freebsd-dev/sys/dev/wds/wd7000.c
phk 10f128d440 Weaken a bogus dependency on <sys/proc.h> in <sys/buf.h> by #ifdef'ing
the offending inline function (BUF_KERNPROC) on it being #included
already.

I'm not sure BUF_KERNPROC() is even the right thing to do or in the
right place or implemented the right way (inline vs normal function).

Remove consequently unneeded #includes of <sys/proc.h>
2000-10-29 14:54:55 +00:00

1439 lines
36 KiB
C

/*
* Copyright (c) 1994 Ludd, University of Lule}, Sweden.
* Copyright (c) 2000 Sergey A. Babkin
* All rights reserved.
*
* Written by Olof Johansson (offe@ludd.luth.se) 1995.
* Based on code written by Theo de Raadt (deraadt@fsa.ca).
* Resurrected, ported to CAM and generally cleaned up by Sergey Babkin
* <babkin@bellatlantic.net> or <babkin@users.sourceforge.net>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed at Ludd, University of Lule}
* and by the FreeBSD project.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/* All bugs are subject to removal without further notice */
/*
* offe 01/07/95
*
* This version of the driver _still_ doesn't implement scatter/gather for the
* WD7000-FASST2. This is due to the fact that my controller doesn't seem to
* support it. That, and the lack of documentation makes it impossible for me
* to implement it. What I've done instead is allocated a local buffer,
* contiguous buffer big enough to handle the requests. I haven't seen any
* read/write bigger than 64k, so I allocate a buffer of 64+16k. The data
* that needs to be DMA'd to/from the controller is copied to/from that
* buffer before/after the command is sent to the card.
*
* SB 03/30/00
*
* An intermediate buffer is needed anyway to make sure that the buffer is
* located under 16MB, otherwise it's out of reach of ISA cards. I've added
* optimizations to allocate space in buffer in fragments.
*/
/*
* Jumpers: (see The Ref(TM) for more info)
* W1/W2 - interrupt selection:
* W1 (1-2) IRQ3, (3-4) IRQ4, (5-6) IRQ5, (7-8) IRQ7, (9-10) IRQ9
* W2 (21-22) IRQ10, (19-20) IRQ11, (17-18) IRQ12, (15-16) IRQ14, (13-14) IRQ15
*
* W2 - DRQ/DACK selection, DRQ and DACK must be the same:
* (5-6) DRQ5 (11-12) DACK5
* (3-4) DRQ6 (9-10) DACK6
* (1-2) DRQ7 (7-8) DACK7
*
* W3 - I/O address selection: open pair of pins (OFF) means 1, jumpered (ON) means 0
* pair (1-2) is bit 3, ..., pair (9-10) is bit 7. All the other bits are equal
* to the value 0x300. In bitwise representation that would be:
* 0 0 1 1 (9-10) (7-8) (5-6) (3-4) (1-2) 0 0 0
* For example, address 0x3C0, bitwise 1111000000 will be represented as:
* (9-10) OFF, (7-8) OFF, (5-6) ON, (3-4) ON, (1-2) ON
*
* W4 - BIOS address: open pair of pins (OFF) means 1, jumpered (ON) means 0
* pair (1-2) is bit 13, ..., pair (7-8) is bit 16. All the other bits are
* equal to the value 0xC0000. In bitwise representation that would be:
* 1 1 0 (7-8) (5-6) (3-4) (1-2) 0 0000 0000 0000
* For example, address 0xD8000 will be represented as:
* (7-8) OFF, (5-6) OFF, (3-4) ON, (1-2) ON
*
* W98 (on newer cards) - BIOS enabled; on older cards just remove the BIOS
* chip to disable it
* W99 (on newer cards) - ROM size (1-2) OFF, (3-4) ON
*
* W5 - terminator power
* ON - host supplies term. power
* OFF - target supplies term. power
*
* W6, W9 - floppy support (a bit cryptic):
* W6 ON, W9 ON - disabled
* W6 OFF, W9 ON - enabled with HardCard only
* W6 OFF, W9 OFF - enabled with no hardCard or Combo
*
* Default: I/O 0x350, IRQ15, DMA6
*/
/*
* debugging levels:
* 0 - disabled
* 1 - print debugging messages
* 2 - collect debugging messages in an internal log buffer which can be
* printed later by calling wds_printlog from DDB
*
* Both kind of logs are heavy and interact significantly with the timing
* of commands, so the observed problems may become invisible if debug
* logging is enabled.
*
* The light-weight logging facility may be enabled by defining
* WDS_ENABLE_SMALLOG as 1. It has very little overhead and allows observing
* the traces of various race conditions without affectiong them but the log is
* quite terse. The small log can be printer from DDB by calling
* wds_printsmallog.
*/
#ifndef WDS_DEBUG
#define WDS_DEBUG 0
#endif
#ifndef WDS_ENABLE_SMALLOG
#define WDS_ENABLE_SMALLOG 0
#endif
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/assym.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/disklabel.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <machine/clock.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <isa/isavar.h>
#include <isa/pnpvar.h>
#define WDSTOPHYS(wp, a) ( ((u_long)a) - ((u_long)wp->dx) + ((u_long)wp->dx_p) )
#define WDSTOVIRT(wp, a) ( ((char *)a) - ((char*)wp->dx_p) + ((char *)wp->dx) )
/* 0x10000 (64k) should be enough. But just to be sure... */
#define BUFSIZ 0x12000
/* buffer fragment size, no more than 32 frags per buffer */
#define FRAGSIZ 0x1000
/* WD7000 registers */
#define WDS_STAT 0 /* read */
#define WDS_IRQSTAT 1 /* read */
#define WDS_CMD 0 /* write */
#define WDS_IRQACK 1 /* write */
#define WDS_HCR 2 /* write */
#define WDS_NPORTS 4 /* number of ports used */
/* WDS_STAT (read) defs */
#define WDS_IRQ 0x80
#define WDS_RDY 0x40
#define WDS_REJ 0x20
#define WDS_INIT 0x10
/* WDS_IRQSTAT (read) defs */
#define WDSI_MASK 0xc0
#define WDSI_ERR 0x00
#define WDSI_MFREE 0x80
#define WDSI_MSVC 0xc0
/* WDS_CMD (write) defs */
#define WDSC_NOOP 0x00
#define WDSC_INIT 0x01
#define WDSC_DISUNSOL 0x02 /* disable unsolicited ints */
#define WDSC_ENAUNSOL 0x03 /* enable unsolicited ints */
#define WDSC_IRQMFREE 0x04 /* interrupt on free RQM */
#define WDSC_SCSIRESETSOFT 0x05 /* soft reset */
#define WDSC_SCSIRESETHARD 0x06 /* hard reset ack */
#define WDSC_MSTART(m) (0x80 + (m)) /* start mailbox */
#define WDSC_MMSTART(m) (0xc0 + (m)) /* start all mailboxes */
/* WDS_HCR (write) defs */
#define WDSH_IRQEN 0x08
#define WDSH_DRQEN 0x04
#define WDSH_SCSIRESET 0x02
#define WDSH_ASCRESET 0x01
struct wds_cmd {
u_int8_t cmd;
u_int8_t targ;
u_int8_t scb[12];
u_int8_t stat;
u_int8_t venderr;
u_int8_t len[3];
u_int8_t data[3];
u_int8_t next[3];
u_int8_t write;
u_int8_t xx[6];
};
struct wds_req {
struct wds_cmd cmd;
union ccb *ccb;
enum {
WR_DONE = 0x01,
WR_SENSE = 0x02
} flags;
u_int8_t *buf; /* address of linear data buffer */
u_int32_t mask; /* mask of allocated fragments */
u_int8_t ombn;
u_int8_t id; /* number of request */
};
#define WDSX_SCSICMD 0x00
#define WDSX_OPEN_RCVBUF 0x80
#define WDSX_RCV_CMD 0x81
#define WDSX_RCV_DATA 0x82
#define WDSX_RCV_DATASTAT 0x83
#define WDSX_SND_DATA 0x84
#define WDSX_SND_DATASTAT 0x85
#define WDSX_SND_CMDSTAT 0x86
#define WDSX_READINIT 0x88
#define WDSX_READSCSIID 0x89
#define WDSX_SETUNSOLIRQMASK 0x8a
#define WDSX_GETUNSOLIRQMASK 0x8b
#define WDSX_GETFIRMREV 0x8c
#define WDSX_EXECDIAG 0x8d
#define WDSX_SETEXECPARM 0x8e
#define WDSX_GETEXECPARM 0x8f
struct wds_mb {
u_int8_t stat;
u_int8_t addr[3];
};
/* ICMB status value */
#define ICMB_OK 0x01
#define ICMB_OKERR 0x02
#define ICMB_ETIME 0x04
#define ICMB_ERESET 0x05
#define ICMB_ETARCMD 0x06
#define ICMB_ERESEL 0x80
#define ICMB_ESEL 0x81
#define ICMB_EABORT 0x82
#define ICMB_ESRESET 0x83
#define ICMB_EHRESET 0x84
struct wds_setup {
u_int8_t cmd;
u_int8_t scsi_id;
u_int8_t buson_t;
u_int8_t busoff_t;
u_int8_t xx;
u_int8_t mbaddr[3];
u_int8_t nomb;
u_int8_t nimb;
};
/* the code depends on equality of these parameters */
#define MAXSIMUL 8
#define WDS_NOMB MAXSIMUL
#define WDS_NIMB MAXSIMUL
static int fragsiz;
static int nfrags;
/* structure for data exchange with controller */
struct wdsdx {
struct wds_req req[MAXSIMUL];
struct wds_mb ombs[MAXSIMUL];
struct wds_mb imbs[MAXSIMUL];
u_int8_t data[BUFSIZ];
};
/* structure softc */
struct wds {
device_t dev;
int unit;
int addr;
int drq;
struct cam_sim *sim; /* SIM descriptor for this card */
struct cam_path *path; /* wildcard path for this card */
char want_wdsr; /* resource shortage flag */
u_int32_t data_free;
u_int32_t wdsr_free;
struct wdsdx *dx;
struct wdsdx *dx_p; /* physical address */
struct resource *port_r;
int port_rid;
struct resource *drq_r;
int drq_rid;
struct resource *intr_r;
int intr_rid;
void *intr_cookie;
bus_dma_tag_t bustag;
bus_dmamap_t busmap;
};
#define ccb_wdsr spriv_ptr1 /* for wds request */
static int wds_probe(device_t dev);
static int wds_attach(device_t dev);
static void wds_intr(struct wds *wp);
static void wds_action(struct cam_sim * sim, union ccb * ccb);
static void wds_poll(struct cam_sim * sim);
static int wds_preinit(struct wds *wp);
static int wds_init(struct wds *wp);
static void wds_alloc_callback(void *arg, bus_dma_segment_t *seg,
int nseg, int error);
static void wds_free_resources(struct wds *wp);
static struct wds_req *wdsr_alloc(struct wds *wp);
static void wds_scsi_io(struct cam_sim * sim, struct ccb_scsiio * csio);
static void wdsr_ccb_done(struct wds *wp, struct wds_req *r,
union ccb *ccb, u_int32_t status);
static void wds_done(struct wds *wp, struct wds_req *r, u_int8_t stat);
static int wds_runsense(struct wds *wp, struct wds_req *r);
static int wds_getvers(struct wds *wp);
static int wds_cmd(int base, u_int8_t * p, int l);
static void wds_wait(int reg, int mask, int val);
static struct wds_req *cmdtovirt(struct wds *wp, u_int32_t phys);
static u_int32_t frag_alloc(struct wds *wp, int size, u_int8_t **res,
u_int32_t *maskp);
static void frag_free(struct wds *wp, u_int32_t mask);
void wds_print(void);
#if WDS_ENABLE_SMALLOG==1
static __inline void smallog(char c);
void wds_printsmallog(void);
#endif /* SMALLOG */
/* SCSI ID of the adapter itself */
#ifndef WDS_HBA_ID
#define WDS_HBA_ID 7
#endif
#if WDS_DEBUG == 2
#define LOGLINESIZ 81
#define NLOGLINES 300
#define DBX wds_nextlog(), LOGLINESIZ,
#define DBG snprintf
static char wds_log[NLOGLINES][LOGLINESIZ];
static int logwrite = 0, logread = 0;
static char *wds_nextlog(void);
void wds_printlog(void);
#elif WDS_DEBUG != 0
#define DBX
#define DBG printf
#else
#define DBX
#define DBG if(0) printf
#endif
/* the table of supported bus methods */
static device_method_t wds_isa_methods[] = {
DEVMETHOD(device_probe, wds_probe),
DEVMETHOD(device_attach, wds_attach),
{ 0, 0 }
};
static driver_t wds_isa_driver = {
"wds",
wds_isa_methods,
sizeof(struct wds),
};
static devclass_t wds_devclass;
DRIVER_MODULE(wds, isa, wds_isa_driver, wds_devclass, 0, 0);
#if WDS_ENABLE_SMALLOG==1
#define SMALLOGSIZ 512
static char wds_smallog[SMALLOGSIZ];
static char *wds_smallogp = wds_smallog;
static char wds_smallogover = 0;
static __inline void
smallog(char c)
{
*wds_smallogp = c;
if (++wds_smallogp == &wds_smallog[SMALLOGSIZ]) {
wds_smallogp = wds_smallog;
wds_smallogover = 1;
}
}
#define smallog2(a, b) (smallog(a), smallog(b))
#define smallog3(a, b, c) (smallog(a), smallog(b), smallog(c))
#define smallog4(a, b, c, d) (smallog(a),smallog(b),smallog(c),smallog(d))
void
wds_printsmallog(void)
{
int i;
char *p;
printf("wds: ");
p = wds_smallogover ? wds_smallogp : wds_smallog;
i = 0;
do {
printf("%c", *p);
if (++p == &wds_smallog[SMALLOGSIZ])
p = wds_smallog;
if (++i == 70) {
i = 0;
printf("\nwds: ");
}
} while (p != wds_smallogp);
printf("\n");
}
#else
#define smallog(a)
#define smallog2(a, b)
#define smallog3(a, b, c)
#define smallog4(a, b, c, d)
#endif /* SMALLOG */
static int
wds_probe(device_t dev)
{
struct wds *wp;
int error = 0;
int irq;
/* No pnp support */
if (isa_get_vendorid(dev))
return (ENXIO);
wp = (struct wds *) device_get_softc(dev);
wp->unit = device_get_unit(dev);
wp->dev = dev;
wp->addr = bus_get_resource_start(dev, SYS_RES_IOPORT, 0 /*rid*/);
if (wp->addr == 0 || wp->addr <0x300
|| wp->addr > 0x3f8 || wp->addr & 0x7) {
device_printf(dev, "invalid port address 0x%x\n", wp->addr);
return (ENXIO);
}
if (bus_set_resource(dev, SYS_RES_IOPORT, 0, wp->addr, WDS_NPORTS) < 0)
return (ENXIO);
/* get the DRQ */
wp->drq = bus_get_resource_start(dev, SYS_RES_DRQ, 0 /*rid*/);
if (wp->drq < 5 || wp->drq > 7) {
device_printf(dev, "invalid DRQ %d\n", wp->drq);
return (ENXIO);
}
/* get the IRQ */
irq = bus_get_resource_start(dev, SYS_RES_IRQ, 0 /*rid*/);
if (irq < 3) {
device_printf(dev, "invalid IRQ %d\n", irq);
return (ENXIO);
}
wp->port_rid = 0;
wp->port_r = bus_alloc_resource(dev, SYS_RES_IOPORT, &wp->port_rid,
/*start*/ 0, /*end*/ ~0,
/*count*/ 0, RF_ACTIVE);
if (wp->port_r == NULL)
return (ENXIO);
error = wds_preinit(wp);
/*
* We cannot hold resources between probe and
* attach as we may never be attached.
*/
wds_free_resources(wp);
return (error);
}
static int
wds_attach(device_t dev)
{
struct wds *wp;
struct cam_devq *devq;
struct cam_sim *sim;
struct cam_path *pathp;
int i;
int error = 0;
wp = (struct wds *)device_get_softc(dev);
wp->port_rid = 0;
wp->port_r = bus_alloc_resource(dev, SYS_RES_IOPORT, &wp->port_rid,
/*start*/ 0, /*end*/ ~0,
/*count*/ 0, RF_ACTIVE);
if (wp->port_r == NULL)
return (ENXIO);
/* We must now release resources on error. */
wp->drq_rid = 0;
wp->drq_r = bus_alloc_resource(dev, SYS_RES_DRQ, &wp->drq_rid,
/*start*/ 0, /*end*/ ~0,
/*count*/ 0, RF_ACTIVE);
if (wp->drq_r == NULL)
goto bad;
wp->intr_rid = 0;
wp->intr_r = bus_alloc_resource(dev, SYS_RES_IRQ, &wp->intr_rid,
/*start*/ 0, /*end*/ ~0,
/*count*/ 0, RF_ACTIVE);
if (wp->intr_r == NULL)
goto bad;
error = bus_setup_intr(dev, wp->intr_r, INTR_TYPE_CAM,
(driver_intr_t *)wds_intr, (void *)wp,
&wp->intr_cookie);
if (error)
goto bad;
/* now create the memory buffer */
error = bus_dma_tag_create(NULL, /*alignment*/4,
/*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR_24BIT,
/*highaddr*/ BUS_SPACE_MAXADDR,
/*filter*/ NULL, /*filterarg*/ NULL,
/*maxsize*/ sizeof(* wp->dx),
/*nsegments*/ 1,
/*maxsegsz*/ sizeof(* wp->dx), /*flags*/ 0,
&wp->bustag);
if (error)
goto bad;
error = bus_dmamem_alloc(wp->bustag, (void **)&wp->dx,
/*flags*/ 0, &wp->busmap);
if (error)
goto bad;
bus_dmamap_load(wp->bustag, wp->busmap, (void *)wp->dx,
sizeof(* wp->dx), wds_alloc_callback,
(void *)&wp->dx_p, /*flags*/0);
/* initialize the wds_req structures on this unit */
for(i=0; i<MAXSIMUL; i++) {
wp->dx->req[i].id = i;
wp->wdsr_free |= 1<<i;
}
/* initialize the memory buffer allocation for this unit */
if (BUFSIZ / FRAGSIZ > 32) {
fragsiz = (BUFSIZ / 32) & ~0x01; /* keep it word-aligned */
device_printf(dev, "data buffer fragment size too small. "
"BUFSIZE / FRAGSIZE must be <= 32\n");
} else
fragsiz = FRAGSIZ & ~0x01; /* keep it word-aligned */
wp->data_free = 0;
nfrags = 0;
for (i = fragsiz; i <= BUFSIZ; i += fragsiz) {
nfrags++;
wp->data_free = (wp->data_free << 1) | 1;
}
/* complete the hardware initialization */
if (wds_init(wp) != 0)
goto bad;
if (wds_getvers(wp) == -1)
device_printf(dev, "getvers failed\n");
device_printf(dev, "using %d bytes / %d frags for dma buffer\n",
BUFSIZ, nfrags);
devq = cam_simq_alloc(MAXSIMUL);
if (devq == NULL)
goto bad;
sim = cam_sim_alloc(wds_action, wds_poll, "wds", (void *) wp,
wp->unit, 1, 1, devq);
if (sim == NULL) {
cam_simq_free(devq);
goto bad;
}
wp->sim = sim;
if (xpt_bus_register(sim, 0) != CAM_SUCCESS) {
cam_sim_free(sim, /* free_devq */ TRUE);
goto bad;
}
if (xpt_create_path(&pathp, /* periph */ NULL,
cam_sim_path(sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(sim));
cam_sim_free(sim, /* free_devq */ TRUE);
goto bad;
}
wp->path = pathp;
return (0);
bad:
wds_free_resources(wp);
if (error)
return (error);
else /* exact error is unknown */
return (ENXIO);
}
/* callback to save the physical address */
static void
wds_alloc_callback(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{
*(bus_addr_t *)arg = seg[0].ds_addr;
}
static void
wds_free_resources(struct wds *wp)
{
/* check every resource and free if not zero */
/* interrupt handler */
if (wp->intr_r) {
bus_teardown_intr(wp->dev, wp->intr_r, wp->intr_cookie);
bus_release_resource(wp->dev, SYS_RES_IRQ, wp->intr_rid,
wp->intr_r);
wp->intr_r = 0;
}
/* all kinds of memory maps we could have allocated */
if (wp->dx_p) {
bus_dmamap_unload(wp->bustag, wp->busmap);
wp->dx_p = 0;
}
if (wp->dx) { /* wp->busmap may be legitimately equal to 0 */
/* the map will also be freed */
bus_dmamem_free(wp->bustag, wp->dx, wp->busmap);
wp->dx = 0;
}
if (wp->bustag) {
bus_dma_tag_destroy(wp->bustag);
wp->bustag = 0;
}
/* release all the bus resources */
if (wp->drq_r) {
bus_release_resource(wp->dev, SYS_RES_DRQ,
wp->drq_rid, wp->drq_r);
wp->drq_r = 0;
}
if (wp->port_r) {
bus_release_resource(wp->dev, SYS_RES_IOPORT,
wp->port_rid, wp->port_r);
wp->port_r = 0;
}
}
/* allocate contiguous fragments from the buffer */
static u_int32_t
frag_alloc(struct wds *wp, int size, u_int8_t **res, u_int32_t *maskp)
{
int i;
u_int32_t mask;
u_int32_t free;
if (size > fragsiz * nfrags)
return (CAM_REQ_TOO_BIG);
mask = 1; /* always allocate at least 1 fragment */
for (i = fragsiz; i < size; i += fragsiz)
mask = (mask << 1) | 1;
free = wp->data_free;
if(free != 0) {
i = ffs(free)-1; /* ffs counts bits from 1 */
for (mask <<= i; i < nfrags; i++) {
if ((free & mask) == mask) {
wp->data_free &= ~mask; /* mark frags as busy */
*maskp = mask;
*res = &wp->dx->data[fragsiz * i];
DBG(DBX "wds%d: allocated buffer mask=0x%x\n",
wp->unit, mask);
return (CAM_REQ_CMP);
}
if (mask & 0x80000000)
break;
mask <<= 1;
}
}
return (CAM_REQUEUE_REQ); /* no free memory now, try later */
}
static void
frag_free(struct wds *wp, u_int32_t mask)
{
wp->data_free |= mask; /* mark frags as free */
DBG(DBX "wds%d: freed buffer mask=0x%x\n", wp->unit, mask);
}
static struct wds_req *
wdsr_alloc(struct wds *wp)
{
struct wds_req *r;
int x;
int i;
r = NULL;
x = splcam();
/* anyway most of the time only 1 or 2 commands will
* be active because SCSI disconnect is not supported
* by hardware, so the search should be fast enough
*/
i = ffs(wp->wdsr_free) - 1;
if(i < 0) {
splx(x);
return (NULL);
}
wp->wdsr_free &= ~ (1<<i);
r = &wp->dx->req[i];
r->flags = 0; /* reset all flags */
r->ombn = i; /* luckily we have one omb per wdsr */
wp->dx->ombs[i].stat = 1;
r->mask = 0;
splx(x);
smallog3('r', i + '0', r->ombn + '0');
return (r);
}
static void
wds_intr(struct wds *wp)
{
struct wds_req *rp;
struct wds_mb *in;
u_int8_t stat;
u_int8_t c;
int addr = wp->addr;
DBG(DBX "wds%d: interrupt [\n", wp->unit);
smallog('[');
if (inb(addr + WDS_STAT) & WDS_IRQ) {
c = inb(addr + WDS_IRQSTAT);
if ((c & WDSI_MASK) == WDSI_MSVC) {
c = c & ~WDSI_MASK;
in = &wp->dx->imbs[c];
rp = cmdtovirt(wp, scsi_3btoul(in->addr));
stat = in->stat;
if (rp != NULL)
wds_done(wp, rp, stat);
else
device_printf(wp->dev,
"got weird command address %p"
"from controller\n", rp);
in->stat = 0;
} else
device_printf(wp->dev,
"weird interrupt, irqstat=0x%x\n", c);
outb(addr + WDS_IRQACK, 0);
} else {
smallog('?');
}
smallog(']');
DBG(DBX "wds%d: ]\n", wp->unit);
}
static void
wds_done(struct wds *wp, struct wds_req *r, u_int8_t stat)
{
struct ccb_hdr *ccb_h;
struct ccb_scsiio *csio;
int status;
smallog('d');
if (r->flags & WR_DONE) {
device_printf(wp->dev,
"request %d reported done twice\n", r->id);
smallog2('x', r->id + '0');
return;
}
smallog(r->id + '0');
ccb_h = &r->ccb->ccb_h;
csio = &r->ccb->csio;
status = CAM_REQ_CMP_ERR;
DBG(DBX "wds%d: %s stat=0x%x c->stat=0x%x c->venderr=0x%x\n", wp->unit,
r->flags & WR_SENSE ? "(sense)" : "",
stat, r->cmd.stat, r->cmd.venderr);
if (r->flags & WR_SENSE) {
if (stat == ICMB_OK || (stat == ICMB_OKERR && r->cmd.stat == 0)) {
DBG(DBX "wds%d: sense 0x%x\n", wp->unit, r->buf[0]);
/* it has the same size now but for future */
bcopy(r->buf, &csio->sense_data,
sizeof(struct scsi_sense_data) > csio->sense_len ?
csio->sense_len : sizeof(struct scsi_sense_data));
if (sizeof(struct scsi_sense_data) >= csio->sense_len)
csio->sense_resid = 0;
else
csio->sense_resid =
csio->sense_len
- sizeof(struct scsi_sense_data);
status = CAM_AUTOSNS_VALID | CAM_SCSI_STATUS_ERROR;
} else {
status = CAM_AUTOSENSE_FAIL;
}
} else {
switch (stat) {
case ICMB_OK:
if (ccb_h) {
csio->resid = 0;
csio->scsi_status = r->cmd.stat;
status = CAM_REQ_CMP;
}
break;
case ICMB_OKERR:
if (ccb_h) {
csio->scsi_status = r->cmd.stat;
if (r->cmd.stat) {
if (ccb_h->flags & CAM_DIS_AUTOSENSE)
status = CAM_SCSI_STATUS_ERROR;
else {
if ( wds_runsense(wp, r) == CAM_REQ_CMP )
return;
/* in case of error continue with freeing of CCB */
}
} else {
csio->resid = 0;
status = CAM_REQ_CMP;
}
}
break;
case ICMB_ETIME:
if (ccb_h)
status = CAM_SEL_TIMEOUT;
break;
case ICMB_ERESET:
case ICMB_ETARCMD:
case ICMB_ERESEL:
case ICMB_ESEL:
case ICMB_EABORT:
case ICMB_ESRESET:
case ICMB_EHRESET:
if (ccb_h)
status = CAM_REQ_CMP_ERR;
break;
}
if (ccb_h && (ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_IN) {
/* we accept only virtual addresses in wds_action() */
bcopy(r->buf, csio->data_ptr, csio->dxfer_len);
}
}
r->flags |= WR_DONE;
wp->dx->ombs[r->ombn].stat = 0;
if (ccb_h) {
wdsr_ccb_done(wp, r, r->ccb, status);
smallog3('-', ccb_h->target_id + '0', ccb_h->target_lun + '0');
} else {
frag_free(wp, r->mask);
if (wp->want_wdsr) {
wp->want_wdsr = 0;
xpt_release_simq(wp->sim, /* run queue */ 1);
}
wp->wdsr_free |= (1 << r->id);
}
DBG(DBX "wds%d: request 0x%x done\n", wp->unit, (u_int) r);
}
/* command returned bad status, request sense */
static int
wds_runsense(struct wds *wp, struct wds_req *r)
{
u_int8_t c;
struct ccb_hdr *ccb_h;
ccb_h = &r->ccb->ccb_h;
r->flags |= WR_SENSE;
scsi_ulto3b(WDSTOPHYS(wp, &r->cmd),
wp->dx->ombs[r->ombn].addr);
bzero(&r->cmd, sizeof r->cmd);
r->cmd.cmd = WDSX_SCSICMD;
r->cmd.targ = (ccb_h->target_id << 5) |
ccb_h->target_lun;
scsi_ulto3b(0, r->cmd.next);
r->cmd.scb[0] = REQUEST_SENSE;
r->cmd.scb[1] = ccb_h->target_lun << 5;
r->cmd.scb[4] = sizeof(struct scsi_sense_data);
r->cmd.scb[5] = 0;
scsi_ulto3b(WDSTOPHYS(wp, r->buf), r->cmd.data);
scsi_ulto3b(sizeof(struct scsi_sense_data), r->cmd.len);
r->cmd.write = 0x80;
outb(wp->addr + WDS_HCR, WDSH_IRQEN | WDSH_DRQEN);
wp->dx->ombs[r->ombn].stat = 1;
c = WDSC_MSTART(r->ombn);
if (wds_cmd(wp->addr, &c, sizeof c) != 0) {
device_printf(wp->dev, "unable to start outgoing sense mbox\n");
wp->dx->ombs[r->ombn].stat = 0;
wdsr_ccb_done(wp, r, r->ccb, CAM_AUTOSENSE_FAIL);
return CAM_AUTOSENSE_FAIL;
} else {
DBG(DBX "wds%d: enqueued status cmd 0x%x, r=0x%x\n",
wp->unit, r->cmd.scb[0] & 0xFF, (u_int) r);
/* don't free CCB yet */
smallog3('*', ccb_h->target_id + '0',
ccb_h->target_lun + '0');
return CAM_REQ_CMP;
}
}
static int
wds_getvers(struct wds *wp)
{
struct wds_req *r;
int base;
u_int8_t c;
int i;
base = wp->addr;
r = wdsr_alloc(wp);
if (!r) {
device_printf(wp->dev, "no request slot available!\n");
return (-1);
}
r->flags &= ~WR_DONE;
r->ccb = NULL;
scsi_ulto3b(WDSTOPHYS(wp, &r->cmd), wp->dx->ombs[r->ombn].addr);
bzero(&r->cmd, sizeof r->cmd);
r->cmd.cmd = WDSX_GETFIRMREV;
outb(base + WDS_HCR, WDSH_DRQEN);
c = WDSC_MSTART(r->ombn);
if (wds_cmd(base, (u_int8_t *) & c, sizeof c)) {
device_printf(wp->dev, "version request failed\n");
wp->wdsr_free |= (1 << r->id);
wp->dx->ombs[r->ombn].stat = 0;
return (-1);
}
while (1) {
i = 0;
while ((inb(base + WDS_STAT) & WDS_IRQ) == 0) {
DELAY(9000);
if (++i == 100) {
device_printf(wp->dev, "getvers timeout\n");
return (-1);
}
}
wds_intr(wp);
if (r->flags & WR_DONE) {
device_printf(wp->dev, "firmware version %d.%02d\n",
r->cmd.targ, r->cmd.scb[0]);
wp->wdsr_free |= (1 << r->id);
return (0);
}
}
}
static void
wdsr_ccb_done(struct wds *wp, struct wds_req *r,
union ccb *ccb, u_int32_t status)
{
ccb->ccb_h.ccb_wdsr = 0;
if (r != NULL) {
/* To implement timeouts we would need to know how to abort the
* command on controller, and this is a great mystery.
* So for now we just pass the responsibility for timeouts
* to the controlles itself, it does that reasonably good.
*/
/* untimeout(_timeout, (caddr_t) hcb, ccb->ccb_h.timeout_ch); */
/* we're about to free a hcb, so the shortage has ended */
frag_free(wp, r->mask);
if (wp->want_wdsr && status != CAM_REQUEUE_REQ) {
wp->want_wdsr = 0;
status |= CAM_RELEASE_SIMQ;
smallog('R');
}
wp->wdsr_free |= (1 << r->id);
}
ccb->ccb_h.status =
status | (ccb->ccb_h.status & ~(CAM_STATUS_MASK | CAM_SIM_QUEUED));
xpt_done(ccb);
}
static void
wds_scsi_io(struct cam_sim * sim, struct ccb_scsiio * csio)
{
int unit = cam_sim_unit(sim);
struct wds *wp;
struct ccb_hdr *ccb_h;
struct wds_req *r;
int base;
u_int8_t c;
int error;
int n;
wp = (struct wds *)cam_sim_softc(sim);
ccb_h = &csio->ccb_h;
DBG(DBX "wds%d: cmd TARG=%d LUN=%d\n", unit, ccb_h->target_id,
ccb_h->target_lun);
if (ccb_h->target_id > 7 || ccb_h->target_id == WDS_HBA_ID) {
ccb_h->status = CAM_TID_INVALID;
xpt_done((union ccb *) csio);
return;
}
if (ccb_h->target_lun > 7) {
ccb_h->status = CAM_LUN_INVALID;
xpt_done((union ccb *) csio);
return;
}
if (csio->dxfer_len > BUFSIZ) {
ccb_h->status = CAM_REQ_TOO_BIG;
xpt_done((union ccb *) csio);
return;
}
if (ccb_h->flags & (CAM_CDB_PHYS | CAM_SCATTER_VALID | CAM_DATA_PHYS)) {
/* don't support these */
ccb_h->status = CAM_REQ_INVALID;
xpt_done((union ccb *) csio);
return;
}
base = wp->addr;
/*
* this check is mostly for debugging purposes,
* "can't happen" normally.
*/
if(wp->want_wdsr) {
DBG(DBX "wds%d: someone already waits for buffer\n", unit);
smallog('b');
n = xpt_freeze_simq(sim, /* count */ 1);
smallog('0'+n);
ccb_h->status = CAM_REQUEUE_REQ;
xpt_done((union ccb *) csio);
return;
}
r = wdsr_alloc(wp);
if (r == NULL) {
device_printf(wp->dev, "no request slot available!\n");
wp->want_wdsr = 1;
n = xpt_freeze_simq(sim, /* count */ 1);
smallog2('f', '0'+n);
ccb_h->status = CAM_REQUEUE_REQ;
xpt_done((union ccb *) csio);
return;
}
ccb_h->ccb_wdsr = (void *) r;
r->ccb = (union ccb *) csio;
switch (error = frag_alloc(wp, csio->dxfer_len, &r->buf, &r->mask)) {
case CAM_REQ_CMP:
break;
case CAM_REQUEUE_REQ:
DBG(DBX "wds%d: no data buffer available\n", unit);
wp->want_wdsr = 1;
n = xpt_freeze_simq(sim, /* count */ 1);
smallog2('f', '0'+n);
wdsr_ccb_done(wp, r, r->ccb, CAM_REQUEUE_REQ);
return;
default:
DBG(DBX "wds%d: request is too big\n", unit);
wdsr_ccb_done(wp, r, r->ccb, error);
break;
}
ccb_h->status |= CAM_SIM_QUEUED;
r->flags &= ~WR_DONE;
scsi_ulto3b(WDSTOPHYS(wp, &r->cmd), wp->dx->ombs[r->ombn].addr);
bzero(&r->cmd, sizeof r->cmd);
r->cmd.cmd = WDSX_SCSICMD;
r->cmd.targ = (ccb_h->target_id << 5) | ccb_h->target_lun;
if (ccb_h->flags & CAM_CDB_POINTER)
bcopy(csio->cdb_io.cdb_ptr, &r->cmd.scb,
csio->cdb_len < 12 ? csio->cdb_len : 12);
else
bcopy(csio->cdb_io.cdb_bytes, &r->cmd.scb,
csio->cdb_len < 12 ? csio->cdb_len : 12);
scsi_ulto3b(csio->dxfer_len, r->cmd.len);
if (csio->dxfer_len > 0
&& (ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
/* we already rejected physical or scattered addresses */
bcopy(csio->data_ptr, r->buf, csio->dxfer_len);
}
scsi_ulto3b(csio->dxfer_len ? WDSTOPHYS(wp, r->buf) : 0, r->cmd.data);
if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_IN)
r->cmd.write = 0x80;
else
r->cmd.write = 0x00;
scsi_ulto3b(0, r->cmd.next);
outb(base + WDS_HCR, WDSH_IRQEN | WDSH_DRQEN);
c = WDSC_MSTART(r->ombn);
if (wds_cmd(base, &c, sizeof c) != 0) {
device_printf(wp->dev, "unable to start outgoing mbox\n");
wp->dx->ombs[r->ombn].stat = 0;
wdsr_ccb_done(wp, r, r->ccb, CAM_RESRC_UNAVAIL);
return;
}
DBG(DBX "wds%d: enqueued cmd 0x%x, r=0x%x\n", unit,
r->cmd.scb[0] & 0xFF, (u_int) r);
smallog3('+', ccb_h->target_id + '0', ccb_h->target_lun + '0');
}
static void
wds_action(struct cam_sim * sim, union ccb * ccb)
{
int unit = cam_sim_unit(sim);
int s;
DBG(DBX "wds%d: action 0x%x\n", unit, ccb->ccb_h.func_code);
switch (ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
s = splcam();
DBG(DBX "wds%d: SCSI IO entered\n", unit);
wds_scsi_io(sim, &ccb->csio);
DBG(DBX "wds%d: SCSI IO returned\n", unit);
splx(s);
break;
case XPT_RESET_BUS:
/* how to do it right ? */
printf("wds%d: reset\n", unit);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
case XPT_ABORT:
ccb->ccb_h.status = CAM_UA_ABORT;
xpt_done(ccb);
break;
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
u_int32_t size_mb;
u_int32_t secs_per_cylinder;
ccg = &ccb->ccg;
size_mb = ccg->volume_size
/ ((1024L * 1024L) / ccg->block_size);
ccg->heads = 64;
ccg->secs_per_track = 16;
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = 0; /* nothing fancy */
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = 7;
cpi->max_lun = 7;
cpi->initiator_id = WDS_HBA_ID;
cpi->hba_misc = 0;
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "WD/FDC", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
static void
wds_poll(struct cam_sim * sim)
{
wds_intr((struct wds *)cam_sim_softc(sim));
}
/* part of initialization done in probe() */
/* returns 0 if OK, ENXIO if bad */
static int
wds_preinit(struct wds *wp)
{
int base;
int i;
base = wp->addr;
/*
* Sending a command causes the CMDRDY bit to clear.
*/
outb(base + WDS_CMD, WDSC_NOOP);
if (inb(base + WDS_STAT) & WDS_RDY)
return (ENXIO);
/*
* the controller exists. reset and init.
*/
outb(base + WDS_HCR, WDSH_ASCRESET | WDSH_SCSIRESET);
DELAY(30);
outb(base + WDS_HCR, 0);
if ((inb(base + WDS_STAT) & (WDS_RDY)) != WDS_RDY) {
for (i = 0; i < 10; i++) {
if ((inb(base + WDS_STAT) & (WDS_RDY)) == WDS_RDY)
break;
DELAY(40000);
}
if ((inb(base + WDS_STAT) & (WDS_RDY)) != WDS_RDY)
/* probe timeout */
return (ENXIO);
}
return (0);
}
/* part of initialization done in attach() */
/* returns 0 if OK, 1 if bad */
static int
wds_init(struct wds *wp)
{
struct wds_setup init;
int base;
int i;
struct wds_cmd wc;
base = wp->addr;
outb(base + WDS_HCR, WDSH_DRQEN);
isa_dmacascade(wp->drq);
if ((inb(base + WDS_STAT) & (WDS_RDY)) != WDS_RDY) {
for (i = 0; i < 10; i++) {
if ((inb(base + WDS_STAT) & (WDS_RDY)) == WDS_RDY)
break;
DELAY(40000);
}
if ((inb(base + WDS_STAT) & (WDS_RDY)) != WDS_RDY)
/* probe timeout */
return (1);
}
bzero(&init, sizeof init);
init.cmd = WDSC_INIT;
init.scsi_id = WDS_HBA_ID;
init.buson_t = 24;
init.busoff_t = 48;
scsi_ulto3b(WDSTOPHYS(wp, &wp->dx->ombs), init.mbaddr);
init.xx = 0;
init.nomb = WDS_NOMB;
init.nimb = WDS_NIMB;
wds_wait(base + WDS_STAT, WDS_RDY, WDS_RDY);
if (wds_cmd(base, (u_int8_t *) & init, sizeof init) != 0) {
device_printf(wp->dev, "wds_cmd init failed\n");
return (1);
}
wds_wait(base + WDS_STAT, WDS_INIT, WDS_INIT);
wds_wait(base + WDS_STAT, WDS_RDY, WDS_RDY);
bzero(&wc, sizeof wc);
wc.cmd = WDSC_DISUNSOL;
if (wds_cmd(base, (char *) &wc, sizeof wc) != 0) {
device_printf(wp->dev, "wds_cmd init2 failed\n");
return (1);
}
return (0);
}
static int
wds_cmd(int base, u_int8_t * p, int l)
{
int s = splcam();
while (l--) {
do {
outb(base + WDS_CMD, *p);
wds_wait(base + WDS_STAT, WDS_RDY, WDS_RDY);
} while (inb(base + WDS_STAT) & WDS_REJ);
p++;
}
wds_wait(base + WDS_STAT, WDS_RDY, WDS_RDY);
splx(s);
return (0);
}
static void
wds_wait(int reg, int mask, int val)
{
while ((inb(reg) & mask) != val)
;
}
static struct wds_req *
cmdtovirt(struct wds *wp, u_int32_t phys)
{
char *a;
a = WDSTOVIRT(wp, phys);
if( a < (char *)&wp->dx->req[0] || a>= (char *)&wp->dx->req[MAXSIMUL]) {
device_printf(wp->dev, "weird phys address 0x%x\n", phys);
return (NULL);
}
a -= (int)offsetof(struct wds_req, cmd); /* convert cmd to request */
return ((struct wds_req *)a);
}
/* for debugging, print out all the data about the status of devices */
void
wds_print(void)
{
int unit;
int i;
struct wds_req *r;
struct wds *wp;
for (unit = 0; unit < devclass_get_maxunit(wds_devclass); unit++) {
wp = (struct wds *) devclass_get_device(wds_devclass, unit);
if (wp == NULL)
continue;
printf("wds%d: want_wdsr=0x%x stat=0x%x irq=%s irqstat=0x%x\n",
unit, wp->want_wdsr, inb(wp->addr + WDS_STAT) & 0xff,
(inb(wp->addr + WDS_STAT) & WDS_IRQ) ? "ready" : "no",
inb(wp->addr + WDS_IRQSTAT) & 0xff);
for (i = 0; i < MAXSIMUL; i++) {
r = &wp->dx->req[i];
if( wp->wdsr_free & (1 << r->id) ) {
printf("req=%d flg=0x%x ombn=%d ombstat=%d "
"mask=0x%x targ=%d lun=%d cmd=0x%x\n",
i, r->flags, r->ombn,
wp->dx->ombs[r->ombn].stat,
r->mask, r->cmd.targ >> 5,
r->cmd.targ & 7, r->cmd.scb[0]);
}
}
}
}
#if WDS_DEBUG == 2
/* create circular log buffer */
static char *
wds_nextlog(void)
{
int n = logwrite;
if (++logwrite >= NLOGLINES)
logwrite = 0;
if (logread == logwrite)
if (++logread >= NLOGLINES)
logread = 0;
return (wds_log[n]);
}
void
wds_printlog(void)
{
/* print the circular buffer */
int i;
for (i = logread; i != logwrite;) {
printf("%s", wds_log[i]);
if (i == NLOGLINES)
i = 0;
else
i++;
}
}
#endif /* WDS_DEBUG */