freebsd-dev/sys/cam/cam_sim.c
Alexander Motin 83c5d981ac MFp4: Large set of CAM inprovements.
- Unify bus reset/probe sequence. Whenever bus attached at boot or later,
CAM will automatically reset and scan it. It allows to remove duplicate
code from many drivers.
- Any bus, attached before CAM completed it's boot-time initialization,
will equally join to the process, delaying boot if needed.
- New kern.cam.boot_delay loader tunable should help controllers that
are still unable to register their buses in time (such as slow USB/
PCCard/ CardBus devices), by adding one more event to wait on boot.
- To allow synchronization between different CAM levels, concept of
requests priorities was extended. Priorities now split between several
"run levels". Device can be freezed at specified level, allowing higher
priority requests to pass. For example, no payload requests allowed,
until PMP driver enable port. ATA XPT negotiate transfer parameters,
periph driver configure caching and so on.
- Frozen requests are no more counted by request allocation scheduler.
It fixes deadlocks, when frozen low priority payload requests occupying
slots, required by higher levels to manage theit execution.
- Two last changes were holding proper ATA reinitialization and error
recovery implementation. Now it is done: SATA controllers and Port
Multipliers now implement automatic hot-plug and should correctly
recover from timeouts and bus resets.
- Improve SCSI error recovery for devices on buses without automatic sense
reporting, such as ATAPI or USB. For example, it allows CAM to wait, while
CD drive loads disk, instead of immediately return error status.
- Decapitalize diagnostic messages and make them more readable and sensible.
- Teach PMP driver to limit maximum speed on fan-out ports.
- Make boot wait for PMP scan completes, and make rescan more reliable.
- Fix pass driver, to return CCB to user level in case of error.
- Increase number of retries in cd driver, as device may return several UAs.
2010-01-28 08:41:30 +00:00

148 lines
3.8 KiB
C

/*-
* Common functions for SCSI Interface Modules (SIMs).
*
* Copyright (c) 1997 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_queue.h>
#define CAM_PATH_ANY (u_int32_t)-1
MALLOC_DEFINE(M_CAMSIM, "CAM SIM", "CAM SIM buffers");
struct cam_devq *
cam_simq_alloc(u_int32_t max_sim_transactions)
{
return (cam_devq_alloc(/*size*/0, max_sim_transactions));
}
void
cam_simq_free(struct cam_devq *devq)
{
cam_devq_free(devq);
}
struct cam_sim *
cam_sim_alloc(sim_action_func sim_action, sim_poll_func sim_poll,
const char *sim_name, void *softc, u_int32_t unit,
struct mtx *mtx, int max_dev_transactions,
int max_tagged_dev_transactions, struct cam_devq *queue)
{
struct cam_sim *sim;
if (mtx == NULL)
return (NULL);
sim = (struct cam_sim *)malloc(sizeof(struct cam_sim),
M_CAMSIM, M_ZERO | M_NOWAIT);
if (sim == NULL)
return (NULL);
sim->sim_action = sim_action;
sim->sim_poll = sim_poll;
sim->sim_name = sim_name;
sim->softc = softc;
sim->path_id = CAM_PATH_ANY;
sim->unit_number = unit;
sim->bus_id = 0; /* set in xpt_bus_register */
sim->max_tagged_dev_openings = max_tagged_dev_transactions;
sim->max_dev_openings = max_dev_transactions;
sim->flags = 0;
sim->refcount = 1;
sim->devq = queue;
sim->max_ccbs = 8; /* Reserve for management purposes. */
sim->mtx = mtx;
if (mtx == &Giant) {
sim->flags |= 0;
callout_init(&sim->callout, 0);
} else {
sim->flags |= CAM_SIM_MPSAFE;
callout_init(&sim->callout, 1);
}
SLIST_INIT(&sim->ccb_freeq);
TAILQ_INIT(&sim->sim_doneq);
return (sim);
}
void
cam_sim_free(struct cam_sim *sim, int free_devq)
{
int error;
sim->refcount--;
if (sim->refcount > 0) {
error = msleep(sim, sim->mtx, PRIBIO, "simfree", 0);
KASSERT(error == 0, ("invalid error value for msleep(9)"));
}
KASSERT(sim->refcount == 0, ("sim->refcount == 0"));
if (free_devq)
cam_simq_free(sim->devq);
free(sim, M_CAMSIM);
}
void
cam_sim_release(struct cam_sim *sim)
{
KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
mtx_assert(sim->mtx, MA_OWNED);
sim->refcount--;
if (sim->refcount == 0)
wakeup(sim);
}
void
cam_sim_hold(struct cam_sim *sim)
{
KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
mtx_assert(sim->mtx, MA_OWNED);
sim->refcount++;
}
void
cam_sim_set_path(struct cam_sim *sim, u_int32_t path_id)
{
sim->path_id = path_id;
}