded Input Frames");
BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
&stats->InputErrors, "Input Errors");
BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
&stats->RecvThresholdHit, "NIC Recv Threshold Hit");
tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "BGE RX Statistics");
child = SYSCTL_CHILDREN(tree);
BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
&stats->ifHCInOctets, "Inbound Octets");
BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
&stats->etherStatsFragments, "Fragments");
BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
&stats->ifHCInUcastPkts, "Inbound Unicast Packets");
BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
&stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
&stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
&stats->dot3StatsFCSErrors, "FCS Errors");
BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
&stats->dot3StatsAlignmentErrors, "Alignment Errors");
BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
&stats->xonPauseFramesReceived, "XON Pause Frames Received");
BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
&stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
&stats->macControlFramesReceived, "MAC Control Frames Received");
BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
&stats->xoffStateEntered, "XOFF State Entered");
BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
&stats->dot3StatsFramesTooLong, "Frames Too Long");
BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
&stats->etherStatsJabbers, "Jabbers");
BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
&stats->etherStatsUndersizePkts, "Undersized Packets");
tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "BGE TX Statistics");
child = SYSCTL_CHILDREN(tree);
BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
&stats->ifHCOutOctets, "Outbound Octets");
BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
&stats->etherStatsCollisions, "TX Collisions");
BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
&stats->outXonSent, "XON Sent");
BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
&stats->outXoffSent, "XOFF Sent");
BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
&stats->dot3StatsInternalMacTransmitErrors,
"Internal MAC TX Errors");
BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
&stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
&stats->dot3StatsMultipleCollisionFrames,
"Multiple Collision Frames");
BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
&stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
&stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
&stats->dot3StatsLateCollisions, "Late Collisions");
BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
&stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
&stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
&stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
}
#undef BGE_SYSCTL_STAT_ADD64
static int
bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
{
struct bge_softc *sc;
uint32_t result;
int offset;
sc = (struct bge_softc *)arg1;
offset = arg2;
result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
offsetof(bge_hostaddr, bge_addr_lo));
return (sysctl_handle_int(oidp, &result, 0, req));
}
#ifdef BGE_REGISTER_DEBUG
static int
bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
{
struct bge_softc *sc;
uint16_t *sbdata;
int error, result, sbsz;
int i, j;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || (req->newptr == NULL))
return (error);
if (result == 1) {
sc = (struct bge_softc *)arg1;
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
sbsz = BGE_STATUS_BLK_SZ;
else
sbsz = 32;
sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
printf("Status Block:\n");
BGE_LOCK(sc);
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
sc->bge_cdata.bge_status_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
printf("%06x:", i);
for (j = 0; j < 8; j++)
printf(" %04x", sbdata[i++]);
printf("\n");
}
printf("Registers:\n");
for (i = 0x800; i < 0xA00; ) {
printf("%06x:", i);
for (j = 0; j < 8; j++) {
printf(" %08x", CSR_READ_4(sc, i));
i += 4;
}
printf("\n");
}
BGE_UNLOCK(sc);
printf("Hardware Flags:\n");
if (BGE_IS_5717_PLUS(sc))
printf(" - 5717 Plus\n");
if (BGE_IS_5755_PLUS(sc))
printf(" - 5755 Plus\n");
if (BGE_IS_575X_PLUS(sc))
printf(" - 575X Plus\n");
if (BGE_IS_5705_PLUS(sc))
printf(" - 5705 Plus\n");
if (BGE_IS_5714_FAMILY(sc))
printf(" - 5714 Family\n");
if (BGE_IS_5700_FAMILY(sc))
printf(" - 5700 Family\n");
if (sc->bge_flags & BGE_FLAG_JUMBO)
printf(" - Supports Jumbo Frames\n");
if (sc->bge_flags & BGE_FLAG_PCIX)
printf(" - PCI-X Bus\n");
if (sc->bge_flags & BGE_FLAG_PCIE)
printf(" - PCI Express Bus\n");
if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
printf(" - No 3 LEDs\n");
if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
printf(" - RX Alignment Bug\n");
}
return (error);
}
static int
bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
{
struct bge_softc *sc;
int error;
uint16_t result;
uint32_t val;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || (req->newptr == NULL))
return (error);
if (result < 0x8000) {
sc = (struct bge_softc *)arg1;
val = CSR_READ_4(sc, result);
printf("reg 0x%06X = 0x%08X\n", result, val);
}
return (error);
}
static int
bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
{
struct bge_softc *sc;
int error;
uint16_t result;
uint32_t val;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || (req->newptr == NULL))
return (error);
if (result < 0x8000) {
sc = (struct bge_softc *)arg1;
val = APE_READ_4(sc, result);
printf("reg 0x%06X = 0x%08X\n", result, val);
}
return (error);
}
static int
bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
{
struct bge_softc *sc;
int error;
uint16_t result;
uint32_t val;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || (req->newptr == NULL))
return (error);
if (result < 0x8000) {
sc = (struct bge_softc *)arg1;
val = bge_readmem_ind(sc, result);
printf("mem 0x%06X = 0x%08X\n", result, val);
}
return (error);
}
#endif
static int
bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
{
if (sc->bge_flags & BGE_FLAG_EADDR)
return (1);
#ifdef __sparc64__
OF_getetheraddr(sc->bge_dev, ether_addr);
return (0);
#endif
return (1);
}
static int
bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
{
uint32_t mac_addr;
mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
if ((mac_addr >> 16) == 0x484b) {
ether_addr[0] = (uint8_t)(mac_addr >> 8);
ether_addr[1] = (uint8_t)mac_addr;
mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
ether_addr[2] = (uint8_t)(mac_addr >> 24);
ether_addr[3] = (uint8_t)(mac_addr >> 16);
ether_addr[4] = (uint8_t)(mac_addr >> 8);
ether_addr[5] = (uint8_t)mac_addr;
return (0);
}
return (1);
}
static int
bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
{
int mac_offset = BGE_EE_MAC_OFFSET;
if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
mac_offset = BGE_EE_MAC_OFFSET_5906;
return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
ETHER_ADDR_LEN));
}
static int
bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
{
if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
return (1);
return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
ETHER_ADDR_LEN));
}
static int
bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
{
static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
/* NOTE: Order is critical */
bge_get_eaddr_fw,
bge_get_eaddr_mem,
bge_get_eaddr_nvram,
bge_get_eaddr_eeprom,
NULL
};
const bge_eaddr_fcn_t *func;
for (func = bge_eaddr_funcs; *func != NULL; ++func) {
if ((*func)(sc, eaddr) == 0)
break;
}
return (*func == NULL ? ENXIO : 0);
}