freebsd-dev/sys/crypto/via/padlock_hash.c
John Baldwin b172f23dd7 Use zfree() instead of bzero() and free().
These bzero's should have been explicit_bzero's.

Reviewed by:	cem, delphij
Sponsored by:	Chelsio Communications
Differential Revision:	https://reviews.freebsd.org/D25437
2020-06-25 20:20:22 +00:00

426 lines
11 KiB
C

/*-
* Copyright (c) 2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/libkern.h>
#include <sys/endian.h>
#include <sys/pcpu.h>
#if defined(__amd64__) || defined(__i386__)
#include <machine/cpufunc.h>
#include <machine/cputypes.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#endif
#include <machine/pcb.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h>
#include <crypto/via/padlock.h>
/*
* Implementation notes.
*
* Some VIA CPUs provides SHA1 and SHA256 acceleration.
* We implement all HMAC algorithms provided by crypto(9) framework, but we do
* the crypto work in software unless this is HMAC/SHA1 or HMAC/SHA256 and
* our CPU can accelerate it.
*
* Additional CPU instructions, which preform SHA1 and SHA256 are one-shot
* functions - we have only one chance to give the data, CPU itself will add
* the padding and calculate hash automatically.
* This means, it is not possible to implement common init(), update(), final()
* methods.
* The way I've choosen is to keep adding data to the buffer on update()
* (reallocating the buffer if necessary) and call XSHA{1,256} instruction on
* final().
*/
struct padlock_sha_ctx {
uint8_t *psc_buf;
int psc_offset;
int psc_size;
};
CTASSERT(sizeof(struct padlock_sha_ctx) <= sizeof(union authctx));
static void padlock_sha_init(void *vctx);
static int padlock_sha_update(void *vctx, const void *buf, u_int bufsize);
static void padlock_sha1_final(uint8_t *hash, void *vctx);
static void padlock_sha256_final(uint8_t *hash, void *vctx);
static struct auth_hash padlock_hmac_sha1 = {
.type = CRYPTO_SHA1_HMAC,
.name = "HMAC-SHA1",
.keysize = SHA1_BLOCK_LEN,
.hashsize = SHA1_HASH_LEN,
.ctxsize = sizeof(struct padlock_sha_ctx),
.blocksize = SHA1_BLOCK_LEN,
.Init = padlock_sha_init,
.Update = padlock_sha_update,
.Final = padlock_sha1_final,
};
static struct auth_hash padlock_hmac_sha256 = {
.type = CRYPTO_SHA2_256_HMAC,
.name = "HMAC-SHA2-256",
.keysize = SHA2_256_BLOCK_LEN,
.hashsize = SHA2_256_HASH_LEN,
.ctxsize = sizeof(struct padlock_sha_ctx),
.blocksize = SHA2_256_BLOCK_LEN,
.Init = padlock_sha_init,
.Update = padlock_sha_update,
.Final = padlock_sha256_final,
};
MALLOC_DECLARE(M_PADLOCK);
static __inline void
padlock_output_block(uint32_t *src, uint32_t *dst, size_t count)
{
while (count-- > 0)
*dst++ = bswap32(*src++);
}
static void
padlock_do_sha1(const u_char *in, u_char *out, int count)
{
u_char buf[128+16]; /* PadLock needs at least 128 bytes buffer. */
u_char *result = PADLOCK_ALIGN(buf);
((uint32_t *)result)[0] = 0x67452301;
((uint32_t *)result)[1] = 0xEFCDAB89;
((uint32_t *)result)[2] = 0x98BADCFE;
((uint32_t *)result)[3] = 0x10325476;
((uint32_t *)result)[4] = 0xC3D2E1F0;
#ifdef __GNUCLIKE_ASM
__asm __volatile(
".byte 0xf3, 0x0f, 0xa6, 0xc8" /* rep xsha1 */
: "+S"(in), "+D"(result)
: "c"(count), "a"(0)
);
#endif
padlock_output_block((uint32_t *)result, (uint32_t *)out,
SHA1_HASH_LEN / sizeof(uint32_t));
}
static void
padlock_do_sha256(const char *in, char *out, int count)
{
char buf[128+16]; /* PadLock needs at least 128 bytes buffer. */
char *result = PADLOCK_ALIGN(buf);
((uint32_t *)result)[0] = 0x6A09E667;
((uint32_t *)result)[1] = 0xBB67AE85;
((uint32_t *)result)[2] = 0x3C6EF372;
((uint32_t *)result)[3] = 0xA54FF53A;
((uint32_t *)result)[4] = 0x510E527F;
((uint32_t *)result)[5] = 0x9B05688C;
((uint32_t *)result)[6] = 0x1F83D9AB;
((uint32_t *)result)[7] = 0x5BE0CD19;
#ifdef __GNUCLIKE_ASM
__asm __volatile(
".byte 0xf3, 0x0f, 0xa6, 0xd0" /* rep xsha256 */
: "+S"(in), "+D"(result)
: "c"(count), "a"(0)
);
#endif
padlock_output_block((uint32_t *)result, (uint32_t *)out,
SHA2_256_HASH_LEN / sizeof(uint32_t));
}
static void
padlock_sha_init(void *vctx)
{
struct padlock_sha_ctx *ctx;
ctx = vctx;
ctx->psc_buf = NULL;
ctx->psc_offset = 0;
ctx->psc_size = 0;
}
static int
padlock_sha_update(void *vctx, const void *buf, u_int bufsize)
{
struct padlock_sha_ctx *ctx;
ctx = vctx;
if (ctx->psc_size - ctx->psc_offset < bufsize) {
ctx->psc_size = MAX(ctx->psc_size * 2, ctx->psc_size + bufsize);
ctx->psc_buf = realloc(ctx->psc_buf, ctx->psc_size, M_PADLOCK,
M_NOWAIT);
if(ctx->psc_buf == NULL)
return (ENOMEM);
}
bcopy(buf, ctx->psc_buf + ctx->psc_offset, bufsize);
ctx->psc_offset += bufsize;
return (0);
}
static void
padlock_sha_free(void *vctx)
{
struct padlock_sha_ctx *ctx;
ctx = vctx;
if (ctx->psc_buf != NULL) {
zfree(ctx->psc_buf, M_PADLOCK);
ctx->psc_buf = NULL;
ctx->psc_offset = 0;
ctx->psc_size = 0;
}
}
static void
padlock_sha1_final(uint8_t *hash, void *vctx)
{
struct padlock_sha_ctx *ctx;
ctx = vctx;
padlock_do_sha1(ctx->psc_buf, hash, ctx->psc_offset);
padlock_sha_free(ctx);
}
static void
padlock_sha256_final(uint8_t *hash, void *vctx)
{
struct padlock_sha_ctx *ctx;
ctx = vctx;
padlock_do_sha256(ctx->psc_buf, hash, ctx->psc_offset);
padlock_sha_free(ctx);
}
static void
padlock_copy_ctx(struct auth_hash *axf, void *sctx, void *dctx)
{
if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 &&
(axf->type == CRYPTO_SHA1_HMAC ||
axf->type == CRYPTO_SHA2_256_HMAC)) {
struct padlock_sha_ctx *spctx = sctx, *dpctx = dctx;
dpctx->psc_offset = spctx->psc_offset;
dpctx->psc_size = spctx->psc_size;
dpctx->psc_buf = malloc(dpctx->psc_size, M_PADLOCK, M_WAITOK);
bcopy(spctx->psc_buf, dpctx->psc_buf, dpctx->psc_size);
} else {
bcopy(sctx, dctx, axf->ctxsize);
}
}
static void
padlock_free_ctx(struct auth_hash *axf, void *ctx)
{
if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 &&
(axf->type == CRYPTO_SHA1_HMAC ||
axf->type == CRYPTO_SHA2_256_HMAC)) {
padlock_sha_free(ctx);
}
}
static void
padlock_hash_key_setup(struct padlock_session *ses, const uint8_t *key,
int klen)
{
struct auth_hash *axf;
axf = ses->ses_axf;
/*
* Try to free contexts before using them, because
* padlock_hash_key_setup() can be called twice - once from
* padlock_newsession() and again from padlock_process().
*/
padlock_free_ctx(axf, ses->ses_ictx);
padlock_free_ctx(axf, ses->ses_octx);
hmac_init_ipad(axf, key, klen, ses->ses_ictx);
hmac_init_opad(axf, key, klen, ses->ses_octx);
}
/*
* Compute keyed-hash authenticator.
*/
static int
padlock_authcompute(struct padlock_session *ses, struct cryptop *crp)
{
u_char hash[HASH_MAX_LEN], hash2[HASH_MAX_LEN];
struct auth_hash *axf;
union authctx ctx;
int error;
axf = ses->ses_axf;
padlock_copy_ctx(axf, ses->ses_ictx, &ctx);
error = crypto_apply(crp, crp->crp_aad_start, crp->crp_aad_length,
axf->Update, &ctx);
if (error != 0) {
padlock_free_ctx(axf, &ctx);
return (error);
}
error = crypto_apply(crp, crp->crp_payload_start,
crp->crp_payload_length, axf->Update, &ctx);
if (error != 0) {
padlock_free_ctx(axf, &ctx);
return (error);
}
axf->Final(hash, &ctx);
padlock_copy_ctx(axf, ses->ses_octx, &ctx);
axf->Update(&ctx, hash, axf->hashsize);
axf->Final(hash, &ctx);
if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
crypto_copydata(crp, crp->crp_digest_start, ses->ses_mlen,
hash2);
if (timingsafe_bcmp(hash, hash2, ses->ses_mlen) != 0)
return (EBADMSG);
} else
crypto_copyback(crp, crp->crp_digest_start, ses->ses_mlen,
hash);
return (0);
}
/* Find software structure which describes HMAC algorithm. */
static struct auth_hash *
padlock_hash_lookup(int alg)
{
struct auth_hash *axf;
switch (alg) {
case CRYPTO_NULL_HMAC:
axf = &auth_hash_null;
break;
case CRYPTO_SHA1_HMAC:
if ((via_feature_xcrypt & VIA_HAS_SHA) != 0)
axf = &padlock_hmac_sha1;
else
axf = &auth_hash_hmac_sha1;
break;
case CRYPTO_RIPEMD160_HMAC:
axf = &auth_hash_hmac_ripemd_160;
break;
case CRYPTO_SHA2_256_HMAC:
if ((via_feature_xcrypt & VIA_HAS_SHA) != 0)
axf = &padlock_hmac_sha256;
else
axf = &auth_hash_hmac_sha2_256;
break;
case CRYPTO_SHA2_384_HMAC:
axf = &auth_hash_hmac_sha2_384;
break;
case CRYPTO_SHA2_512_HMAC:
axf = &auth_hash_hmac_sha2_512;
break;
default:
axf = NULL;
break;
}
return (axf);
}
bool
padlock_hash_check(const struct crypto_session_params *csp)
{
return (padlock_hash_lookup(csp->csp_auth_alg) != NULL);
}
int
padlock_hash_setup(struct padlock_session *ses,
const struct crypto_session_params *csp)
{
ses->ses_axf = padlock_hash_lookup(csp->csp_auth_alg);
if (csp->csp_auth_mlen == 0)
ses->ses_mlen = ses->ses_axf->hashsize;
else
ses->ses_mlen = csp->csp_auth_mlen;
/* Allocate memory for HMAC inner and outer contexts. */
ses->ses_ictx = malloc(ses->ses_axf->ctxsize, M_PADLOCK,
M_ZERO | M_NOWAIT);
ses->ses_octx = malloc(ses->ses_axf->ctxsize, M_PADLOCK,
M_ZERO | M_NOWAIT);
if (ses->ses_ictx == NULL || ses->ses_octx == NULL)
return (ENOMEM);
/* Setup key if given. */
if (csp->csp_auth_key != NULL) {
padlock_hash_key_setup(ses, csp->csp_auth_key,
csp->csp_auth_klen);
}
return (0);
}
int
padlock_hash_process(struct padlock_session *ses, struct cryptop *crp,
const struct crypto_session_params *csp)
{
struct thread *td;
int error;
td = curthread;
fpu_kern_enter(td, ses->ses_fpu_ctx, FPU_KERN_NORMAL | FPU_KERN_KTHR);
if (crp->crp_auth_key != NULL)
padlock_hash_key_setup(ses, crp->crp_auth_key,
csp->csp_auth_klen);
error = padlock_authcompute(ses, crp);
fpu_kern_leave(td, ses->ses_fpu_ctx);
return (error);
}
void
padlock_hash_free(struct padlock_session *ses)
{
if (ses->ses_ictx != NULL) {
padlock_free_ctx(ses->ses_axf, ses->ses_ictx);
zfree(ses->ses_ictx, M_PADLOCK);
ses->ses_ictx = NULL;
}
if (ses->ses_octx != NULL) {
padlock_free_ctx(ses->ses_axf, ses->ses_octx);
zfree(ses->ses_octx, M_PADLOCK);
ses->ses_octx = NULL;
}
}