freebsd-dev/sys/netpfil/ipfw/ip_fw_table_algo.c
Alexander V. Chernikov 61eee0e202 MFP r287070,r287073: split radix implementation and route table structure.
There are number of radix consumers in kernel land (pf,ipfw,nfs,route)
  with different requirements. In fact, first 3 don't have _any_ requirements
  and first 2 does not use radix locking. On the other hand, routing
  structure do have these requirements (rnh_gen, multipath, custom
  to-be-added control plane functions, different locking).
Additionally, radix should not known anything about its consumers internals.

So, radix code now uses tiny 'struct radix_head' structure along with
  internal 'struct radix_mask_head' instead of 'struct radix_node_head'.
  Existing consumers still uses the same 'struct radix_node_head' with
  slight modifications: they need to pass pointer to (embedded)
  'struct radix_head' to all radix callbacks.

Routing code now uses new 'struct rib_head' with different locking macro:
  RADIX_NODE_HEAD prefix was renamed to RIB_ (which stands for routing
  information base).

New net/route_var.h header was added to hold routing subsystem internal
  data. 'struct rib_head' was placed there. 'struct rtentry' will also
  be moved there soon.
2016-01-25 06:33:15 +00:00

4108 lines
95 KiB
C

/*-
* Copyright (c) 2014 Yandex LLC
* Copyright (c) 2014 Alexander V. Chernikov
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Lookup table algorithms.
*
*/
#include "opt_ipfw.h"
#include "opt_inet.h"
#ifndef INET
#error IPFIREWALL requires INET.
#endif /* INET */
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/rwlock.h>
#include <sys/rmlock.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <net/if.h> /* ip_fw.h requires IFNAMSIZ */
#include <net/radix.h>
#include <net/route.h>
#include <net/route_var.h>
#include <netinet/in.h>
#include <netinet/in_fib.h>
#include <netinet/ip_var.h> /* struct ipfw_rule_ref */
#include <netinet/ip_fw.h>
#include <netinet6/in6_fib.h>
#include <netpfil/ipfw/ip_fw_private.h>
#include <netpfil/ipfw/ip_fw_table.h>
/*
* IPFW table lookup algorithms.
*
* What is needed to add another table algo?
*
* Algo init:
* * struct table_algo has to be filled with:
* name: "type:algoname" format, e.g. "addr:radix". Currently
* there are the following types: "addr", "iface", "number" and "flow".
* type: one of IPFW_TABLE_* types
* flags: one or more TA_FLAGS_*
* ta_buf_size: size of structure used to store add/del item state.
* Needs to be less than TA_BUF_SZ.
* callbacks: see below for description.
* * ipfw_add_table_algo / ipfw_del_table_algo has to be called
*
* Callbacks description:
*
* -init: request to initialize new table instance.
* typedef int (ta_init)(struct ip_fw_chain *ch, void **ta_state,
* struct table_info *ti, char *data, uint8_t tflags);
* MANDATORY, unlocked. (M_WAITOK). Returns 0 on success.
*
* Allocate all structures needed for normal operations.
* * Caller may want to parse @data for some algo-specific
* options provided by userland.
* * Caller may want to save configuration state pointer to @ta_state
* * Caller needs to save desired runtime structure pointer(s)
* inside @ti fields. Note that it is not correct to save
* @ti pointer at this moment. Use -change_ti hook for that.
* * Caller has to fill in ti->lookup to appropriate function
* pointer.
*
*
*
* -destroy: request to destroy table instance.
* typedef void (ta_destroy)(void *ta_state, struct table_info *ti);
* MANDATORY, unlocked. (M_WAITOK).
*
* Frees all table entries and all tables structures allocated by -init.
*
*
*
* -prepare_add: request to allocate state for adding new entry.
* typedef int (ta_prepare_add)(struct ip_fw_chain *ch, struct tentry_info *tei,
* void *ta_buf);
* MANDATORY, unlocked. (M_WAITOK). Returns 0 on success.
*
* Allocates state and fills it in with all necessary data (EXCEPT value)
* from @tei to minimize operations needed to be done under WLOCK.
* "value" field has to be copied to new entry in @add callback.
* Buffer ta_buf of size ta->ta_buf_sz may be used to store
* allocated state.
*
*
*
* -prepare_del: request to set state for deleting existing entry.
* typedef int (ta_prepare_del)(struct ip_fw_chain *ch, struct tentry_info *tei,
* void *ta_buf);
* MANDATORY, locked, UH. (M_NOWAIT). Returns 0 on success.
*
* Buffer ta_buf of size ta->ta_buf_sz may be used to store
* allocated state. Caller should use on-stack ta_buf allocation
* instead of doing malloc().
*
*
*
* -add: request to insert new entry into runtime/config structures.
* typedef int (ta_add)(void *ta_state, struct table_info *ti,
* struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
* MANDATORY, UH+WLOCK. (M_NOWAIT). Returns 0 on success.
*
* Insert new entry using previously-allocated state in @ta_buf.
* * @tei may have the following flags:
* TEI_FLAGS_UPDATE: request to add or update entry.
* TEI_FLAGS_DONTADD: request to update (but not add) entry.
* * Caller is required to do the following:
* copy real entry value from @tei
* entry added: return 0, set 1 to @pnum
* entry updated: return 0, store 0 to @pnum, store old value in @tei,
* add TEI_FLAGS_UPDATED flag to @tei.
* entry exists: return EEXIST
* entry not found: return ENOENT
* other error: return non-zero error code.
*
*
*
* -del: request to delete existing entry from runtime/config structures.
* typedef int (ta_del)(void *ta_state, struct table_info *ti,
* struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
* MANDATORY, UH+WLOCK. (M_NOWAIT). Returns 0 on success.
*
* Delete entry using previously set up in @ta_buf.
* * Caller is required to do the following:
* entry deleted: return 0, set 1 to @pnum, store old value in @tei.
* entry not found: return ENOENT
* other error: return non-zero error code.
*
*
*
* -flush_entry: flush entry state created by -prepare_add / -del / others
* typedef void (ta_flush_entry)(struct ip_fw_chain *ch,
* struct tentry_info *tei, void *ta_buf);
* MANDATORY, may be locked. (M_NOWAIT).
*
* Delete state allocated by:
* -prepare_add (-add returned EEXIST|UPDATED)
* -prepare_del (if any)
* -del
* * Caller is required to handle empty @ta_buf correctly.
*
*
* -find_tentry: finds entry specified by key @tei
* typedef int ta_find_tentry(void *ta_state, struct table_info *ti,
* ipfw_obj_tentry *tent);
* OPTIONAL, locked (UH). (M_NOWAIT). Returns 0 on success.
*
* Finds entry specified by given key.
* * Caller is requred to do the following:
* entry found: returns 0, export entry to @tent
* entry not found: returns ENOENT
*
*
* -need_modify: checks if @ti has enough space to hold another @count items.
* typedef int (ta_need_modify)(void *ta_state, struct table_info *ti,
* uint32_t count, uint64_t *pflags);
* OPTIONAL, locked (UH). (M_NOWAIT). Returns 0 if has.
*
* Checks if given table has enough space to add @count items without
* resize. Caller may use @pflags to store desired modification data.
*
*
*
* -prepare_mod: allocate structures for table modification.
* typedef int (ta_prepare_mod)(void *ta_buf, uint64_t *pflags);
* OPTIONAL(need_modify), unlocked. (M_WAITOK). Returns 0 on success.
*
* Allocate all needed state for table modification. Caller
* should use `struct mod_item` to store new state in @ta_buf.
* Up to TA_BUF_SZ (128 bytes) can be stored in @ta_buf.
*
*
*
* -fill_mod: copy some data to new state/
* typedef int (ta_fill_mod)(void *ta_state, struct table_info *ti,
* void *ta_buf, uint64_t *pflags);
* OPTIONAL(need_modify), locked (UH). (M_NOWAIT). Returns 0 on success.
*
* Copy as much data as we can to minimize changes under WLOCK.
* For example, array can be merged inside this callback.
*
*
*
* -modify: perform final modification.
* typedef void (ta_modify)(void *ta_state, struct table_info *ti,
* void *ta_buf, uint64_t pflags);
* OPTIONAL(need_modify), locked (UH+WLOCK). (M_NOWAIT).
*
* Performs all changes necessary to switch to new structures.
* * Caller should save old pointers to @ta_buf storage.
*
*
*
* -flush_mod: flush table modification state.
* typedef void (ta_flush_mod)(void *ta_buf);
* OPTIONAL(need_modify), unlocked. (M_WAITOK).
*
* Performs flush for the following:
* - prepare_mod (modification was not necessary)
* - modify (for the old state)
*
*
*
* -change_gi: monitor table info pointer changes
* typedef void (ta_change_ti)(void *ta_state, struct table_info *ti);
* OPTIONAL, locked (UH). (M_NOWAIT).
*
* Called on @ti pointer changed. Called immediately after -init
* to set initial state.
*
*
*
* -foreach: calls @f for each table entry
* typedef void ta_foreach(void *ta_state, struct table_info *ti,
* ta_foreach_f *f, void *arg);
* MANDATORY, locked(UH). (M_NOWAIT).
*
* Runs callback with specified argument for each table entry,
* Typically used for dumping table entries.
*
*
*
* -dump_tentry: dump table entry in current @tentry format.
* typedef int ta_dump_tentry(void *ta_state, struct table_info *ti, void *e,
* ipfw_obj_tentry *tent);
* MANDATORY, locked(UH). (M_NOWAIT). Returns 0 on success.
*
* Dumps entry @e to @tent.
*
*
* -print_config: prints custom algoritm options into buffer.
* typedef void (ta_print_config)(void *ta_state, struct table_info *ti,
* char *buf, size_t bufsize);
* OPTIONAL. locked(UH). (M_NOWAIT).
*
* Prints custom algorithm options in the format suitable to pass
* back to -init callback.
*
*
*
* -dump_tinfo: dumps algo-specific info.
* typedef void ta_dump_tinfo(void *ta_state, struct table_info *ti,
* ipfw_ta_tinfo *tinfo);
* OPTIONAL. locked(UH). (M_NOWAIT).
*
* Dumps options like items size/hash size, etc.
*/
MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
/*
* Utility structures/functions common to more than one algo
*/
struct mod_item {
void *main_ptr;
size_t size;
void *main_ptr6;
size_t size6;
};
static int badd(const void *key, void *item, void *base, size_t nmemb,
size_t size, int (*compar) (const void *, const void *));
static int bdel(const void *key, void *base, size_t nmemb, size_t size,
int (*compar) (const void *, const void *));
/*
* ADDR implementation using radix
*
*/
/*
* The radix code expects addr and mask to be array of bytes,
* with the first byte being the length of the array. rn_inithead
* is called with the offset in bits of the lookup key within the
* array. If we use a sockaddr_in as the underlying type,
* sin_len is conveniently located at offset 0, sin_addr is at
* offset 4 and normally aligned.
* But for portability, let's avoid assumption and make the code explicit
*/
#define KEY_LEN(v) *((uint8_t *)&(v))
/*
* Do not require radix to compare more than actual IPv4/IPv6 address
*/
#define KEY_LEN_INET (offsetof(struct sockaddr_in, sin_addr) + sizeof(in_addr_t))
#define KEY_LEN_INET6 (offsetof(struct sa_in6, sin6_addr) + sizeof(struct in6_addr))
#define OFF_LEN_INET (8 * offsetof(struct sockaddr_in, sin_addr))
#define OFF_LEN_INET6 (8 * offsetof(struct sa_in6, sin6_addr))
struct radix_addr_entry {
struct radix_node rn[2];
struct sockaddr_in addr;
uint32_t value;
uint8_t masklen;
};
struct sa_in6 {
uint8_t sin6_len;
uint8_t sin6_family;
uint8_t pad[2];
struct in6_addr sin6_addr;
};
struct radix_addr_xentry {
struct radix_node rn[2];
struct sa_in6 addr6;
uint32_t value;
uint8_t masklen;
};
struct radix_cfg {
struct radix_node_head *head4;
struct radix_node_head *head6;
size_t count4;
size_t count6;
};
struct ta_buf_radix
{
void *ent_ptr;
struct sockaddr *addr_ptr;
struct sockaddr *mask_ptr;
union {
struct {
struct sockaddr_in sa;
struct sockaddr_in ma;
} a4;
struct {
struct sa_in6 sa;
struct sa_in6 ma;
} a6;
} addr;
};
static int ta_lookup_radix(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val);
static int ta_init_radix(struct ip_fw_chain *ch, void **ta_state,
struct table_info *ti, char *data, uint8_t tflags);
static int flush_radix_entry(struct radix_node *rn, void *arg);
static void ta_destroy_radix(void *ta_state, struct table_info *ti);
static void ta_dump_radix_tinfo(void *ta_state, struct table_info *ti,
ipfw_ta_tinfo *tinfo);
static int ta_dump_radix_tentry(void *ta_state, struct table_info *ti,
void *e, ipfw_obj_tentry *tent);
static int ta_find_radix_tentry(void *ta_state, struct table_info *ti,
ipfw_obj_tentry *tent);
static void ta_foreach_radix(void *ta_state, struct table_info *ti,
ta_foreach_f *f, void *arg);
static void tei_to_sockaddr_ent(struct tentry_info *tei, struct sockaddr *sa,
struct sockaddr *ma, int *set_mask);
static int ta_prepare_add_radix(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf);
static int ta_add_radix(void *ta_state, struct table_info *ti,
struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
static int ta_prepare_del_radix(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf);
static int ta_del_radix(void *ta_state, struct table_info *ti,
struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
static void ta_flush_radix_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf);
static int ta_need_modify_radix(void *ta_state, struct table_info *ti,
uint32_t count, uint64_t *pflags);
static int
ta_lookup_radix(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val)
{
struct radix_node_head *rnh;
if (keylen == sizeof(in_addr_t)) {
struct radix_addr_entry *ent;
struct sockaddr_in sa;
KEY_LEN(sa) = KEY_LEN_INET;
sa.sin_addr.s_addr = *((in_addr_t *)key);
rnh = (struct radix_node_head *)ti->state;
ent = (struct radix_addr_entry *)(rnh->rnh_matchaddr(&sa, &rnh->rh));
if (ent != NULL) {
*val = ent->value;
return (1);
}
} else {
struct radix_addr_xentry *xent;
struct sa_in6 sa6;
KEY_LEN(sa6) = KEY_LEN_INET6;
memcpy(&sa6.sin6_addr, key, sizeof(struct in6_addr));
rnh = (struct radix_node_head *)ti->xstate;
xent = (struct radix_addr_xentry *)(rnh->rnh_matchaddr(&sa6, &rnh->rh));
if (xent != NULL) {
*val = xent->value;
return (1);
}
}
return (0);
}
/*
* New table
*/
static int
ta_init_radix(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
char *data, uint8_t tflags)
{
struct radix_cfg *cfg;
if (!rn_inithead(&ti->state, OFF_LEN_INET))
return (ENOMEM);
if (!rn_inithead(&ti->xstate, OFF_LEN_INET6)) {
rn_detachhead(&ti->state);
return (ENOMEM);
}
cfg = malloc(sizeof(struct radix_cfg), M_IPFW, M_WAITOK | M_ZERO);
*ta_state = cfg;
ti->lookup = ta_lookup_radix;
return (0);
}
static int
flush_radix_entry(struct radix_node *rn, void *arg)
{
struct radix_node_head * const rnh = arg;
struct radix_addr_entry *ent;
ent = (struct radix_addr_entry *)
rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, &rnh->rh);
if (ent != NULL)
free(ent, M_IPFW_TBL);
return (0);
}
static void
ta_destroy_radix(void *ta_state, struct table_info *ti)
{
struct radix_cfg *cfg;
struct radix_node_head *rnh;
cfg = (struct radix_cfg *)ta_state;
rnh = (struct radix_node_head *)(ti->state);
rnh->rnh_walktree(&rnh->rh, flush_radix_entry, rnh);
rn_detachhead(&ti->state);
rnh = (struct radix_node_head *)(ti->xstate);
rnh->rnh_walktree(&rnh->rh, flush_radix_entry, rnh);
rn_detachhead(&ti->xstate);
free(cfg, M_IPFW);
}
/*
* Provide algo-specific table info
*/
static void
ta_dump_radix_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
{
struct radix_cfg *cfg;
cfg = (struct radix_cfg *)ta_state;
tinfo->flags = IPFW_TATFLAGS_AFDATA | IPFW_TATFLAGS_AFITEM;
tinfo->taclass4 = IPFW_TACLASS_RADIX;
tinfo->count4 = cfg->count4;
tinfo->itemsize4 = sizeof(struct radix_addr_entry);
tinfo->taclass6 = IPFW_TACLASS_RADIX;
tinfo->count6 = cfg->count6;
tinfo->itemsize6 = sizeof(struct radix_addr_xentry);
}
static int
ta_dump_radix_tentry(void *ta_state, struct table_info *ti, void *e,
ipfw_obj_tentry *tent)
{
struct radix_addr_entry *n;
#ifdef INET6
struct radix_addr_xentry *xn;
#endif
n = (struct radix_addr_entry *)e;
/* Guess IPv4/IPv6 radix by sockaddr family */
if (n->addr.sin_family == AF_INET) {
tent->k.addr.s_addr = n->addr.sin_addr.s_addr;
tent->masklen = n->masklen;
tent->subtype = AF_INET;
tent->v.kidx = n->value;
#ifdef INET6
} else {
xn = (struct radix_addr_xentry *)e;
memcpy(&tent->k, &xn->addr6.sin6_addr, sizeof(struct in6_addr));
tent->masklen = xn->masklen;
tent->subtype = AF_INET6;
tent->v.kidx = xn->value;
#endif
}
return (0);
}
static int
ta_find_radix_tentry(void *ta_state, struct table_info *ti,
ipfw_obj_tentry *tent)
{
struct radix_node_head *rnh;
void *e;
e = NULL;
if (tent->subtype == AF_INET) {
struct sockaddr_in sa;
KEY_LEN(sa) = KEY_LEN_INET;
sa.sin_addr.s_addr = tent->k.addr.s_addr;
rnh = (struct radix_node_head *)ti->state;
e = rnh->rnh_matchaddr(&sa, &rnh->rh);
} else {
struct sa_in6 sa6;
KEY_LEN(sa6) = KEY_LEN_INET6;
memcpy(&sa6.sin6_addr, &tent->k.addr6, sizeof(struct in6_addr));
rnh = (struct radix_node_head *)ti->xstate;
e = rnh->rnh_matchaddr(&sa6, &rnh->rh);
}
if (e != NULL) {
ta_dump_radix_tentry(ta_state, ti, e, tent);
return (0);
}
return (ENOENT);
}
static void
ta_foreach_radix(void *ta_state, struct table_info *ti, ta_foreach_f *f,
void *arg)
{
struct radix_node_head *rnh;
rnh = (struct radix_node_head *)(ti->state);
rnh->rnh_walktree(&rnh->rh, (walktree_f_t *)f, arg);
rnh = (struct radix_node_head *)(ti->xstate);
rnh->rnh_walktree(&rnh->rh, (walktree_f_t *)f, arg);
}
#ifdef INET6
static inline void ipv6_writemask(struct in6_addr *addr6, uint8_t mask);
static inline void
ipv6_writemask(struct in6_addr *addr6, uint8_t mask)
{
uint32_t *cp;
for (cp = (uint32_t *)addr6; mask >= 32; mask -= 32)
*cp++ = 0xFFFFFFFF;
*cp = htonl(mask ? ~((1 << (32 - mask)) - 1) : 0);
}
#endif
static void
tei_to_sockaddr_ent(struct tentry_info *tei, struct sockaddr *sa,
struct sockaddr *ma, int *set_mask)
{
int mlen;
#ifdef INET
struct sockaddr_in *addr, *mask;
#endif
#ifdef INET6
struct sa_in6 *addr6, *mask6;
#endif
in_addr_t a4;
mlen = tei->masklen;
if (tei->subtype == AF_INET) {
#ifdef INET
addr = (struct sockaddr_in *)sa;
mask = (struct sockaddr_in *)ma;
/* Set 'total' structure length */
KEY_LEN(*addr) = KEY_LEN_INET;
KEY_LEN(*mask) = KEY_LEN_INET;
addr->sin_family = AF_INET;
mask->sin_addr.s_addr =
htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
a4 = *((in_addr_t *)tei->paddr);
addr->sin_addr.s_addr = a4 & mask->sin_addr.s_addr;
if (mlen != 32)
*set_mask = 1;
else
*set_mask = 0;
#endif
#ifdef INET6
} else if (tei->subtype == AF_INET6) {
/* IPv6 case */
addr6 = (struct sa_in6 *)sa;
mask6 = (struct sa_in6 *)ma;
/* Set 'total' structure length */
KEY_LEN(*addr6) = KEY_LEN_INET6;
KEY_LEN(*mask6) = KEY_LEN_INET6;
addr6->sin6_family = AF_INET6;
ipv6_writemask(&mask6->sin6_addr, mlen);
memcpy(&addr6->sin6_addr, tei->paddr, sizeof(struct in6_addr));
APPLY_MASK(&addr6->sin6_addr, &mask6->sin6_addr);
if (mlen != 128)
*set_mask = 1;
else
*set_mask = 0;
#endif
}
}
static int
ta_prepare_add_radix(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf)
{
struct ta_buf_radix *tb;
struct radix_addr_entry *ent;
#ifdef INET6
struct radix_addr_xentry *xent;
#endif
struct sockaddr *addr, *mask;
int mlen, set_mask;
tb = (struct ta_buf_radix *)ta_buf;
mlen = tei->masklen;
set_mask = 0;
if (tei->subtype == AF_INET) {
#ifdef INET
if (mlen > 32)
return (EINVAL);
ent = malloc(sizeof(*ent), M_IPFW_TBL, M_WAITOK | M_ZERO);
ent->masklen = mlen;
addr = (struct sockaddr *)&ent->addr;
mask = (struct sockaddr *)&tb->addr.a4.ma;
tb->ent_ptr = ent;
#endif
#ifdef INET6
} else if (tei->subtype == AF_INET6) {
/* IPv6 case */
if (mlen > 128)
return (EINVAL);
xent = malloc(sizeof(*xent), M_IPFW_TBL, M_WAITOK | M_ZERO);
xent->masklen = mlen;
addr = (struct sockaddr *)&xent->addr6;
mask = (struct sockaddr *)&tb->addr.a6.ma;
tb->ent_ptr = xent;
#endif
} else {
/* Unknown CIDR type */
return (EINVAL);
}
tei_to_sockaddr_ent(tei, addr, mask, &set_mask);
/* Set pointers */
tb->addr_ptr = addr;
if (set_mask != 0)
tb->mask_ptr = mask;
return (0);
}
static int
ta_add_radix(void *ta_state, struct table_info *ti, struct tentry_info *tei,
void *ta_buf, uint32_t *pnum)
{
struct radix_cfg *cfg;
struct radix_node_head *rnh;
struct radix_node *rn;
struct ta_buf_radix *tb;
uint32_t *old_value, value;
cfg = (struct radix_cfg *)ta_state;
tb = (struct ta_buf_radix *)ta_buf;
/* Save current entry value from @tei */
if (tei->subtype == AF_INET) {
rnh = ti->state;
((struct radix_addr_entry *)tb->ent_ptr)->value = tei->value;
} else {
rnh = ti->xstate;
((struct radix_addr_xentry *)tb->ent_ptr)->value = tei->value;
}
/* Search for an entry first */
rn = rnh->rnh_lookup(tb->addr_ptr, tb->mask_ptr, &rnh->rh);
if (rn != NULL) {
if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
return (EEXIST);
/* Record already exists. Update value if we're asked to */
if (tei->subtype == AF_INET)
old_value = &((struct radix_addr_entry *)rn)->value;
else
old_value = &((struct radix_addr_xentry *)rn)->value;
value = *old_value;
*old_value = tei->value;
tei->value = value;
/* Indicate that update has happened instead of addition */
tei->flags |= TEI_FLAGS_UPDATED;
*pnum = 0;
return (0);
}
if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
return (EFBIG);
rn = rnh->rnh_addaddr(tb->addr_ptr, tb->mask_ptr, &rnh->rh,tb->ent_ptr);
if (rn == NULL) {
/* Unknown error */
return (EINVAL);
}
if (tei->subtype == AF_INET)
cfg->count4++;
else
cfg->count6++;
tb->ent_ptr = NULL;
*pnum = 1;
return (0);
}
static int
ta_prepare_del_radix(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf)
{
struct ta_buf_radix *tb;
struct sockaddr *addr, *mask;
int mlen, set_mask;
tb = (struct ta_buf_radix *)ta_buf;
mlen = tei->masklen;
set_mask = 0;
if (tei->subtype == AF_INET) {
if (mlen > 32)
return (EINVAL);
addr = (struct sockaddr *)&tb->addr.a4.sa;
mask = (struct sockaddr *)&tb->addr.a4.ma;
#ifdef INET6
} else if (tei->subtype == AF_INET6) {
if (mlen > 128)
return (EINVAL);
addr = (struct sockaddr *)&tb->addr.a6.sa;
mask = (struct sockaddr *)&tb->addr.a6.ma;
#endif
} else
return (EINVAL);
tei_to_sockaddr_ent(tei, addr, mask, &set_mask);
tb->addr_ptr = addr;
if (set_mask != 0)
tb->mask_ptr = mask;
return (0);
}
static int
ta_del_radix(void *ta_state, struct table_info *ti, struct tentry_info *tei,
void *ta_buf, uint32_t *pnum)
{
struct radix_cfg *cfg;
struct radix_node_head *rnh;
struct radix_node *rn;
struct ta_buf_radix *tb;
cfg = (struct radix_cfg *)ta_state;
tb = (struct ta_buf_radix *)ta_buf;
if (tei->subtype == AF_INET)
rnh = ti->state;
else
rnh = ti->xstate;
rn = rnh->rnh_deladdr(tb->addr_ptr, tb->mask_ptr, &rnh->rh);
if (rn == NULL)
return (ENOENT);
/* Save entry value to @tei */
if (tei->subtype == AF_INET)
tei->value = ((struct radix_addr_entry *)rn)->value;
else
tei->value = ((struct radix_addr_xentry *)rn)->value;
tb->ent_ptr = rn;
if (tei->subtype == AF_INET)
cfg->count4--;
else
cfg->count6--;
*pnum = 1;
return (0);
}
static void
ta_flush_radix_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf)
{
struct ta_buf_radix *tb;
tb = (struct ta_buf_radix *)ta_buf;
if (tb->ent_ptr != NULL)
free(tb->ent_ptr, M_IPFW_TBL);
}
static int
ta_need_modify_radix(void *ta_state, struct table_info *ti, uint32_t count,
uint64_t *pflags)
{
/*
* radix does not require additional memory allocations
* other than nodes itself. Adding new masks to the tree do
* but we don't have any API to call (and we don't known which
* sizes do we need).
*/
return (0);
}
struct table_algo addr_radix = {
.name = "addr:radix",
.type = IPFW_TABLE_ADDR,
.flags = TA_FLAG_DEFAULT,
.ta_buf_size = sizeof(struct ta_buf_radix),
.init = ta_init_radix,
.destroy = ta_destroy_radix,
.prepare_add = ta_prepare_add_radix,
.prepare_del = ta_prepare_del_radix,
.add = ta_add_radix,
.del = ta_del_radix,
.flush_entry = ta_flush_radix_entry,
.foreach = ta_foreach_radix,
.dump_tentry = ta_dump_radix_tentry,
.find_tentry = ta_find_radix_tentry,
.dump_tinfo = ta_dump_radix_tinfo,
.need_modify = ta_need_modify_radix,
};
/*
* addr:hash cmds
*
*
* ti->data:
* [inv.mask4][inv.mask6][log2hsize4][log2hsize6]
* [ 8][ 8[ 8][ 8]
*
* inv.mask4: 32 - mask
* inv.mask6:
* 1) _slow lookup: mask
* 2) _aligned: (128 - mask) / 8
* 3) _64: 8
*
*
* pflags:
* [v4=1/v6=0][hsize]
* [ 32][ 32]
*/
struct chashentry;
SLIST_HEAD(chashbhead, chashentry);
struct chash_cfg {
struct chashbhead *head4;
struct chashbhead *head6;
size_t size4;
size_t size6;
size_t items4;
size_t items6;
uint8_t mask4;
uint8_t mask6;
};
struct chashentry {
SLIST_ENTRY(chashentry) next;
uint32_t value;
uint32_t type;
union {
uint32_t a4; /* Host format */
struct in6_addr a6; /* Network format */
} a;
};
struct ta_buf_chash
{
void *ent_ptr;
struct chashentry ent;
};
#ifdef INET
static __inline uint32_t hash_ip(uint32_t addr, int hsize);
#endif
#ifdef INET6
static __inline uint32_t hash_ip6(struct in6_addr *addr6, int hsize);
static __inline uint16_t hash_ip64(struct in6_addr *addr6, int hsize);
static __inline uint32_t hash_ip6_slow(struct in6_addr *addr6, void *key,
int mask, int hsize);
static __inline uint32_t hash_ip6_al(struct in6_addr *addr6, void *key, int mask,
int hsize);
#endif
static int ta_lookup_chash_slow(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val);
static int ta_lookup_chash_aligned(struct table_info *ti, void *key,
uint32_t keylen, uint32_t *val);
static int ta_lookup_chash_64(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val);
static int chash_parse_opts(struct chash_cfg *cfg, char *data);
static void ta_print_chash_config(void *ta_state, struct table_info *ti,
char *buf, size_t bufsize);
static int ta_log2(uint32_t v);
static int ta_init_chash(struct ip_fw_chain *ch, void **ta_state,
struct table_info *ti, char *data, uint8_t tflags);
static void ta_destroy_chash(void *ta_state, struct table_info *ti);
static void ta_dump_chash_tinfo(void *ta_state, struct table_info *ti,
ipfw_ta_tinfo *tinfo);
static int ta_dump_chash_tentry(void *ta_state, struct table_info *ti,
void *e, ipfw_obj_tentry *tent);
static uint32_t hash_ent(struct chashentry *ent, int af, int mlen,
uint32_t size);
static int tei_to_chash_ent(struct tentry_info *tei, struct chashentry *ent);
static int ta_find_chash_tentry(void *ta_state, struct table_info *ti,
ipfw_obj_tentry *tent);
static void ta_foreach_chash(void *ta_state, struct table_info *ti,
ta_foreach_f *f, void *arg);
static int ta_prepare_add_chash(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf);
static int ta_add_chash(void *ta_state, struct table_info *ti,
struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
static int ta_prepare_del_chash(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf);
static int ta_del_chash(void *ta_state, struct table_info *ti,
struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
static void ta_flush_chash_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf);
static int ta_need_modify_chash(void *ta_state, struct table_info *ti,
uint32_t count, uint64_t *pflags);
static int ta_prepare_mod_chash(void *ta_buf, uint64_t *pflags);
static int ta_fill_mod_chash(void *ta_state, struct table_info *ti, void *ta_buf,
uint64_t *pflags);
static void ta_modify_chash(void *ta_state, struct table_info *ti, void *ta_buf,
uint64_t pflags);
static void ta_flush_mod_chash(void *ta_buf);
#ifdef INET
static __inline uint32_t
hash_ip(uint32_t addr, int hsize)
{
return (addr % (hsize - 1));
}
#endif
#ifdef INET6
static __inline uint32_t
hash_ip6(struct in6_addr *addr6, int hsize)
{
uint32_t i;
i = addr6->s6_addr32[0] ^ addr6->s6_addr32[1] ^
addr6->s6_addr32[2] ^ addr6->s6_addr32[3];
return (i % (hsize - 1));
}
static __inline uint16_t
hash_ip64(struct in6_addr *addr6, int hsize)
{
uint32_t i;
i = addr6->s6_addr32[0] ^ addr6->s6_addr32[1];
return (i % (hsize - 1));
}
static __inline uint32_t
hash_ip6_slow(struct in6_addr *addr6, void *key, int mask, int hsize)
{
struct in6_addr mask6;
ipv6_writemask(&mask6, mask);
memcpy(addr6, key, sizeof(struct in6_addr));
APPLY_MASK(addr6, &mask6);
return (hash_ip6(addr6, hsize));
}
static __inline uint32_t
hash_ip6_al(struct in6_addr *addr6, void *key, int mask, int hsize)
{
uint64_t *paddr;
paddr = (uint64_t *)addr6;
*paddr = 0;
*(paddr + 1) = 0;
memcpy(addr6, key, mask);
return (hash_ip6(addr6, hsize));
}
#endif
static int
ta_lookup_chash_slow(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val)
{
struct chashbhead *head;
struct chashentry *ent;
uint16_t hash, hsize;
uint8_t imask;
if (keylen == sizeof(in_addr_t)) {
#ifdef INET
head = (struct chashbhead *)ti->state;
imask = ti->data >> 24;
hsize = 1 << ((ti->data & 0xFFFF) >> 8);
uint32_t a;
a = ntohl(*((in_addr_t *)key));
a = a >> imask;
hash = hash_ip(a, hsize);
SLIST_FOREACH(ent, &head[hash], next) {
if (ent->a.a4 == a) {
*val = ent->value;
return (1);
}
}
#endif
} else {
#ifdef INET6
/* IPv6: worst scenario: non-round mask */
struct in6_addr addr6;
head = (struct chashbhead *)ti->xstate;
imask = (ti->data & 0xFF0000) >> 16;
hsize = 1 << (ti->data & 0xFF);
hash = hash_ip6_slow(&addr6, key, imask, hsize);
SLIST_FOREACH(ent, &head[hash], next) {
if (memcmp(&ent->a.a6, &addr6, 16) == 0) {
*val = ent->value;
return (1);
}
}
#endif
}
return (0);
}
static int
ta_lookup_chash_aligned(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val)
{
struct chashbhead *head;
struct chashentry *ent;
uint16_t hash, hsize;
uint8_t imask;
if (keylen == sizeof(in_addr_t)) {
#ifdef INET
head = (struct chashbhead *)ti->state;
imask = ti->data >> 24;
hsize = 1 << ((ti->data & 0xFFFF) >> 8);
uint32_t a;
a = ntohl(*((in_addr_t *)key));
a = a >> imask;
hash = hash_ip(a, hsize);
SLIST_FOREACH(ent, &head[hash], next) {
if (ent->a.a4 == a) {
*val = ent->value;
return (1);
}
}
#endif
} else {
#ifdef INET6
/* IPv6: aligned to 8bit mask */
struct in6_addr addr6;
uint64_t *paddr, *ptmp;
head = (struct chashbhead *)ti->xstate;
imask = (ti->data & 0xFF0000) >> 16;
hsize = 1 << (ti->data & 0xFF);
hash = hash_ip6_al(&addr6, key, imask, hsize);
paddr = (uint64_t *)&addr6;
SLIST_FOREACH(ent, &head[hash], next) {
ptmp = (uint64_t *)&ent->a.a6;
if (paddr[0] == ptmp[0] && paddr[1] == ptmp[1]) {
*val = ent->value;
return (1);
}
}
#endif
}
return (0);
}
static int
ta_lookup_chash_64(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val)
{
struct chashbhead *head;
struct chashentry *ent;
uint16_t hash, hsize;
uint8_t imask;
if (keylen == sizeof(in_addr_t)) {
#ifdef INET
head = (struct chashbhead *)ti->state;
imask = ti->data >> 24;
hsize = 1 << ((ti->data & 0xFFFF) >> 8);
uint32_t a;
a = ntohl(*((in_addr_t *)key));
a = a >> imask;
hash = hash_ip(a, hsize);
SLIST_FOREACH(ent, &head[hash], next) {
if (ent->a.a4 == a) {
*val = ent->value;
return (1);
}
}
#endif
} else {
#ifdef INET6
/* IPv6: /64 */
uint64_t a6, *paddr;
head = (struct chashbhead *)ti->xstate;
paddr = (uint64_t *)key;
hsize = 1 << (ti->data & 0xFF);
a6 = *paddr;
hash = hash_ip64((struct in6_addr *)key, hsize);
SLIST_FOREACH(ent, &head[hash], next) {
paddr = (uint64_t *)&ent->a.a6;
if (a6 == *paddr) {
*val = ent->value;
return (1);
}
}
#endif
}
return (0);
}
static int
chash_parse_opts(struct chash_cfg *cfg, char *data)
{
char *pdel, *pend, *s;
int mask4, mask6;
mask4 = cfg->mask4;
mask6 = cfg->mask6;
if (data == NULL)
return (0);
if ((pdel = strchr(data, ' ')) == NULL)
return (0);
while (*pdel == ' ')
pdel++;
if (strncmp(pdel, "masks=", 6) != 0)
return (EINVAL);
if ((s = strchr(pdel, ' ')) != NULL)
*s++ = '\0';
pdel += 6;
/* Need /XX[,/YY] */
if (*pdel++ != '/')
return (EINVAL);
mask4 = strtol(pdel, &pend, 10);
if (*pend == ',') {
/* ,/YY */
pdel = pend + 1;
if (*pdel++ != '/')
return (EINVAL);
mask6 = strtol(pdel, &pend, 10);
if (*pend != '\0')
return (EINVAL);
} else if (*pend != '\0')
return (EINVAL);
if (mask4 < 0 || mask4 > 32 || mask6 < 0 || mask6 > 128)
return (EINVAL);
cfg->mask4 = mask4;
cfg->mask6 = mask6;
return (0);
}
static void
ta_print_chash_config(void *ta_state, struct table_info *ti, char *buf,
size_t bufsize)
{
struct chash_cfg *cfg;
cfg = (struct chash_cfg *)ta_state;
if (cfg->mask4 != 32 || cfg->mask6 != 128)
snprintf(buf, bufsize, "%s masks=/%d,/%d", "addr:hash",
cfg->mask4, cfg->mask6);
else
snprintf(buf, bufsize, "%s", "addr:hash");
}
static int
ta_log2(uint32_t v)
{
uint32_t r;
r = 0;
while (v >>= 1)
r++;
return (r);
}
/*
* New table.
* We assume 'data' to be either NULL or the following format:
* 'addr:hash [masks=/32[,/128]]'
*/
static int
ta_init_chash(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
char *data, uint8_t tflags)
{
int error, i;
uint32_t hsize;
struct chash_cfg *cfg;
cfg = malloc(sizeof(struct chash_cfg), M_IPFW, M_WAITOK | M_ZERO);
cfg->mask4 = 32;
cfg->mask6 = 128;
if ((error = chash_parse_opts(cfg, data)) != 0) {
free(cfg, M_IPFW);
return (error);
}
cfg->size4 = 128;
cfg->size6 = 128;
cfg->head4 = malloc(sizeof(struct chashbhead) * cfg->size4, M_IPFW,
M_WAITOK | M_ZERO);
cfg->head6 = malloc(sizeof(struct chashbhead) * cfg->size6, M_IPFW,
M_WAITOK | M_ZERO);
for (i = 0; i < cfg->size4; i++)
SLIST_INIT(&cfg->head4[i]);
for (i = 0; i < cfg->size6; i++)
SLIST_INIT(&cfg->head6[i]);
*ta_state = cfg;
ti->state = cfg->head4;
ti->xstate = cfg->head6;
/* Store data depending on v6 mask length */
hsize = ta_log2(cfg->size4) << 8 | ta_log2(cfg->size6);
if (cfg->mask6 == 64) {
ti->data = (32 - cfg->mask4) << 24 | (128 - cfg->mask6) << 16|
hsize;
ti->lookup = ta_lookup_chash_64;
} else if ((cfg->mask6 % 8) == 0) {
ti->data = (32 - cfg->mask4) << 24 |
cfg->mask6 << 13 | hsize;
ti->lookup = ta_lookup_chash_aligned;
} else {
/* don't do that! */
ti->data = (32 - cfg->mask4) << 24 |
cfg->mask6 << 16 | hsize;
ti->lookup = ta_lookup_chash_slow;
}
return (0);
}
static void
ta_destroy_chash(void *ta_state, struct table_info *ti)
{
struct chash_cfg *cfg;
struct chashentry *ent, *ent_next;
int i;
cfg = (struct chash_cfg *)ta_state;
for (i = 0; i < cfg->size4; i++)
SLIST_FOREACH_SAFE(ent, &cfg->head4[i], next, ent_next)
free(ent, M_IPFW_TBL);
for (i = 0; i < cfg->size6; i++)
SLIST_FOREACH_SAFE(ent, &cfg->head6[i], next, ent_next)
free(ent, M_IPFW_TBL);
free(cfg->head4, M_IPFW);
free(cfg->head6, M_IPFW);
free(cfg, M_IPFW);
}
static void
ta_dump_chash_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
{
struct chash_cfg *cfg;
cfg = (struct chash_cfg *)ta_state;
tinfo->flags = IPFW_TATFLAGS_AFDATA | IPFW_TATFLAGS_AFITEM;
tinfo->taclass4 = IPFW_TACLASS_HASH;
tinfo->size4 = cfg->size4;
tinfo->count4 = cfg->items4;
tinfo->itemsize4 = sizeof(struct chashentry);
tinfo->taclass6 = IPFW_TACLASS_HASH;
tinfo->size6 = cfg->size6;
tinfo->count6 = cfg->items6;
tinfo->itemsize6 = sizeof(struct chashentry);
}
static int
ta_dump_chash_tentry(void *ta_state, struct table_info *ti, void *e,
ipfw_obj_tentry *tent)
{
struct chash_cfg *cfg;
struct chashentry *ent;
cfg = (struct chash_cfg *)ta_state;
ent = (struct chashentry *)e;
if (ent->type == AF_INET) {
tent->k.addr.s_addr = htonl(ent->a.a4 << (32 - cfg->mask4));
tent->masklen = cfg->mask4;
tent->subtype = AF_INET;
tent->v.kidx = ent->value;
#ifdef INET6
} else {
memcpy(&tent->k, &ent->a.a6, sizeof(struct in6_addr));
tent->masklen = cfg->mask6;
tent->subtype = AF_INET6;
tent->v.kidx = ent->value;
#endif
}
return (0);
}
static uint32_t
hash_ent(struct chashentry *ent, int af, int mlen, uint32_t size)
{
uint32_t hash;
hash = 0;
if (af == AF_INET) {
#ifdef INET
hash = hash_ip(ent->a.a4, size);
#endif
} else {
#ifdef INET6
if (mlen == 64)
hash = hash_ip64(&ent->a.a6, size);
else
hash = hash_ip6(&ent->a.a6, size);
#endif
}
return (hash);
}
static int
tei_to_chash_ent(struct tentry_info *tei, struct chashentry *ent)
{
int mlen;
#ifdef INET6
struct in6_addr mask6;
#endif
mlen = tei->masklen;
if (tei->subtype == AF_INET) {
#ifdef INET
if (mlen > 32)
return (EINVAL);
ent->type = AF_INET;
/* Calculate masked address */
ent->a.a4 = ntohl(*((in_addr_t *)tei->paddr)) >> (32 - mlen);
#endif
#ifdef INET6
} else if (tei->subtype == AF_INET6) {
/* IPv6 case */
if (mlen > 128)
return (EINVAL);
ent->type = AF_INET6;
ipv6_writemask(&mask6, mlen);
memcpy(&ent->a.a6, tei->paddr, sizeof(struct in6_addr));
APPLY_MASK(&ent->a.a6, &mask6);
#endif
} else {
/* Unknown CIDR type */
return (EINVAL);
}
return (0);
}
static int
ta_find_chash_tentry(void *ta_state, struct table_info *ti,
ipfw_obj_tentry *tent)
{
struct chash_cfg *cfg;
struct chashbhead *head;
struct chashentry ent, *tmp;
struct tentry_info tei;
int error;
uint32_t hash;
cfg = (struct chash_cfg *)ta_state;
memset(&ent, 0, sizeof(ent));
memset(&tei, 0, sizeof(tei));
if (tent->subtype == AF_INET) {
tei.paddr = &tent->k.addr;
tei.masklen = cfg->mask4;
tei.subtype = AF_INET;
if ((error = tei_to_chash_ent(&tei, &ent)) != 0)
return (error);
head = cfg->head4;
hash = hash_ent(&ent, AF_INET, cfg->mask4, cfg->size4);
/* Check for existence */
SLIST_FOREACH(tmp, &head[hash], next) {
if (tmp->a.a4 != ent.a.a4)
continue;
ta_dump_chash_tentry(ta_state, ti, tmp, tent);
return (0);
}
} else {
tei.paddr = &tent->k.addr6;
tei.masklen = cfg->mask6;
tei.subtype = AF_INET6;
if ((error = tei_to_chash_ent(&tei, &ent)) != 0)
return (error);
head = cfg->head6;
hash = hash_ent(&ent, AF_INET6, cfg->mask6, cfg->size6);
/* Check for existence */
SLIST_FOREACH(tmp, &head[hash], next) {
if (memcmp(&tmp->a.a6, &ent.a.a6, 16) != 0)
continue;
ta_dump_chash_tentry(ta_state, ti, tmp, tent);
return (0);
}
}
return (ENOENT);
}
static void
ta_foreach_chash(void *ta_state, struct table_info *ti, ta_foreach_f *f,
void *arg)
{
struct chash_cfg *cfg;
struct chashentry *ent, *ent_next;
int i;
cfg = (struct chash_cfg *)ta_state;
for (i = 0; i < cfg->size4; i++)
SLIST_FOREACH_SAFE(ent, &cfg->head4[i], next, ent_next)
f(ent, arg);
for (i = 0; i < cfg->size6; i++)
SLIST_FOREACH_SAFE(ent, &cfg->head6[i], next, ent_next)
f(ent, arg);
}
static int
ta_prepare_add_chash(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf)
{
struct ta_buf_chash *tb;
struct chashentry *ent;
int error;
tb = (struct ta_buf_chash *)ta_buf;
ent = malloc(sizeof(*ent), M_IPFW_TBL, M_WAITOK | M_ZERO);
error = tei_to_chash_ent(tei, ent);
if (error != 0) {
free(ent, M_IPFW_TBL);
return (error);
}
tb->ent_ptr = ent;
return (0);
}
static int
ta_add_chash(void *ta_state, struct table_info *ti, struct tentry_info *tei,
void *ta_buf, uint32_t *pnum)
{
struct chash_cfg *cfg;
struct chashbhead *head;
struct chashentry *ent, *tmp;
struct ta_buf_chash *tb;
int exists;
uint32_t hash, value;
cfg = (struct chash_cfg *)ta_state;
tb = (struct ta_buf_chash *)ta_buf;
ent = (struct chashentry *)tb->ent_ptr;
hash = 0;
exists = 0;
/* Read current value from @tei */
ent->value = tei->value;
/* Read cuurrent value */
if (tei->subtype == AF_INET) {
if (tei->masklen != cfg->mask4)
return (EINVAL);
head = cfg->head4;
hash = hash_ent(ent, AF_INET, cfg->mask4, cfg->size4);
/* Check for existence */
SLIST_FOREACH(tmp, &head[hash], next) {
if (tmp->a.a4 == ent->a.a4) {
exists = 1;
break;
}
}
} else {
if (tei->masklen != cfg->mask6)
return (EINVAL);
head = cfg->head6;
hash = hash_ent(ent, AF_INET6, cfg->mask6, cfg->size6);
/* Check for existence */
SLIST_FOREACH(tmp, &head[hash], next) {
if (memcmp(&tmp->a.a6, &ent->a.a6, 16) == 0) {
exists = 1;
break;
}
}
}
if (exists == 1) {
if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
return (EEXIST);
/* Record already exists. Update value if we're asked to */
value = tmp->value;
tmp->value = tei->value;
tei->value = value;
/* Indicate that update has happened instead of addition */
tei->flags |= TEI_FLAGS_UPDATED;
*pnum = 0;
} else {
if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
return (EFBIG);
SLIST_INSERT_HEAD(&head[hash], ent, next);
tb->ent_ptr = NULL;
*pnum = 1;
/* Update counters */
if (tei->subtype == AF_INET)
cfg->items4++;
else
cfg->items6++;
}
return (0);
}
static int
ta_prepare_del_chash(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf)
{
struct ta_buf_chash *tb;
tb = (struct ta_buf_chash *)ta_buf;
return (tei_to_chash_ent(tei, &tb->ent));
}
static int
ta_del_chash(void *ta_state, struct table_info *ti, struct tentry_info *tei,
void *ta_buf, uint32_t *pnum)
{
struct chash_cfg *cfg;
struct chashbhead *head;
struct chashentry *tmp, *tmp_next, *ent;
struct ta_buf_chash *tb;
uint32_t hash;
cfg = (struct chash_cfg *)ta_state;
tb = (struct ta_buf_chash *)ta_buf;
ent = &tb->ent;
if (tei->subtype == AF_INET) {
if (tei->masklen != cfg->mask4)
return (EINVAL);
head = cfg->head4;
hash = hash_ent(ent, AF_INET, cfg->mask4, cfg->size4);
SLIST_FOREACH_SAFE(tmp, &head[hash], next, tmp_next) {
if (tmp->a.a4 != ent->a.a4)
continue;
SLIST_REMOVE(&head[hash], tmp, chashentry, next);
cfg->items4--;
tb->ent_ptr = tmp;
tei->value = tmp->value;
*pnum = 1;
return (0);
}
} else {
if (tei->masklen != cfg->mask6)
return (EINVAL);
head = cfg->head6;
hash = hash_ent(ent, AF_INET6, cfg->mask6, cfg->size6);
SLIST_FOREACH_SAFE(tmp, &head[hash], next, tmp_next) {
if (memcmp(&tmp->a.a6, &ent->a.a6, 16) != 0)
continue;
SLIST_REMOVE(&head[hash], tmp, chashentry, next);
cfg->items6--;
tb->ent_ptr = tmp;
tei->value = tmp->value;
*pnum = 1;
return (0);
}
}
return (ENOENT);
}
static void
ta_flush_chash_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf)
{
struct ta_buf_chash *tb;
tb = (struct ta_buf_chash *)ta_buf;
if (tb->ent_ptr != NULL)
free(tb->ent_ptr, M_IPFW_TBL);
}
/*
* Hash growing callbacks.
*/
static int
ta_need_modify_chash(void *ta_state, struct table_info *ti, uint32_t count,
uint64_t *pflags)
{
struct chash_cfg *cfg;
uint64_t data;
/*
* Since we don't know exact number of IPv4/IPv6 records in @count,
* ignore non-zero @count value at all. Check current hash sizes
* and return appropriate data.
*/
cfg = (struct chash_cfg *)ta_state;
data = 0;
if (cfg->items4 > cfg->size4 && cfg->size4 < 65536)
data |= (cfg->size4 * 2) << 16;
if (cfg->items6 > cfg->size6 && cfg->size6 < 65536)
data |= cfg->size6 * 2;
if (data != 0) {
*pflags = data;
return (1);
}
return (0);
}
/*
* Allocate new, larger chash.
*/
static int
ta_prepare_mod_chash(void *ta_buf, uint64_t *pflags)
{
struct mod_item *mi;
struct chashbhead *head;
int i;
mi = (struct mod_item *)ta_buf;
memset(mi, 0, sizeof(struct mod_item));
mi->size = (*pflags >> 16) & 0xFFFF;
mi->size6 = *pflags & 0xFFFF;
if (mi->size > 0) {
head = malloc(sizeof(struct chashbhead) * mi->size,
M_IPFW, M_WAITOK | M_ZERO);
for (i = 0; i < mi->size; i++)
SLIST_INIT(&head[i]);
mi->main_ptr = head;
}
if (mi->size6 > 0) {
head = malloc(sizeof(struct chashbhead) * mi->size6,
M_IPFW, M_WAITOK | M_ZERO);
for (i = 0; i < mi->size6; i++)
SLIST_INIT(&head[i]);
mi->main_ptr6 = head;
}
return (0);
}
/*
* Copy data from old runtime array to new one.
*/
static int
ta_fill_mod_chash(void *ta_state, struct table_info *ti, void *ta_buf,
uint64_t *pflags)
{
/* In is not possible to do rehash if we're not holidng WLOCK. */
return (0);
}
/*
* Switch old & new arrays.
*/
static void
ta_modify_chash(void *ta_state, struct table_info *ti, void *ta_buf,
uint64_t pflags)
{
struct mod_item *mi;
struct chash_cfg *cfg;
struct chashbhead *old_head, *new_head;
struct chashentry *ent, *ent_next;
int af, i, mlen;
uint32_t nhash;
size_t old_size, new_size;
mi = (struct mod_item *)ta_buf;
cfg = (struct chash_cfg *)ta_state;
/* Check which hash we need to grow and do we still need that */
if (mi->size > 0 && cfg->size4 < mi->size) {
new_head = (struct chashbhead *)mi->main_ptr;
new_size = mi->size;
old_size = cfg->size4;
old_head = ti->state;
mlen = cfg->mask4;
af = AF_INET;
for (i = 0; i < old_size; i++) {
SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) {
nhash = hash_ent(ent, af, mlen, new_size);
SLIST_INSERT_HEAD(&new_head[nhash], ent, next);
}
}
ti->state = new_head;
cfg->head4 = new_head;
cfg->size4 = mi->size;
mi->main_ptr = old_head;
}
if (mi->size6 > 0 && cfg->size6 < mi->size6) {
new_head = (struct chashbhead *)mi->main_ptr6;
new_size = mi->size6;
old_size = cfg->size6;
old_head = ti->xstate;
mlen = cfg->mask6;
af = AF_INET6;
for (i = 0; i < old_size; i++) {
SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) {
nhash = hash_ent(ent, af, mlen, new_size);
SLIST_INSERT_HEAD(&new_head[nhash], ent, next);
}
}
ti->xstate = new_head;
cfg->head6 = new_head;
cfg->size6 = mi->size6;
mi->main_ptr6 = old_head;
}
/* Update lower 32 bits with new values */
ti->data &= 0xFFFFFFFF00000000;
ti->data |= ta_log2(cfg->size4) << 8 | ta_log2(cfg->size6);
}
/*
* Free unneded array.
*/
static void
ta_flush_mod_chash(void *ta_buf)
{
struct mod_item *mi;
mi = (struct mod_item *)ta_buf;
if (mi->main_ptr != NULL)
free(mi->main_ptr, M_IPFW);
if (mi->main_ptr6 != NULL)
free(mi->main_ptr6, M_IPFW);
}
struct table_algo addr_hash = {
.name = "addr:hash",
.type = IPFW_TABLE_ADDR,
.ta_buf_size = sizeof(struct ta_buf_chash),
.init = ta_init_chash,
.destroy = ta_destroy_chash,
.prepare_add = ta_prepare_add_chash,
.prepare_del = ta_prepare_del_chash,
.add = ta_add_chash,
.del = ta_del_chash,
.flush_entry = ta_flush_chash_entry,
.foreach = ta_foreach_chash,
.dump_tentry = ta_dump_chash_tentry,
.find_tentry = ta_find_chash_tentry,
.print_config = ta_print_chash_config,
.dump_tinfo = ta_dump_chash_tinfo,
.need_modify = ta_need_modify_chash,
.prepare_mod = ta_prepare_mod_chash,
.fill_mod = ta_fill_mod_chash,
.modify = ta_modify_chash,
.flush_mod = ta_flush_mod_chash,
};
/*
* Iface table cmds.
*
* Implementation:
*
* Runtime part:
* - sorted array of "struct ifidx" pointed by ti->state.
* Array is allocated with rounding up to IFIDX_CHUNK. Only existing
* interfaces are stored in array, however its allocated size is
* sufficient to hold all table records if needed.
* - current array size is stored in ti->data
*
* Table data:
* - "struct iftable_cfg" is allocated to store table state (ta_state).
* - All table records are stored inside namedobj instance.
*
*/
struct ifidx {
uint16_t kidx;
uint16_t spare;
uint32_t value;
};
#define DEFAULT_IFIDX_SIZE 64
struct iftable_cfg;
struct ifentry {
struct named_object no;
struct ipfw_ifc ic;
struct iftable_cfg *icfg;
uint32_t value;
int linked;
};
struct iftable_cfg {
struct namedobj_instance *ii;
struct ip_fw_chain *ch;
struct table_info *ti;
void *main_ptr;
size_t size; /* Number of items allocated in array */
size_t count; /* Number of all items */
size_t used; /* Number of items _active_ now */
};
struct ta_buf_ifidx
{
struct ifentry *ife;
uint32_t value;
};
int compare_ifidx(const void *k, const void *v);
static struct ifidx * ifidx_find(struct table_info *ti, void *key);
static int ta_lookup_ifidx(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val);
static int ta_init_ifidx(struct ip_fw_chain *ch, void **ta_state,
struct table_info *ti, char *data, uint8_t tflags);
static void ta_change_ti_ifidx(void *ta_state, struct table_info *ti);
static void destroy_ifidx_locked(struct namedobj_instance *ii,
struct named_object *no, void *arg);
static void ta_destroy_ifidx(void *ta_state, struct table_info *ti);
static void ta_dump_ifidx_tinfo(void *ta_state, struct table_info *ti,
ipfw_ta_tinfo *tinfo);
static int ta_prepare_add_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf);
static int ta_add_ifidx(void *ta_state, struct table_info *ti,
struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
static int ta_prepare_del_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf);
static int ta_del_ifidx(void *ta_state, struct table_info *ti,
struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
static void ta_flush_ifidx_entry(struct ip_fw_chain *ch,
struct tentry_info *tei, void *ta_buf);
static void if_notifier(struct ip_fw_chain *ch, void *cbdata, uint16_t ifindex);
static int ta_need_modify_ifidx(void *ta_state, struct table_info *ti,
uint32_t count, uint64_t *pflags);
static int ta_prepare_mod_ifidx(void *ta_buf, uint64_t *pflags);
static int ta_fill_mod_ifidx(void *ta_state, struct table_info *ti,
void *ta_buf, uint64_t *pflags);
static void ta_modify_ifidx(void *ta_state, struct table_info *ti, void *ta_buf,
uint64_t pflags);
static void ta_flush_mod_ifidx(void *ta_buf);
static int ta_dump_ifidx_tentry(void *ta_state, struct table_info *ti, void *e,
ipfw_obj_tentry *tent);
static int ta_find_ifidx_tentry(void *ta_state, struct table_info *ti,
ipfw_obj_tentry *tent);
static void foreach_ifidx(struct namedobj_instance *ii, struct named_object *no,
void *arg);
static void ta_foreach_ifidx(void *ta_state, struct table_info *ti,
ta_foreach_f *f, void *arg);
int
compare_ifidx(const void *k, const void *v)
{
const struct ifidx *ifidx;
uint16_t key;
key = *((const uint16_t *)k);
ifidx = (const struct ifidx *)v;
if (key < ifidx->kidx)
return (-1);
else if (key > ifidx->kidx)
return (1);
return (0);
}
/*
* Adds item @item with key @key into ascending-sorted array @base.
* Assumes @base has enough additional storage.
*
* Returns 1 on success, 0 on duplicate key.
*/
static int
badd(const void *key, void *item, void *base, size_t nmemb,
size_t size, int (*compar) (const void *, const void *))
{
int min, max, mid, shift, res;
caddr_t paddr;
if (nmemb == 0) {
memcpy(base, item, size);
return (1);
}
/* Binary search */
min = 0;
max = nmemb - 1;
mid = 0;
while (min <= max) {
mid = (min + max) / 2;
res = compar(key, (const void *)((caddr_t)base + mid * size));
if (res == 0)
return (0);
if (res > 0)
min = mid + 1;
else
max = mid - 1;
}
/* Item not found. */
res = compar(key, (const void *)((caddr_t)base + mid * size));
if (res > 0)
shift = mid + 1;
else
shift = mid;
paddr = (caddr_t)base + shift * size;
if (nmemb > shift)
memmove(paddr + size, paddr, (nmemb - shift) * size);
memcpy(paddr, item, size);
return (1);
}
/*
* Deletes item with key @key from ascending-sorted array @base.
*
* Returns 1 on success, 0 for non-existent key.
*/
static int
bdel(const void *key, void *base, size_t nmemb, size_t size,
int (*compar) (const void *, const void *))
{
caddr_t item;
size_t sz;
item = (caddr_t)bsearch(key, base, nmemb, size, compar);
if (item == NULL)
return (0);
sz = (caddr_t)base + nmemb * size - item;
if (sz > 0)
memmove(item, item + size, sz);
return (1);
}
static struct ifidx *
ifidx_find(struct table_info *ti, void *key)
{
struct ifidx *ifi;
ifi = bsearch(key, ti->state, ti->data, sizeof(struct ifidx),
compare_ifidx);
return (ifi);
}
static int
ta_lookup_ifidx(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val)
{
struct ifidx *ifi;
ifi = ifidx_find(ti, key);
if (ifi != NULL) {
*val = ifi->value;
return (1);
}
return (0);
}
static int
ta_init_ifidx(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
char *data, uint8_t tflags)
{
struct iftable_cfg *icfg;
icfg = malloc(sizeof(struct iftable_cfg), M_IPFW, M_WAITOK | M_ZERO);
icfg->ii = ipfw_objhash_create(DEFAULT_IFIDX_SIZE);
icfg->size = DEFAULT_IFIDX_SIZE;
icfg->main_ptr = malloc(sizeof(struct ifidx) * icfg->size, M_IPFW,
M_WAITOK | M_ZERO);
icfg->ch = ch;
*ta_state = icfg;
ti->state = icfg->main_ptr;
ti->lookup = ta_lookup_ifidx;
return (0);
}
/*
* Handle tableinfo @ti pointer change (on table array resize).
*/
static void
ta_change_ti_ifidx(void *ta_state, struct table_info *ti)
{
struct iftable_cfg *icfg;
icfg = (struct iftable_cfg *)ta_state;
icfg->ti = ti;
}
static void
destroy_ifidx_locked(struct namedobj_instance *ii, struct named_object *no,
void *arg)
{
struct ifentry *ife;
struct ip_fw_chain *ch;
ch = (struct ip_fw_chain *)arg;
ife = (struct ifentry *)no;
ipfw_iface_del_notify(ch, &ife->ic);
ipfw_iface_unref(ch, &ife->ic);
free(ife, M_IPFW_TBL);
}
/*
* Destroys table @ti
*/
static void
ta_destroy_ifidx(void *ta_state, struct table_info *ti)
{
struct iftable_cfg *icfg;
struct ip_fw_chain *ch;
icfg = (struct iftable_cfg *)ta_state;
ch = icfg->ch;
if (icfg->main_ptr != NULL)
free(icfg->main_ptr, M_IPFW);
IPFW_UH_WLOCK(ch);
ipfw_objhash_foreach(icfg->ii, destroy_ifidx_locked, ch);
IPFW_UH_WUNLOCK(ch);
ipfw_objhash_destroy(icfg->ii);
free(icfg, M_IPFW);
}
/*
* Provide algo-specific table info
*/
static void
ta_dump_ifidx_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
{
struct iftable_cfg *cfg;
cfg = (struct iftable_cfg *)ta_state;
tinfo->taclass4 = IPFW_TACLASS_ARRAY;
tinfo->size4 = cfg->size;
tinfo->count4 = cfg->used;
tinfo->itemsize4 = sizeof(struct ifidx);
}
/*
* Prepare state to add to the table:
* allocate ifentry and reference needed interface.
*/
static int
ta_prepare_add_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf)
{
struct ta_buf_ifidx *tb;
char *ifname;
struct ifentry *ife;
tb = (struct ta_buf_ifidx *)ta_buf;
/* Check if string is terminated */
ifname = (char *)tei->paddr;
if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE)
return (EINVAL);
ife = malloc(sizeof(struct ifentry), M_IPFW_TBL, M_WAITOK | M_ZERO);
ife->ic.cb = if_notifier;
ife->ic.cbdata = ife;
if (ipfw_iface_ref(ch, ifname, &ife->ic) != 0) {
free(ife, M_IPFW_TBL);
return (EINVAL);
}
/* Use ipfw_iface 'ifname' field as stable storage */
ife->no.name = ife->ic.iface->ifname;
tb->ife = ife;
return (0);
}
static int
ta_add_ifidx(void *ta_state, struct table_info *ti, struct tentry_info *tei,
void *ta_buf, uint32_t *pnum)
{
struct iftable_cfg *icfg;
struct ifentry *ife, *tmp;
struct ta_buf_ifidx *tb;
struct ipfw_iface *iif;
struct ifidx *ifi;
char *ifname;
uint32_t value;
tb = (struct ta_buf_ifidx *)ta_buf;
ifname = (char *)tei->paddr;
icfg = (struct iftable_cfg *)ta_state;
ife = tb->ife;
ife->icfg = icfg;
ife->value = tei->value;
tmp = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname);
if (tmp != NULL) {
if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
return (EEXIST);
/* Exchange values in @tmp and @tei */
value = tmp->value;
tmp->value = tei->value;
tei->value = value;
iif = tmp->ic.iface;
if (iif->resolved != 0) {
/* We have to update runtime value, too */
ifi = ifidx_find(ti, &iif->ifindex);
ifi->value = ife->value;
}
/* Indicate that update has happened instead of addition */
tei->flags |= TEI_FLAGS_UPDATED;
*pnum = 0;
return (0);
}
if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
return (EFBIG);
/* Link to internal list */
ipfw_objhash_add(icfg->ii, &ife->no);
/* Link notifier (possible running its callback) */
ipfw_iface_add_notify(icfg->ch, &ife->ic);
icfg->count++;
tb->ife = NULL;
*pnum = 1;
return (0);
}
/*
* Prepare to delete key from table.
* Do basic interface name checks.
*/
static int
ta_prepare_del_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf)
{
struct ta_buf_ifidx *tb;
char *ifname;
tb = (struct ta_buf_ifidx *)ta_buf;
/* Check if string is terminated */
ifname = (char *)tei->paddr;
if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE)
return (EINVAL);
return (0);
}
/*
* Remove key from both configuration list and
* runtime array. Removed interface notification.
*/
static int
ta_del_ifidx(void *ta_state, struct table_info *ti, struct tentry_info *tei,
void *ta_buf, uint32_t *pnum)
{
struct iftable_cfg *icfg;
struct ifentry *ife;
struct ta_buf_ifidx *tb;
char *ifname;
uint16_t ifindex;
int res;
tb = (struct ta_buf_ifidx *)ta_buf;
ifname = (char *)tei->paddr;
icfg = (struct iftable_cfg *)ta_state;
ife = tb->ife;
ife = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname);
if (ife == NULL)
return (ENOENT);
if (ife->linked != 0) {
/* We have to remove item from runtime */
ifindex = ife->ic.iface->ifindex;
res = bdel(&ifindex, icfg->main_ptr, icfg->used,
sizeof(struct ifidx), compare_ifidx);
KASSERT(res == 1, ("index %d does not exist", ifindex));
icfg->used--;
ti->data = icfg->used;
ife->linked = 0;
}
/* Unlink from local list */
ipfw_objhash_del(icfg->ii, &ife->no);
/* Unlink notifier and deref */
ipfw_iface_del_notify(icfg->ch, &ife->ic);
ipfw_iface_unref(icfg->ch, &ife->ic);
icfg->count--;
tei->value = ife->value;
tb->ife = ife;
*pnum = 1;
return (0);
}
/*
* Flush deleted entry.
* Drops interface reference and frees entry.
*/
static void
ta_flush_ifidx_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf)
{
struct ta_buf_ifidx *tb;
tb = (struct ta_buf_ifidx *)ta_buf;
if (tb->ife != NULL)
free(tb->ife, M_IPFW_TBL);
}
/*
* Handle interface announce/withdrawal for particular table.
* Every real runtime array modification happens here.
*/
static void
if_notifier(struct ip_fw_chain *ch, void *cbdata, uint16_t ifindex)
{
struct ifentry *ife;
struct ifidx ifi;
struct iftable_cfg *icfg;
struct table_info *ti;
int res;
ife = (struct ifentry *)cbdata;
icfg = ife->icfg;
ti = icfg->ti;
KASSERT(ti != NULL, ("ti=NULL, check change_ti handler"));
if (ife->linked == 0 && ifindex != 0) {
/* Interface announce */
ifi.kidx = ifindex;
ifi.spare = 0;
ifi.value = ife->value;
res = badd(&ifindex, &ifi, icfg->main_ptr, icfg->used,
sizeof(struct ifidx), compare_ifidx);
KASSERT(res == 1, ("index %d already exists", ifindex));
icfg->used++;
ti->data = icfg->used;
ife->linked = 1;
} else if (ife->linked != 0 && ifindex == 0) {
/* Interface withdrawal */
ifindex = ife->ic.iface->ifindex;
res = bdel(&ifindex, icfg->main_ptr, icfg->used,
sizeof(struct ifidx), compare_ifidx);
KASSERT(res == 1, ("index %d does not exist", ifindex));
icfg->used--;
ti->data = icfg->used;
ife->linked = 0;
}
}
/*
* Table growing callbacks.
*/
static int
ta_need_modify_ifidx(void *ta_state, struct table_info *ti, uint32_t count,
uint64_t *pflags)
{
struct iftable_cfg *cfg;
uint32_t size;
cfg = (struct iftable_cfg *)ta_state;
size = cfg->size;
while (size < cfg->count + count)
size *= 2;
if (size != cfg->size) {
*pflags = size;
return (1);
}
return (0);
}
/*
* Allocate ned, larger runtime ifidx array.
*/
static int
ta_prepare_mod_ifidx(void *ta_buf, uint64_t *pflags)
{
struct mod_item *mi;
mi = (struct mod_item *)ta_buf;
memset(mi, 0, sizeof(struct mod_item));
mi->size = *pflags;
mi->main_ptr = malloc(sizeof(struct ifidx) * mi->size, M_IPFW,
M_WAITOK | M_ZERO);
return (0);
}
/*
* Copy data from old runtime array to new one.
*/
static int
ta_fill_mod_ifidx(void *ta_state, struct table_info *ti, void *ta_buf,
uint64_t *pflags)
{
struct mod_item *mi;
struct iftable_cfg *icfg;
mi = (struct mod_item *)ta_buf;
icfg = (struct iftable_cfg *)ta_state;
/* Check if we still need to grow array */
if (icfg->size >= mi->size) {
*pflags = 0;
return (0);
}
memcpy(mi->main_ptr, icfg->main_ptr, icfg->used * sizeof(struct ifidx));
return (0);
}
/*
* Switch old & new arrays.
*/
static void
ta_modify_ifidx(void *ta_state, struct table_info *ti, void *ta_buf,
uint64_t pflags)
{
struct mod_item *mi;
struct iftable_cfg *icfg;
void *old_ptr;
mi = (struct mod_item *)ta_buf;
icfg = (struct iftable_cfg *)ta_state;
old_ptr = icfg->main_ptr;
icfg->main_ptr = mi->main_ptr;
icfg->size = mi->size;
ti->state = icfg->main_ptr;
mi->main_ptr = old_ptr;
}
/*
* Free unneded array.
*/
static void
ta_flush_mod_ifidx(void *ta_buf)
{
struct mod_item *mi;
mi = (struct mod_item *)ta_buf;
if (mi->main_ptr != NULL)
free(mi->main_ptr, M_IPFW);
}
static int
ta_dump_ifidx_tentry(void *ta_state, struct table_info *ti, void *e,
ipfw_obj_tentry *tent)
{
struct ifentry *ife;
ife = (struct ifentry *)e;
tent->masklen = 8 * IF_NAMESIZE;
memcpy(&tent->k, ife->no.name, IF_NAMESIZE);
tent->v.kidx = ife->value;
return (0);
}
static int
ta_find_ifidx_tentry(void *ta_state, struct table_info *ti,
ipfw_obj_tentry *tent)
{
struct iftable_cfg *icfg;
struct ifentry *ife;
char *ifname;
icfg = (struct iftable_cfg *)ta_state;
ifname = tent->k.iface;
if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE)
return (EINVAL);
ife = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname);
if (ife != NULL) {
ta_dump_ifidx_tentry(ta_state, ti, ife, tent);
return (0);
}
return (ENOENT);
}
struct wa_ifidx {
ta_foreach_f *f;
void *arg;
};
static void
foreach_ifidx(struct namedobj_instance *ii, struct named_object *no,
void *arg)
{
struct ifentry *ife;
struct wa_ifidx *wa;
ife = (struct ifentry *)no;
wa = (struct wa_ifidx *)arg;
wa->f(ife, wa->arg);
}
static void
ta_foreach_ifidx(void *ta_state, struct table_info *ti, ta_foreach_f *f,
void *arg)
{
struct iftable_cfg *icfg;
struct wa_ifidx wa;
icfg = (struct iftable_cfg *)ta_state;
wa.f = f;
wa.arg = arg;
ipfw_objhash_foreach(icfg->ii, foreach_ifidx, &wa);
}
struct table_algo iface_idx = {
.name = "iface:array",
.type = IPFW_TABLE_INTERFACE,
.flags = TA_FLAG_DEFAULT,
.ta_buf_size = sizeof(struct ta_buf_ifidx),
.init = ta_init_ifidx,
.destroy = ta_destroy_ifidx,
.prepare_add = ta_prepare_add_ifidx,
.prepare_del = ta_prepare_del_ifidx,
.add = ta_add_ifidx,
.del = ta_del_ifidx,
.flush_entry = ta_flush_ifidx_entry,
.foreach = ta_foreach_ifidx,
.dump_tentry = ta_dump_ifidx_tentry,
.find_tentry = ta_find_ifidx_tentry,
.dump_tinfo = ta_dump_ifidx_tinfo,
.need_modify = ta_need_modify_ifidx,
.prepare_mod = ta_prepare_mod_ifidx,
.fill_mod = ta_fill_mod_ifidx,
.modify = ta_modify_ifidx,
.flush_mod = ta_flush_mod_ifidx,
.change_ti = ta_change_ti_ifidx,
};
/*
* Number array cmds.
*
* Implementation:
*
* Runtime part:
* - sorted array of "struct numarray" pointed by ti->state.
* Array is allocated with rounding up to NUMARRAY_CHUNK.
* - current array size is stored in ti->data
*
*/
struct numarray {
uint32_t number;
uint32_t value;
};
struct numarray_cfg {
void *main_ptr;
size_t size; /* Number of items allocated in array */
size_t used; /* Number of items _active_ now */
};
struct ta_buf_numarray
{
struct numarray na;
};
int compare_numarray(const void *k, const void *v);
static struct numarray *numarray_find(struct table_info *ti, void *key);
static int ta_lookup_numarray(struct table_info *ti, void *key,
uint32_t keylen, uint32_t *val);
static int ta_init_numarray(struct ip_fw_chain *ch, void **ta_state,
struct table_info *ti, char *data, uint8_t tflags);
static void ta_destroy_numarray(void *ta_state, struct table_info *ti);
static void ta_dump_numarray_tinfo(void *ta_state, struct table_info *ti,
ipfw_ta_tinfo *tinfo);
static int ta_prepare_add_numarray(struct ip_fw_chain *ch,
struct tentry_info *tei, void *ta_buf);
static int ta_add_numarray(void *ta_state, struct table_info *ti,
struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
static int ta_del_numarray(void *ta_state, struct table_info *ti,
struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
static void ta_flush_numarray_entry(struct ip_fw_chain *ch,
struct tentry_info *tei, void *ta_buf);
static int ta_need_modify_numarray(void *ta_state, struct table_info *ti,
uint32_t count, uint64_t *pflags);
static int ta_prepare_mod_numarray(void *ta_buf, uint64_t *pflags);
static int ta_fill_mod_numarray(void *ta_state, struct table_info *ti,
void *ta_buf, uint64_t *pflags);
static void ta_modify_numarray(void *ta_state, struct table_info *ti,
void *ta_buf, uint64_t pflags);
static void ta_flush_mod_numarray(void *ta_buf);
static int ta_dump_numarray_tentry(void *ta_state, struct table_info *ti,
void *e, ipfw_obj_tentry *tent);
static int ta_find_numarray_tentry(void *ta_state, struct table_info *ti,
ipfw_obj_tentry *tent);
static void ta_foreach_numarray(void *ta_state, struct table_info *ti,
ta_foreach_f *f, void *arg);
int
compare_numarray(const void *k, const void *v)
{
const struct numarray *na;
uint32_t key;
key = *((const uint32_t *)k);
na = (const struct numarray *)v;
if (key < na->number)
return (-1);
else if (key > na->number)
return (1);
return (0);
}
static struct numarray *
numarray_find(struct table_info *ti, void *key)
{
struct numarray *ri;
ri = bsearch(key, ti->state, ti->data, sizeof(struct numarray),
compare_ifidx);
return (ri);
}
static int
ta_lookup_numarray(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val)
{
struct numarray *ri;
ri = numarray_find(ti, key);
if (ri != NULL) {
*val = ri->value;
return (1);
}
return (0);
}
static int
ta_init_numarray(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
char *data, uint8_t tflags)
{
struct numarray_cfg *cfg;
cfg = malloc(sizeof(*cfg), M_IPFW, M_WAITOK | M_ZERO);
cfg->size = 16;
cfg->main_ptr = malloc(sizeof(struct numarray) * cfg->size, M_IPFW,
M_WAITOK | M_ZERO);
*ta_state = cfg;
ti->state = cfg->main_ptr;
ti->lookup = ta_lookup_numarray;
return (0);
}
/*
* Destroys table @ti
*/
static void
ta_destroy_numarray(void *ta_state, struct table_info *ti)
{
struct numarray_cfg *cfg;
cfg = (struct numarray_cfg *)ta_state;
if (cfg->main_ptr != NULL)
free(cfg->main_ptr, M_IPFW);
free(cfg, M_IPFW);
}
/*
* Provide algo-specific table info
*/
static void
ta_dump_numarray_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
{
struct numarray_cfg *cfg;
cfg = (struct numarray_cfg *)ta_state;
tinfo->taclass4 = IPFW_TACLASS_ARRAY;
tinfo->size4 = cfg->size;
tinfo->count4 = cfg->used;
tinfo->itemsize4 = sizeof(struct numarray);
}
/*
* Prepare for addition/deletion to an array.
*/
static int
ta_prepare_add_numarray(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf)
{
struct ta_buf_numarray *tb;
tb = (struct ta_buf_numarray *)ta_buf;
tb->na.number = *((uint32_t *)tei->paddr);
return (0);
}
static int
ta_add_numarray(void *ta_state, struct table_info *ti, struct tentry_info *tei,
void *ta_buf, uint32_t *pnum)
{
struct numarray_cfg *cfg;
struct ta_buf_numarray *tb;
struct numarray *ri;
int res;
uint32_t value;
tb = (struct ta_buf_numarray *)ta_buf;
cfg = (struct numarray_cfg *)ta_state;
/* Read current value from @tei */
tb->na.value = tei->value;
ri = numarray_find(ti, &tb->na.number);
if (ri != NULL) {
if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
return (EEXIST);
/* Exchange values between ri and @tei */
value = ri->value;
ri->value = tei->value;
tei->value = value;
/* Indicate that update has happened instead of addition */
tei->flags |= TEI_FLAGS_UPDATED;
*pnum = 0;
return (0);
}
if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
return (EFBIG);
res = badd(&tb->na.number, &tb->na, cfg->main_ptr, cfg->used,
sizeof(struct numarray), compare_numarray);
KASSERT(res == 1, ("number %d already exists", tb->na.number));
cfg->used++;
ti->data = cfg->used;
*pnum = 1;
return (0);
}
/*
* Remove key from both configuration list and
* runtime array. Removed interface notification.
*/
static int
ta_del_numarray(void *ta_state, struct table_info *ti, struct tentry_info *tei,
void *ta_buf, uint32_t *pnum)
{
struct numarray_cfg *cfg;
struct ta_buf_numarray *tb;
struct numarray *ri;
int res;
tb = (struct ta_buf_numarray *)ta_buf;
cfg = (struct numarray_cfg *)ta_state;
ri = numarray_find(ti, &tb->na.number);
if (ri == NULL)
return (ENOENT);
tei->value = ri->value;
res = bdel(&tb->na.number, cfg->main_ptr, cfg->used,
sizeof(struct numarray), compare_numarray);
KASSERT(res == 1, ("number %u does not exist", tb->na.number));
cfg->used--;
ti->data = cfg->used;
*pnum = 1;
return (0);
}
static void
ta_flush_numarray_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf)
{
/* We don't have any state, do nothing */
}
/*
* Table growing callbacks.
*/
static int
ta_need_modify_numarray(void *ta_state, struct table_info *ti, uint32_t count,
uint64_t *pflags)
{
struct numarray_cfg *cfg;
size_t size;
cfg = (struct numarray_cfg *)ta_state;
size = cfg->size;
while (size < cfg->used + count)
size *= 2;
if (size != cfg->size) {
*pflags = size;
return (1);
}
return (0);
}
/*
* Allocate new, larger runtime array.
*/
static int
ta_prepare_mod_numarray(void *ta_buf, uint64_t *pflags)
{
struct mod_item *mi;
mi = (struct mod_item *)ta_buf;
memset(mi, 0, sizeof(struct mod_item));
mi->size = *pflags;
mi->main_ptr = malloc(sizeof(struct numarray) * mi->size, M_IPFW,
M_WAITOK | M_ZERO);
return (0);
}
/*
* Copy data from old runtime array to new one.
*/
static int
ta_fill_mod_numarray(void *ta_state, struct table_info *ti, void *ta_buf,
uint64_t *pflags)
{
struct mod_item *mi;
struct numarray_cfg *cfg;
mi = (struct mod_item *)ta_buf;
cfg = (struct numarray_cfg *)ta_state;
/* Check if we still need to grow array */
if (cfg->size >= mi->size) {
*pflags = 0;
return (0);
}
memcpy(mi->main_ptr, cfg->main_ptr, cfg->used * sizeof(struct numarray));
return (0);
}
/*
* Switch old & new arrays.
*/
static void
ta_modify_numarray(void *ta_state, struct table_info *ti, void *ta_buf,
uint64_t pflags)
{
struct mod_item *mi;
struct numarray_cfg *cfg;
void *old_ptr;
mi = (struct mod_item *)ta_buf;
cfg = (struct numarray_cfg *)ta_state;
old_ptr = cfg->main_ptr;
cfg->main_ptr = mi->main_ptr;
cfg->size = mi->size;
ti->state = cfg->main_ptr;
mi->main_ptr = old_ptr;
}
/*
* Free unneded array.
*/
static void
ta_flush_mod_numarray(void *ta_buf)
{
struct mod_item *mi;
mi = (struct mod_item *)ta_buf;
if (mi->main_ptr != NULL)
free(mi->main_ptr, M_IPFW);
}
static int
ta_dump_numarray_tentry(void *ta_state, struct table_info *ti, void *e,
ipfw_obj_tentry *tent)
{
struct numarray *na;
na = (struct numarray *)e;
tent->k.key = na->number;
tent->v.kidx = na->value;
return (0);
}
static int
ta_find_numarray_tentry(void *ta_state, struct table_info *ti,
ipfw_obj_tentry *tent)
{
struct numarray_cfg *cfg;
struct numarray *ri;
cfg = (struct numarray_cfg *)ta_state;
ri = numarray_find(ti, &tent->k.key);
if (ri != NULL) {
ta_dump_numarray_tentry(ta_state, ti, ri, tent);
return (0);
}
return (ENOENT);
}
static void
ta_foreach_numarray(void *ta_state, struct table_info *ti, ta_foreach_f *f,
void *arg)
{
struct numarray_cfg *cfg;
struct numarray *array;
int i;
cfg = (struct numarray_cfg *)ta_state;
array = cfg->main_ptr;
for (i = 0; i < cfg->used; i++)
f(&array[i], arg);
}
struct table_algo number_array = {
.name = "number:array",
.type = IPFW_TABLE_NUMBER,
.ta_buf_size = sizeof(struct ta_buf_numarray),
.init = ta_init_numarray,
.destroy = ta_destroy_numarray,
.prepare_add = ta_prepare_add_numarray,
.prepare_del = ta_prepare_add_numarray,
.add = ta_add_numarray,
.del = ta_del_numarray,
.flush_entry = ta_flush_numarray_entry,
.foreach = ta_foreach_numarray,
.dump_tentry = ta_dump_numarray_tentry,
.find_tentry = ta_find_numarray_tentry,
.dump_tinfo = ta_dump_numarray_tinfo,
.need_modify = ta_need_modify_numarray,
.prepare_mod = ta_prepare_mod_numarray,
.fill_mod = ta_fill_mod_numarray,
.modify = ta_modify_numarray,
.flush_mod = ta_flush_mod_numarray,
};
/*
* flow:hash cmds
*
*
* ti->data:
* [inv.mask4][inv.mask6][log2hsize4][log2hsize6]
* [ 8][ 8[ 8][ 8]
*
* inv.mask4: 32 - mask
* inv.mask6:
* 1) _slow lookup: mask
* 2) _aligned: (128 - mask) / 8
* 3) _64: 8
*
*
* pflags:
* [hsize4][hsize6]
* [ 16][ 16]
*/
struct fhashentry;
SLIST_HEAD(fhashbhead, fhashentry);
struct fhashentry {
SLIST_ENTRY(fhashentry) next;
uint8_t af;
uint8_t proto;
uint16_t spare0;
uint16_t dport;
uint16_t sport;
uint32_t value;
uint32_t spare1;
};
struct fhashentry4 {
struct fhashentry e;
struct in_addr dip;
struct in_addr sip;
};
struct fhashentry6 {
struct fhashentry e;
struct in6_addr dip6;
struct in6_addr sip6;
};
struct fhash_cfg {
struct fhashbhead *head;
size_t size;
size_t items;
struct fhashentry4 fe4;
struct fhashentry6 fe6;
};
struct ta_buf_fhash {
void *ent_ptr;
struct fhashentry6 fe6;
};
static __inline int cmp_flow_ent(struct fhashentry *a,
struct fhashentry *b, size_t sz);
static __inline uint32_t hash_flow4(struct fhashentry4 *f, int hsize);
static __inline uint32_t hash_flow6(struct fhashentry6 *f, int hsize);
static uint32_t hash_flow_ent(struct fhashentry *ent, uint32_t size);
static int ta_lookup_fhash(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val);
static int ta_init_fhash(struct ip_fw_chain *ch, void **ta_state,
struct table_info *ti, char *data, uint8_t tflags);
static void ta_destroy_fhash(void *ta_state, struct table_info *ti);
static void ta_dump_fhash_tinfo(void *ta_state, struct table_info *ti,
ipfw_ta_tinfo *tinfo);
static int ta_dump_fhash_tentry(void *ta_state, struct table_info *ti,
void *e, ipfw_obj_tentry *tent);
static int tei_to_fhash_ent(struct tentry_info *tei, struct fhashentry *ent);
static int ta_find_fhash_tentry(void *ta_state, struct table_info *ti,
ipfw_obj_tentry *tent);
static void ta_foreach_fhash(void *ta_state, struct table_info *ti,
ta_foreach_f *f, void *arg);
static int ta_prepare_add_fhash(struct ip_fw_chain *ch,
struct tentry_info *tei, void *ta_buf);
static int ta_add_fhash(void *ta_state, struct table_info *ti,
struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
static int ta_prepare_del_fhash(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf);
static int ta_del_fhash(void *ta_state, struct table_info *ti,
struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
static void ta_flush_fhash_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf);
static int ta_need_modify_fhash(void *ta_state, struct table_info *ti,
uint32_t count, uint64_t *pflags);
static int ta_prepare_mod_fhash(void *ta_buf, uint64_t *pflags);
static int ta_fill_mod_fhash(void *ta_state, struct table_info *ti,
void *ta_buf, uint64_t *pflags);
static void ta_modify_fhash(void *ta_state, struct table_info *ti, void *ta_buf,
uint64_t pflags);
static void ta_flush_mod_fhash(void *ta_buf);
static __inline int
cmp_flow_ent(struct fhashentry *a, struct fhashentry *b, size_t sz)
{
uint64_t *ka, *kb;
ka = (uint64_t *)(&a->next + 1);
kb = (uint64_t *)(&b->next + 1);
if (*ka == *kb && (memcmp(a + 1, b + 1, sz) == 0))
return (1);
return (0);
}
static __inline uint32_t
hash_flow4(struct fhashentry4 *f, int hsize)
{
uint32_t i;
i = (f->dip.s_addr) ^ (f->sip.s_addr) ^ (f->e.dport) ^ (f->e.sport);
return (i % (hsize - 1));
}
static __inline uint32_t
hash_flow6(struct fhashentry6 *f, int hsize)
{
uint32_t i;
i = (f->dip6.__u6_addr.__u6_addr32[2]) ^
(f->dip6.__u6_addr.__u6_addr32[3]) ^
(f->sip6.__u6_addr.__u6_addr32[2]) ^
(f->sip6.__u6_addr.__u6_addr32[3]) ^
(f->e.dport) ^ (f->e.sport);
return (i % (hsize - 1));
}
static uint32_t
hash_flow_ent(struct fhashentry *ent, uint32_t size)
{
uint32_t hash;
if (ent->af == AF_INET) {
hash = hash_flow4((struct fhashentry4 *)ent, size);
} else {
hash = hash_flow6((struct fhashentry6 *)ent, size);
}
return (hash);
}
static int
ta_lookup_fhash(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val)
{
struct fhashbhead *head;
struct fhashentry *ent;
struct fhashentry4 *m4;
struct ipfw_flow_id *id;
uint16_t hash, hsize;
id = (struct ipfw_flow_id *)key;
head = (struct fhashbhead *)ti->state;
hsize = ti->data;
m4 = (struct fhashentry4 *)ti->xstate;
if (id->addr_type == 4) {
struct fhashentry4 f;
/* Copy hash mask */
f = *m4;
f.dip.s_addr &= id->dst_ip;
f.sip.s_addr &= id->src_ip;
f.e.dport &= id->dst_port;
f.e.sport &= id->src_port;
f.e.proto &= id->proto;
hash = hash_flow4(&f, hsize);
SLIST_FOREACH(ent, &head[hash], next) {
if (cmp_flow_ent(ent, &f.e, 2 * 4) != 0) {
*val = ent->value;
return (1);
}
}
} else if (id->addr_type == 6) {
struct fhashentry6 f;
uint64_t *fp, *idp;
/* Copy hash mask */
f = *((struct fhashentry6 *)(m4 + 1));
/* Handle lack of __u6_addr.__u6_addr64 */
fp = (uint64_t *)&f.dip6;
idp = (uint64_t *)&id->dst_ip6;
/* src IPv6 is stored after dst IPv6 */
*fp++ &= *idp++;
*fp++ &= *idp++;
*fp++ &= *idp++;
*fp &= *idp;
f.e.dport &= id->dst_port;
f.e.sport &= id->src_port;
f.e.proto &= id->proto;
hash = hash_flow6(&f, hsize);
SLIST_FOREACH(ent, &head[hash], next) {
if (cmp_flow_ent(ent, &f.e, 2 * 16) != 0) {
*val = ent->value;
return (1);
}
}
}
return (0);
}
/*
* New table.
*/
static int
ta_init_fhash(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
char *data, uint8_t tflags)
{
int i;
struct fhash_cfg *cfg;
struct fhashentry4 *fe4;
struct fhashentry6 *fe6;
cfg = malloc(sizeof(struct fhash_cfg), M_IPFW, M_WAITOK | M_ZERO);
cfg->size = 512;
cfg->head = malloc(sizeof(struct fhashbhead) * cfg->size, M_IPFW,
M_WAITOK | M_ZERO);
for (i = 0; i < cfg->size; i++)
SLIST_INIT(&cfg->head[i]);
/* Fill in fe masks based on @tflags */
fe4 = &cfg->fe4;
fe6 = &cfg->fe6;
if (tflags & IPFW_TFFLAG_SRCIP) {
memset(&fe4->sip, 0xFF, sizeof(fe4->sip));
memset(&fe6->sip6, 0xFF, sizeof(fe6->sip6));
}
if (tflags & IPFW_TFFLAG_DSTIP) {
memset(&fe4->dip, 0xFF, sizeof(fe4->dip));
memset(&fe6->dip6, 0xFF, sizeof(fe6->dip6));
}
if (tflags & IPFW_TFFLAG_SRCPORT) {
memset(&fe4->e.sport, 0xFF, sizeof(fe4->e.sport));
memset(&fe6->e.sport, 0xFF, sizeof(fe6->e.sport));
}
if (tflags & IPFW_TFFLAG_DSTPORT) {
memset(&fe4->e.dport, 0xFF, sizeof(fe4->e.dport));
memset(&fe6->e.dport, 0xFF, sizeof(fe6->e.dport));
}
if (tflags & IPFW_TFFLAG_PROTO) {
memset(&fe4->e.proto, 0xFF, sizeof(fe4->e.proto));
memset(&fe6->e.proto, 0xFF, sizeof(fe6->e.proto));
}
fe4->e.af = AF_INET;
fe6->e.af = AF_INET6;
*ta_state = cfg;
ti->state = cfg->head;
ti->xstate = &cfg->fe4;
ti->data = cfg->size;
ti->lookup = ta_lookup_fhash;
return (0);
}
static void
ta_destroy_fhash(void *ta_state, struct table_info *ti)
{
struct fhash_cfg *cfg;
struct fhashentry *ent, *ent_next;
int i;
cfg = (struct fhash_cfg *)ta_state;
for (i = 0; i < cfg->size; i++)
SLIST_FOREACH_SAFE(ent, &cfg->head[i], next, ent_next)
free(ent, M_IPFW_TBL);
free(cfg->head, M_IPFW);
free(cfg, M_IPFW);
}
/*
* Provide algo-specific table info
*/
static void
ta_dump_fhash_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
{
struct fhash_cfg *cfg;
cfg = (struct fhash_cfg *)ta_state;
tinfo->flags = IPFW_TATFLAGS_AFITEM;
tinfo->taclass4 = IPFW_TACLASS_HASH;
tinfo->size4 = cfg->size;
tinfo->count4 = cfg->items;
tinfo->itemsize4 = sizeof(struct fhashentry4);
tinfo->itemsize6 = sizeof(struct fhashentry6);
}
static int
ta_dump_fhash_tentry(void *ta_state, struct table_info *ti, void *e,
ipfw_obj_tentry *tent)
{
struct fhash_cfg *cfg;
struct fhashentry *ent;
struct fhashentry4 *fe4;
#ifdef INET6
struct fhashentry6 *fe6;
#endif
struct tflow_entry *tfe;
cfg = (struct fhash_cfg *)ta_state;
ent = (struct fhashentry *)e;
tfe = &tent->k.flow;
tfe->af = ent->af;
tfe->proto = ent->proto;
tfe->dport = htons(ent->dport);
tfe->sport = htons(ent->sport);
tent->v.kidx = ent->value;
tent->subtype = ent->af;
if (ent->af == AF_INET) {
fe4 = (struct fhashentry4 *)ent;
tfe->a.a4.sip.s_addr = htonl(fe4->sip.s_addr);
tfe->a.a4.dip.s_addr = htonl(fe4->dip.s_addr);
tent->masklen = 32;
#ifdef INET6
} else {
fe6 = (struct fhashentry6 *)ent;
tfe->a.a6.sip6 = fe6->sip6;
tfe->a.a6.dip6 = fe6->dip6;
tent->masklen = 128;
#endif
}
return (0);
}
static int
tei_to_fhash_ent(struct tentry_info *tei, struct fhashentry *ent)
{
#ifdef INET
struct fhashentry4 *fe4;
#endif
#ifdef INET6
struct fhashentry6 *fe6;
#endif
struct tflow_entry *tfe;
tfe = (struct tflow_entry *)tei->paddr;
ent->af = tei->subtype;
ent->proto = tfe->proto;
ent->dport = ntohs(tfe->dport);
ent->sport = ntohs(tfe->sport);
if (tei->subtype == AF_INET) {
#ifdef INET
fe4 = (struct fhashentry4 *)ent;
fe4->sip.s_addr = ntohl(tfe->a.a4.sip.s_addr);
fe4->dip.s_addr = ntohl(tfe->a.a4.dip.s_addr);
#endif
#ifdef INET6
} else if (tei->subtype == AF_INET6) {
fe6 = (struct fhashentry6 *)ent;
fe6->sip6 = tfe->a.a6.sip6;
fe6->dip6 = tfe->a.a6.dip6;
#endif
} else {
/* Unknown CIDR type */
return (EINVAL);
}
return (0);
}
static int
ta_find_fhash_tentry(void *ta_state, struct table_info *ti,
ipfw_obj_tentry *tent)
{
struct fhash_cfg *cfg;
struct fhashbhead *head;
struct fhashentry *ent, *tmp;
struct fhashentry6 fe6;
struct tentry_info tei;
int error;
uint32_t hash;
size_t sz;
cfg = (struct fhash_cfg *)ta_state;
ent = &fe6.e;
memset(&fe6, 0, sizeof(fe6));
memset(&tei, 0, sizeof(tei));
tei.paddr = &tent->k.flow;
tei.subtype = tent->subtype;
if ((error = tei_to_fhash_ent(&tei, ent)) != 0)
return (error);
head = cfg->head;
hash = hash_flow_ent(ent, cfg->size);
if (tei.subtype == AF_INET)
sz = 2 * sizeof(struct in_addr);
else
sz = 2 * sizeof(struct in6_addr);
/* Check for existence */
SLIST_FOREACH(tmp, &head[hash], next) {
if (cmp_flow_ent(tmp, ent, sz) != 0) {
ta_dump_fhash_tentry(ta_state, ti, tmp, tent);
return (0);
}
}
return (ENOENT);
}
static void
ta_foreach_fhash(void *ta_state, struct table_info *ti, ta_foreach_f *f,
void *arg)
{
struct fhash_cfg *cfg;
struct fhashentry *ent, *ent_next;
int i;
cfg = (struct fhash_cfg *)ta_state;
for (i = 0; i < cfg->size; i++)
SLIST_FOREACH_SAFE(ent, &cfg->head[i], next, ent_next)
f(ent, arg);
}
static int
ta_prepare_add_fhash(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf)
{
struct ta_buf_fhash *tb;
struct fhashentry *ent;
size_t sz;
int error;
tb = (struct ta_buf_fhash *)ta_buf;
if (tei->subtype == AF_INET)
sz = sizeof(struct fhashentry4);
else if (tei->subtype == AF_INET6)
sz = sizeof(struct fhashentry6);
else
return (EINVAL);
ent = malloc(sz, M_IPFW_TBL, M_WAITOK | M_ZERO);
error = tei_to_fhash_ent(tei, ent);
if (error != 0) {
free(ent, M_IPFW_TBL);
return (error);
}
tb->ent_ptr = ent;
return (0);
}
static int
ta_add_fhash(void *ta_state, struct table_info *ti, struct tentry_info *tei,
void *ta_buf, uint32_t *pnum)
{
struct fhash_cfg *cfg;
struct fhashbhead *head;
struct fhashentry *ent, *tmp;
struct ta_buf_fhash *tb;
int exists;
uint32_t hash, value;
size_t sz;
cfg = (struct fhash_cfg *)ta_state;
tb = (struct ta_buf_fhash *)ta_buf;
ent = (struct fhashentry *)tb->ent_ptr;
exists = 0;
/* Read current value from @tei */
ent->value = tei->value;
head = cfg->head;
hash = hash_flow_ent(ent, cfg->size);
if (tei->subtype == AF_INET)
sz = 2 * sizeof(struct in_addr);
else
sz = 2 * sizeof(struct in6_addr);
/* Check for existence */
SLIST_FOREACH(tmp, &head[hash], next) {
if (cmp_flow_ent(tmp, ent, sz) != 0) {
exists = 1;
break;
}
}
if (exists == 1) {
if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
return (EEXIST);
/* Record already exists. Update value if we're asked to */
/* Exchange values between tmp and @tei */
value = tmp->value;
tmp->value = tei->value;
tei->value = value;
/* Indicate that update has happened instead of addition */
tei->flags |= TEI_FLAGS_UPDATED;
*pnum = 0;
} else {
if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
return (EFBIG);
SLIST_INSERT_HEAD(&head[hash], ent, next);
tb->ent_ptr = NULL;
*pnum = 1;
/* Update counters and check if we need to grow hash */
cfg->items++;
}
return (0);
}
static int
ta_prepare_del_fhash(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf)
{
struct ta_buf_fhash *tb;
tb = (struct ta_buf_fhash *)ta_buf;
return (tei_to_fhash_ent(tei, &tb->fe6.e));
}
static int
ta_del_fhash(void *ta_state, struct table_info *ti, struct tentry_info *tei,
void *ta_buf, uint32_t *pnum)
{
struct fhash_cfg *cfg;
struct fhashbhead *head;
struct fhashentry *ent, *tmp;
struct ta_buf_fhash *tb;
uint32_t hash;
size_t sz;
cfg = (struct fhash_cfg *)ta_state;
tb = (struct ta_buf_fhash *)ta_buf;
ent = &tb->fe6.e;
head = cfg->head;
hash = hash_flow_ent(ent, cfg->size);
if (tei->subtype == AF_INET)
sz = 2 * sizeof(struct in_addr);
else
sz = 2 * sizeof(struct in6_addr);
/* Check for existence */
SLIST_FOREACH(tmp, &head[hash], next) {
if (cmp_flow_ent(tmp, ent, sz) == 0)
continue;
SLIST_REMOVE(&head[hash], tmp, fhashentry, next);
tei->value = tmp->value;
*pnum = 1;
cfg->items--;
tb->ent_ptr = tmp;
return (0);
}
return (ENOENT);
}
static void
ta_flush_fhash_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
void *ta_buf)
{
struct ta_buf_fhash *tb;
tb = (struct ta_buf_fhash *)ta_buf;
if (tb->ent_ptr != NULL)
free(tb->ent_ptr, M_IPFW_TBL);
}
/*
* Hash growing callbacks.
*/
static int
ta_need_modify_fhash(void *ta_state, struct table_info *ti, uint32_t count,
uint64_t *pflags)
{
struct fhash_cfg *cfg;
cfg = (struct fhash_cfg *)ta_state;
if (cfg->items > cfg->size && cfg->size < 65536) {
*pflags = cfg->size * 2;
return (1);
}
return (0);
}
/*
* Allocate new, larger fhash.
*/
static int
ta_prepare_mod_fhash(void *ta_buf, uint64_t *pflags)
{
struct mod_item *mi;
struct fhashbhead *head;
int i;
mi = (struct mod_item *)ta_buf;
memset(mi, 0, sizeof(struct mod_item));
mi->size = *pflags;
head = malloc(sizeof(struct fhashbhead) * mi->size, M_IPFW,
M_WAITOK | M_ZERO);
for (i = 0; i < mi->size; i++)
SLIST_INIT(&head[i]);
mi->main_ptr = head;
return (0);
}
/*
* Copy data from old runtime array to new one.
*/
static int
ta_fill_mod_fhash(void *ta_state, struct table_info *ti, void *ta_buf,
uint64_t *pflags)
{
/* In is not possible to do rehash if we're not holidng WLOCK. */
return (0);
}
/*
* Switch old & new arrays.
*/
static void
ta_modify_fhash(void *ta_state, struct table_info *ti, void *ta_buf,
uint64_t pflags)
{
struct mod_item *mi;
struct fhash_cfg *cfg;
struct fhashbhead *old_head, *new_head;
struct fhashentry *ent, *ent_next;
int i;
uint32_t nhash;
size_t old_size;
mi = (struct mod_item *)ta_buf;
cfg = (struct fhash_cfg *)ta_state;
old_size = cfg->size;
old_head = ti->state;
new_head = (struct fhashbhead *)mi->main_ptr;
for (i = 0; i < old_size; i++) {
SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) {
nhash = hash_flow_ent(ent, mi->size);
SLIST_INSERT_HEAD(&new_head[nhash], ent, next);
}
}
ti->state = new_head;
ti->data = mi->size;
cfg->head = new_head;
cfg->size = mi->size;
mi->main_ptr = old_head;
}
/*
* Free unneded array.
*/
static void
ta_flush_mod_fhash(void *ta_buf)
{
struct mod_item *mi;
mi = (struct mod_item *)ta_buf;
if (mi->main_ptr != NULL)
free(mi->main_ptr, M_IPFW);
}
struct table_algo flow_hash = {
.name = "flow:hash",
.type = IPFW_TABLE_FLOW,
.flags = TA_FLAG_DEFAULT,
.ta_buf_size = sizeof(struct ta_buf_fhash),
.init = ta_init_fhash,
.destroy = ta_destroy_fhash,
.prepare_add = ta_prepare_add_fhash,
.prepare_del = ta_prepare_del_fhash,
.add = ta_add_fhash,
.del = ta_del_fhash,
.flush_entry = ta_flush_fhash_entry,
.foreach = ta_foreach_fhash,
.dump_tentry = ta_dump_fhash_tentry,
.find_tentry = ta_find_fhash_tentry,
.dump_tinfo = ta_dump_fhash_tinfo,
.need_modify = ta_need_modify_fhash,
.prepare_mod = ta_prepare_mod_fhash,
.fill_mod = ta_fill_mod_fhash,
.modify = ta_modify_fhash,
.flush_mod = ta_flush_mod_fhash,
};
/*
* Kernel fibs bindings.
*
* Implementation:
*
* Runtime part:
* - fully relies on route API
* - fib number is stored in ti->data
*
*/
static int ta_lookup_kfib(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val);
static int kfib_parse_opts(int *pfib, char *data);
static void ta_print_kfib_config(void *ta_state, struct table_info *ti,
char *buf, size_t bufsize);
static int ta_init_kfib(struct ip_fw_chain *ch, void **ta_state,
struct table_info *ti, char *data, uint8_t tflags);
static void ta_destroy_kfib(void *ta_state, struct table_info *ti);
static void ta_dump_kfib_tinfo(void *ta_state, struct table_info *ti,
ipfw_ta_tinfo *tinfo);
static int contigmask(uint8_t *p, int len);
static int ta_dump_kfib_tentry(void *ta_state, struct table_info *ti, void *e,
ipfw_obj_tentry *tent);
static int ta_dump_kfib_tentry_int(struct sockaddr *paddr,
struct sockaddr *pmask, ipfw_obj_tentry *tent);
static int ta_find_kfib_tentry(void *ta_state, struct table_info *ti,
ipfw_obj_tentry *tent);
static void ta_foreach_kfib(void *ta_state, struct table_info *ti,
ta_foreach_f *f, void *arg);
static int
ta_lookup_kfib(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val)
{
#ifdef INET
struct nhop4_basic nh4;
struct in_addr in;
#endif
#ifdef INET6
struct nhop6_basic nh6;
#endif
int error;
error = ENOENT;
#ifdef INET
if (keylen == 4) {
in.s_addr = *(in_addr_t *)key;
error = fib4_lookup_nh_basic(ti->data,
in, 0, 0, &nh4);
}
#endif
#ifdef INET6
if (keylen == 6)
error = fib6_lookup_nh_basic(ti->data,
(struct in6_addr *)key, 0, 0, 0, &nh6);
#endif
if (error != 0)
return (0);
*val = 0;
return (1);
}
/* Parse 'fib=%d' */
static int
kfib_parse_opts(int *pfib, char *data)
{
char *pdel, *pend, *s;
int fibnum;
if (data == NULL)
return (0);
if ((pdel = strchr(data, ' ')) == NULL)
return (0);
while (*pdel == ' ')
pdel++;
if (strncmp(pdel, "fib=", 4) != 0)
return (EINVAL);
if ((s = strchr(pdel, ' ')) != NULL)
*s++ = '\0';
pdel += 4;
/* Need \d+ */
fibnum = strtol(pdel, &pend, 10);
if (*pend != '\0')
return (EINVAL);
*pfib = fibnum;
return (0);
}
static void
ta_print_kfib_config(void *ta_state, struct table_info *ti, char *buf,
size_t bufsize)
{
if (ti->data != 0)
snprintf(buf, bufsize, "%s fib=%lu", "addr:kfib", ti->data);
else
snprintf(buf, bufsize, "%s", "addr:kfib");
}
static int
ta_init_kfib(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
char *data, uint8_t tflags)
{
int error, fibnum;
fibnum = 0;
if ((error = kfib_parse_opts(&fibnum, data)) != 0)
return (error);
if (fibnum >= rt_numfibs)
return (E2BIG);
ti->data = fibnum;
ti->lookup = ta_lookup_kfib;
return (0);
}
/*
* Destroys table @ti
*/
static void
ta_destroy_kfib(void *ta_state, struct table_info *ti)
{
}
/*
* Provide algo-specific table info
*/
static void
ta_dump_kfib_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
{
tinfo->flags = IPFW_TATFLAGS_AFDATA;
tinfo->taclass4 = IPFW_TACLASS_RADIX;
tinfo->count4 = 0;
tinfo->itemsize4 = sizeof(struct rtentry);
tinfo->taclass6 = IPFW_TACLASS_RADIX;
tinfo->count6 = 0;
tinfo->itemsize6 = sizeof(struct rtentry);
}
static int
contigmask(uint8_t *p, int len)
{
int i, n;
for (i = 0; i < len ; i++)
if ( (p[i/8] & (1 << (7 - (i%8)))) == 0) /* first bit unset */
break;
for (n= i + 1; n < len; n++)
if ( (p[n/8] & (1 << (7 - (n % 8)))) != 0)
return (-1); /* mask not contiguous */
return (i);
}
static int
ta_dump_kfib_tentry(void *ta_state, struct table_info *ti, void *e,
ipfw_obj_tentry *tent)
{
struct rtentry *rte;
rte = (struct rtentry *)e;
return ta_dump_kfib_tentry_int(rt_key(rte), rt_mask(rte), tent);
}
static int
ta_dump_kfib_tentry_int(struct sockaddr *paddr, struct sockaddr *pmask,
ipfw_obj_tentry *tent)
{
#ifdef INET
struct sockaddr_in *addr, *mask;
#endif
#ifdef INET6
struct sockaddr_in6 *addr6, *mask6;
#endif
int len;
len = 0;
/* Guess IPv4/IPv6 radix by sockaddr family */
#ifdef INET
if (paddr->sa_family == AF_INET) {
addr = (struct sockaddr_in *)paddr;
mask = (struct sockaddr_in *)pmask;
tent->k.addr.s_addr = addr->sin_addr.s_addr;
len = 32;
if (mask != NULL)
len = contigmask((uint8_t *)&mask->sin_addr, 32);
if (len == -1)
len = 0;
tent->masklen = len;
tent->subtype = AF_INET;
tent->v.kidx = 0; /* Do we need to put GW here? */
}
#endif
#ifdef INET6
if (paddr->sa_family == AF_INET6) {
addr6 = (struct sockaddr_in6 *)paddr;
mask6 = (struct sockaddr_in6 *)pmask;
memcpy(&tent->k, &addr6->sin6_addr, sizeof(struct in6_addr));
len = 128;
if (mask6 != NULL)
len = contigmask((uint8_t *)&mask6->sin6_addr, 128);
if (len == -1)
len = 0;
tent->masklen = len;
tent->subtype = AF_INET6;
tent->v.kidx = 0;
}
#endif
return (0);
}
static int
ta_find_kfib_tentry(void *ta_state, struct table_info *ti,
ipfw_obj_tentry *tent)
{
struct rt_addrinfo info;
struct sockaddr_in6 key6, dst6, mask6;
struct sockaddr *dst, *key, *mask;
/* Prepare sockaddr for prefix/mask and info */
bzero(&dst6, sizeof(dst6));
dst6.sin6_len = sizeof(dst6);
dst = (struct sockaddr *)&dst6;
bzero(&mask6, sizeof(mask6));
mask6.sin6_len = sizeof(mask6);
mask = (struct sockaddr *)&mask6;
bzero(&info, sizeof(info));
info.rti_info[RTAX_DST] = dst;
info.rti_info[RTAX_NETMASK] = mask;
/* Prepare the lookup key */
bzero(&key6, sizeof(key6));
key6.sin6_family = tent->subtype;
key = (struct sockaddr *)&key6;
if (tent->subtype == AF_INET) {
((struct sockaddr_in *)&key6)->sin_addr = tent->k.addr;
key6.sin6_len = sizeof(struct sockaddr_in);
} else {
key6.sin6_addr = tent->k.addr6;
key6.sin6_len = sizeof(struct sockaddr_in6);
}
if (rib_lookup_info(ti->data, key, 0, 0, &info) != 0)
return (ENOENT);
if ((info.rti_addrs & RTA_NETMASK) == 0)
mask = NULL;
ta_dump_kfib_tentry_int(dst, mask, tent);
return (0);
}
static void
ta_foreach_kfib(void *ta_state, struct table_info *ti, ta_foreach_f *f,
void *arg)
{
struct rib_head *rh;
int error;
rh = rt_tables_get_rnh(ti->data, AF_INET);
if (rh != NULL) {
RIB_RLOCK(rh);
error = rh->rnh_walktree(&rh->head, (walktree_f_t *)f, arg);
RIB_RUNLOCK(rh);
}
rh = rt_tables_get_rnh(ti->data, AF_INET6);
if (rh != NULL) {
RIB_RLOCK(rh);
error = rh->rnh_walktree(&rh->head, (walktree_f_t *)f, arg);
RIB_RUNLOCK(rh);
}
}
struct table_algo addr_kfib = {
.name = "addr:kfib",
.type = IPFW_TABLE_ADDR,
.flags = TA_FLAG_READONLY,
.ta_buf_size = 0,
.init = ta_init_kfib,
.destroy = ta_destroy_kfib,
.foreach = ta_foreach_kfib,
.dump_tentry = ta_dump_kfib_tentry,
.find_tentry = ta_find_kfib_tentry,
.dump_tinfo = ta_dump_kfib_tinfo,
.print_config = ta_print_kfib_config,
};
void
ipfw_table_algo_init(struct ip_fw_chain *ch)
{
size_t sz;
/*
* Register all algorithms presented here.
*/
sz = sizeof(struct table_algo);
ipfw_add_table_algo(ch, &addr_radix, sz, &addr_radix.idx);
ipfw_add_table_algo(ch, &addr_hash, sz, &addr_hash.idx);
ipfw_add_table_algo(ch, &iface_idx, sz, &iface_idx.idx);
ipfw_add_table_algo(ch, &number_array, sz, &number_array.idx);
ipfw_add_table_algo(ch, &flow_hash, sz, &flow_hash.idx);
ipfw_add_table_algo(ch, &addr_kfib, sz, &addr_kfib.idx);
}
void
ipfw_table_algo_destroy(struct ip_fw_chain *ch)
{
ipfw_del_table_algo(ch, addr_radix.idx);
ipfw_del_table_algo(ch, addr_hash.idx);
ipfw_del_table_algo(ch, iface_idx.idx);
ipfw_del_table_algo(ch, number_array.idx);
ipfw_del_table_algo(ch, flow_hash.idx);
ipfw_del_table_algo(ch, addr_kfib.idx);
}