272 lines
7.4 KiB
Perl
272 lines
7.4 KiB
Perl
package bigint;
|
||
|
||
# arbitrary size integer math package
|
||
#
|
||
# by Mark Biggar
|
||
#
|
||
# Canonical Big integer value are strings of the form
|
||
# /^[+-]\d+$/ with leading zeros suppressed
|
||
# Input values to these routines may be strings of the form
|
||
# /^\s*[+-]?[\d\s]+$/.
|
||
# Examples:
|
||
# '+0' canonical zero value
|
||
# ' -123 123 123' canonical value '-123123123'
|
||
# '1 23 456 7890' canonical value '+1234567890'
|
||
# Output values always always in canonical form
|
||
#
|
||
# Actual math is done in an internal format consisting of an array
|
||
# whose first element is the sign (/^[+-]$/) and whose remaining
|
||
# elements are base 100000 digits with the least significant digit first.
|
||
# The string 'NaN' is used to represent the result when input arguments
|
||
# are not numbers, as well as the result of dividing by zero
|
||
#
|
||
# routines provided are:
|
||
#
|
||
# bneg(BINT) return BINT negation
|
||
# babs(BINT) return BINT absolute value
|
||
# bcmp(BINT,BINT) return CODE compare numbers (undef,<0,=0,>0)
|
||
# badd(BINT,BINT) return BINT addition
|
||
# bsub(BINT,BINT) return BINT subtraction
|
||
# bmul(BINT,BINT) return BINT multiplication
|
||
# bdiv(BINT,BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
|
||
# bmod(BINT,BINT) return BINT modulus
|
||
# bgcd(BINT,BINT) return BINT greatest common divisor
|
||
# bnorm(BINT) return BINT normalization
|
||
#
|
||
|
||
# normalize string form of number. Strip leading zeros. Strip any
|
||
# white space and add a sign, if missing.
|
||
# Strings that are not numbers result the value 'NaN'.
|
||
sub main'bnorm { #(num_str) return num_str
|
||
local($_) = @_;
|
||
s/\s+//g; # strip white space
|
||
if (s/^([+-]?)0*(\d+)$/$1$2/) { # test if number
|
||
substr($_,0,0) = '+' unless $1; # Add missing sign
|
||
s/^-0/+0/;
|
||
$_;
|
||
} else {
|
||
'NaN';
|
||
}
|
||
}
|
||
|
||
# Convert a number from string format to internal base 100000 format.
|
||
# Assumes normalized value as input.
|
||
sub internal { #(num_str) return int_num_array
|
||
local($d) = @_;
|
||
($is,$il) = (substr($d,0,1),length($d)-2);
|
||
substr($d,0,1) = '';
|
||
($is, reverse(unpack("a" . ($il%5+1) . ("a5" x ($il/5)), $d)));
|
||
}
|
||
|
||
# Convert a number from internal base 100000 format to string format.
|
||
# This routine scribbles all over input array.
|
||
sub external { #(int_num_array) return num_str
|
||
$es = shift;
|
||
grep($_ > 9999 || ($_ = substr('0000'.$_,-5)), @_); # zero pad
|
||
&'bnorm(join('', $es, reverse(@_))); # reverse concat and normalize
|
||
}
|
||
|
||
# Negate input value.
|
||
sub main'bneg { #(num_str) return num_str
|
||
local($_) = &'bnorm(@_);
|
||
vec($_,0,8) ^= ord('+') ^ ord('-') unless $_ eq '+0';
|
||
s/^H/N/;
|
||
$_;
|
||
}
|
||
|
||
# Returns the absolute value of the input.
|
||
sub main'babs { #(num_str) return num_str
|
||
&abs(&'bnorm(@_));
|
||
}
|
||
|
||
sub abs { # post-normalized abs for internal use
|
||
local($_) = @_;
|
||
s/^-/+/;
|
||
$_;
|
||
}
|
||
|
||
# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
|
||
sub main'bcmp { #(num_str, num_str) return cond_code
|
||
local($x,$y) = (&'bnorm($_[0]),&'bnorm($_[1]));
|
||
if ($x eq 'NaN') {
|
||
undef;
|
||
} elsif ($y eq 'NaN') {
|
||
undef;
|
||
} else {
|
||
&cmp($x,$y);
|
||
}
|
||
}
|
||
|
||
sub cmp { # post-normalized compare for internal use
|
||
local($cx, $cy) = @_;
|
||
$cx cmp $cy
|
||
&&
|
||
(
|
||
ord($cy) <=> ord($cx)
|
||
||
|
||
($cx cmp ',') * (length($cy) <=> length($cx) || $cy cmp $cx)
|
||
);
|
||
}
|
||
|
||
sub main'badd { #(num_str, num_str) return num_str
|
||
local(*x, *y); ($x, $y) = (&'bnorm($_[0]),&'bnorm($_[1]));
|
||
if ($x eq 'NaN') {
|
||
'NaN';
|
||
} elsif ($y eq 'NaN') {
|
||
'NaN';
|
||
} else {
|
||
@x = &internal($x); # convert to internal form
|
||
@y = &internal($y);
|
||
local($sx, $sy) = (shift @x, shift @y); # get signs
|
||
if ($sx eq $sy) {
|
||
&external($sx, &add(*x, *y)); # if same sign add
|
||
} else {
|
||
($x, $y) = (&abs($x),&abs($y)); # make abs
|
||
if (&cmp($y,$x) > 0) {
|
||
&external($sy, &sub(*y, *x));
|
||
} else {
|
||
&external($sx, &sub(*x, *y));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
sub main'bsub { #(num_str, num_str) return num_str
|
||
&'badd($_[0],&'bneg($_[1]));
|
||
}
|
||
|
||
# GCD -- Euclids algorithm Knuth Vol 2 pg 296
|
||
sub main'bgcd { #(num_str, num_str) return num_str
|
||
local($x,$y) = (&'bnorm($_[0]),&'bnorm($_[1]));
|
||
if ($x eq 'NaN' || $y eq 'NaN') {
|
||
'NaN';
|
||
} else {
|
||
($x, $y) = ($y,&'bmod($x,$y)) while $y ne '+0';
|
||
$x;
|
||
}
|
||
}
|
||
|
||
# routine to add two base 1e5 numbers
|
||
# stolen from Knuth Vol 2 Algorithm A pg 231
|
||
# there are separate routines to add and sub as per Kunth pg 233
|
||
sub add { #(int_num_array, int_num_array) return int_num_array
|
||
local(*x, *y) = @_;
|
||
$car = 0;
|
||
for $x (@x) {
|
||
last unless @y || $car;
|
||
$x -= 1e5 if $car = (($x += shift(@y) + $car) >= 1e5);
|
||
}
|
||
for $y (@y) {
|
||
last unless $car;
|
||
$y -= 1e5 if $car = (($y += $car) >= 1e5);
|
||
}
|
||
(@x, @y, $car);
|
||
}
|
||
|
||
# subtract base 1e5 numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
|
||
sub sub { #(int_num_array, int_num_array) return int_num_array
|
||
local(*sx, *sy) = @_;
|
||
$bar = 0;
|
||
for $sx (@sx) {
|
||
last unless @y || $bar;
|
||
$sx += 1e5 if $bar = (($sx -= shift(@sy) + $bar) < 0);
|
||
}
|
||
@sx;
|
||
}
|
||
|
||
# multiply two numbers -- stolen from Knuth Vol 2 pg 233
|
||
sub main'bmul { #(num_str, num_str) return num_str
|
||
local(*x, *y); ($x, $y) = (&'bnorm($_[0]), &'bnorm($_[1]));
|
||
if ($x eq 'NaN') {
|
||
'NaN';
|
||
} elsif ($y eq 'NaN') {
|
||
'NaN';
|
||
} else {
|
||
@x = &internal($x);
|
||
@y = &internal($y);
|
||
local($signr) = (shift @x ne shift @y) ? '-' : '+';
|
||
@prod = ();
|
||
for $x (@x) {
|
||
($car, $cty) = (0, 0);
|
||
for $y (@y) {
|
||
$prod = $x * $y + $prod[$cty] + $car;
|
||
$prod[$cty++] =
|
||
$prod - ($car = int($prod * 1e-5)) * 1e5;
|
||
}
|
||
$prod[$cty] += $car if $car;
|
||
$x = shift @prod;
|
||
}
|
||
&external($signr, @x, @prod);
|
||
}
|
||
}
|
||
|
||
# modulus
|
||
sub main'bmod { #(num_str, num_str) return num_str
|
||
(&'bdiv(@_))[1];
|
||
}
|
||
|
||
sub main'bdiv { #(dividend: num_str, divisor: num_str) return num_str
|
||
local (*x, *y); ($x, $y) = (&'bnorm($_[0]), &'bnorm($_[1]));
|
||
return wantarray ? ('NaN','NaN') : 'NaN'
|
||
if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0');
|
||
return wantarray ? ('+0',$x) : '+0' if (&cmp(&abs($x),&abs($y)) < 0);
|
||
@x = &internal($x); @y = &internal($y);
|
||
$srem = $y[0];
|
||
$sr = (shift @x ne shift @y) ? '-' : '+';
|
||
$car = $bar = $prd = 0;
|
||
if (($dd = int(1e5/($y[$#y]+1))) != 1) {
|
||
for $x (@x) {
|
||
$x = $x * $dd + $car;
|
||
$x -= ($car = int($x * 1e-5)) * 1e5;
|
||
}
|
||
push(@x, $car); $car = 0;
|
||
for $y (@y) {
|
||
$y = $y * $dd + $car;
|
||
$y -= ($car = int($y * 1e-5)) * 1e5;
|
||
}
|
||
}
|
||
else {
|
||
push(@x, 0);
|
||
}
|
||
@q = (); ($v2,$v1) = @y[$#y-1,$#y];
|
||
while ($#x > $#y) {
|
||
($u2,$u1,$u0) = @x[($#x-2)..$#x];
|
||
$q = (($u0 == $v1) ? 99999 : int(($u0*1e5+$u1)/$v1));
|
||
--$q while ($v2*$q > ($u0*1e5+$u1-$q*$v1)*1e5+$u2);
|
||
if ($q) {
|
||
($car, $bar) = (0,0);
|
||
for ($y = 0, $x = $#x-$#y-1; $y <= $#y; ++$y,++$x) {
|
||
$prd = $q * $y[$y] + $car;
|
||
$prd -= ($car = int($prd * 1e-5)) * 1e5;
|
||
$x[$x] += 1e5 if ($bar = (($x[$x] -= $prd + $bar) < 0));
|
||
}
|
||
if ($x[$#x] < $car + $bar) {
|
||
$car = 0; --$q;
|
||
for ($y = 0, $x = $#x-$#y-1; $y <= $#y; ++$y,++$x) {
|
||
$x[$x] -= 1e5
|
||
if ($car = (($x[$x] += $y[$y] + $car) > 1e5));
|
||
}
|
||
}
|
||
}
|
||
pop(@x); unshift(@q, $q);
|
||
}
|
||
if (wantarray) {
|
||
@d = ();
|
||
if ($dd != 1) {
|
||
$car = 0;
|
||
for $x (reverse @x) {
|
||
$prd = $car * 1e5 + $x;
|
||
$car = $prd - ($tmp = int($prd / $dd)) * $dd;
|
||
unshift(@d, $tmp);
|
||
}
|
||
}
|
||
else {
|
||
@d = @x;
|
||
}
|
||
(&external($sr, @q), &external($srem, @d, 0));
|
||
} else {
|
||
&external($sr, @q);
|
||
}
|
||
}
|
||
1;
|