freebsd-dev/sys/dev/cxgbe/t4_l2t.c
Navdeep Parhar 733b92779e Many updates to cxgbe(4)
- Device configuration via plain text config file.  Also able to operate
  when not attached to the chip as the master driver.

- Generic "work request" queue that serves as the base for both ctrl and
  ofld tx queues.

- Generic interrupt handler routine that can process any event on any
  kind of ingress queue (via a dispatch table).

- A couple of new driver ioctls.  cxgbetool can now install a firmware
  to the card ("loadfw" command) and can read the card's memory
  ("memdump" and "tcb" commands).

- Lots of assorted information within dev.t4nex.X.misc.*  This is
  primarily for debugging and won't show up in sysctl -a.

- Code to manage the L2 tables on the chip.

- Updates to cxgbe(4) man page to go with the tunables that have changed.

- Updates to the shared code in common/

- Updates to the driver-firmware interface (now at fw 1.4.16.0)

MFC after:	1 month
2011-12-16 02:09:51 +00:00

785 lines
21 KiB
C

/*-
* Copyright (c) 2011 Chelsio Communications, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/rwlock.h>
#include <sys/socket.h>
#include <sys/sbuf.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/ethernet.h>
#include <net/if_vlan_var.h>
#include <net/if_dl.h>
#include <net/if_llatbl.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include "common/common.h"
#include "common/jhash.h"
#include "common/t4_msg.h"
#include "t4_l2t.h"
/*
* Module locking notes: There is a RW lock protecting the L2 table as a
* whole plus a spinlock per L2T entry. Entry lookups and allocations happen
* under the protection of the table lock, individual entry changes happen
* while holding that entry's spinlock. The table lock nests outside the
* entry locks. Allocations of new entries take the table lock as writers so
* no other lookups can happen while allocating new entries. Entry updates
* take the table lock as readers so multiple entries can be updated in
* parallel. An L2T entry can be dropped by decrementing its reference count
* and therefore can happen in parallel with entry allocation but no entry
* can change state or increment its ref count during allocation as both of
* these perform lookups.
*
* Note: We do not take refereces to ifnets in this module because both
* the TOE and the sockets already hold references to the interfaces and the
* lifetime of an L2T entry is fully contained in the lifetime of the TOE.
*/
/* identifies sync vs async L2T_WRITE_REQs */
#define S_SYNC_WR 12
#define V_SYNC_WR(x) ((x) << S_SYNC_WR)
#define F_SYNC_WR V_SYNC_WR(1)
enum {
L2T_STATE_VALID, /* entry is up to date */
L2T_STATE_STALE, /* entry may be used but needs revalidation */
L2T_STATE_RESOLVING, /* entry needs address resolution */
L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */
/* when state is one of the below the entry is not hashed */
L2T_STATE_SWITCHING, /* entry is being used by a switching filter */
L2T_STATE_UNUSED /* entry not in use */
};
struct l2t_data {
struct rwlock lock;
volatile int nfree; /* number of free entries */
struct l2t_entry *rover;/* starting point for next allocation */
struct l2t_entry l2tab[L2T_SIZE];
};
static int do_l2t_write_rpl(struct sge_iq *, const struct rss_header *,
struct mbuf *);
#define VLAN_NONE 0xfff
#define SA(x) ((struct sockaddr *)(x))
#define SIN(x) ((struct sockaddr_in *)(x))
#define SINADDR(x) (SIN(x)->sin_addr.s_addr)
/*
* Allocate a free L2T entry. Must be called with l2t_data.lock held.
*/
static struct l2t_entry *
alloc_l2e(struct l2t_data *d)
{
struct l2t_entry *end, *e, **p;
rw_assert(&d->lock, RA_WLOCKED);
if (!atomic_load_acq_int(&d->nfree))
return (NULL);
/* there's definitely a free entry */
for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e)
if (atomic_load_acq_int(&e->refcnt) == 0)
goto found;
for (e = d->l2tab; atomic_load_acq_int(&e->refcnt); ++e) ;
found:
d->rover = e + 1;
atomic_subtract_int(&d->nfree, 1);
/*
* The entry we found may be an inactive entry that is
* presently in the hash table. We need to remove it.
*/
if (e->state < L2T_STATE_SWITCHING) {
for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) {
if (*p == e) {
*p = e->next;
e->next = NULL;
break;
}
}
}
e->state = L2T_STATE_UNUSED;
return (e);
}
/*
* Write an L2T entry. Must be called with the entry locked.
* The write may be synchronous or asynchronous.
*/
static int
write_l2e(struct adapter *sc, struct l2t_entry *e, int sync)
{
struct mbuf *m;
struct cpl_l2t_write_req *req;
mtx_assert(&e->lock, MA_OWNED);
if ((m = m_gethdr(M_NOWAIT, MT_DATA)) == NULL)
return (ENOMEM);
req = mtod(m, struct cpl_l2t_write_req *);
m->m_pkthdr.len = m->m_len = sizeof(*req);
INIT_TP_WR(req, 0);
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx |
V_SYNC_WR(sync) | V_TID_QID(sc->sge.fwq.abs_id)));
req->params = htons(V_L2T_W_PORT(e->lport) | V_L2T_W_NOREPLY(!sync));
req->l2t_idx = htons(e->idx);
req->vlan = htons(e->vlan);
memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
t4_mgmt_tx(sc, m);
if (sync && e->state != L2T_STATE_SWITCHING)
e->state = L2T_STATE_SYNC_WRITE;
return (0);
}
/*
* Allocate an L2T entry for use by a switching rule. Such need to be
* explicitly freed and while busy they are not on any hash chain, so normal
* address resolution updates do not see them.
*/
struct l2t_entry *
t4_l2t_alloc_switching(struct l2t_data *d)
{
struct l2t_entry *e;
rw_rlock(&d->lock);
e = alloc_l2e(d);
if (e) {
mtx_lock(&e->lock); /* avoid race with t4_l2t_free */
e->state = L2T_STATE_SWITCHING;
atomic_store_rel_int(&e->refcnt, 1);
mtx_unlock(&e->lock);
}
rw_runlock(&d->lock);
return e;
}
/*
* Sets/updates the contents of a switching L2T entry that has been allocated
* with an earlier call to @t4_l2t_alloc_switching.
*/
int
t4_l2t_set_switching(struct adapter *sc, struct l2t_entry *e, uint16_t vlan,
uint8_t port, uint8_t *eth_addr)
{
int rc;
e->vlan = vlan;
e->lport = port;
memcpy(e->dmac, eth_addr, ETHER_ADDR_LEN);
mtx_lock(&e->lock);
rc = write_l2e(sc, e, 0);
mtx_unlock(&e->lock);
return (rc);
}
int
t4_init_l2t(struct adapter *sc, int flags)
{
int i;
struct l2t_data *d;
d = malloc(sizeof(*d), M_CXGBE, M_ZERO | flags);
if (!d)
return (ENOMEM);
d->rover = d->l2tab;
atomic_store_rel_int(&d->nfree, L2T_SIZE);
rw_init(&d->lock, "L2T");
for (i = 0; i < L2T_SIZE; i++) {
d->l2tab[i].idx = i;
d->l2tab[i].state = L2T_STATE_UNUSED;
mtx_init(&d->l2tab[i].lock, "L2T_E", NULL, MTX_DEF);
atomic_store_rel_int(&d->l2tab[i].refcnt, 0);
}
sc->l2t = d;
t4_register_cpl_handler(sc, CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
return (0);
}
int
t4_free_l2t(struct l2t_data *d)
{
int i;
for (i = 0; i < L2T_SIZE; i++)
mtx_destroy(&d->l2tab[i].lock);
rw_destroy(&d->lock);
free(d, M_CXGBE);
return (0);
}
static inline unsigned int
vlan_prio(const struct l2t_entry *e)
{
return e->vlan >> 13;
}
static char
l2e_state(const struct l2t_entry *e)
{
switch (e->state) {
case L2T_STATE_VALID: return 'V'; /* valid, fast-path entry */
case L2T_STATE_STALE: return 'S'; /* needs revalidation, but usable */
case L2T_STATE_SYNC_WRITE: return 'W';
case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R';
case L2T_STATE_SWITCHING: return 'X';
default: return 'U';
}
}
int
sysctl_l2t(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct l2t_data *l2t = sc->l2t;
struct l2t_entry *e;
struct sbuf *sb;
int rc, i, header = 0;
char ip[60];
if (l2t == NULL)
return (ENXIO);
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
e = &l2t->l2tab[0];
for (i = 0; i < L2T_SIZE; i++, e++) {
mtx_lock(&e->lock);
if (e->state == L2T_STATE_UNUSED)
goto skip;
if (header == 0) {
sbuf_printf(sb, " Idx IP address "
"Ethernet address VLAN/P LP State Users Port");
header = 1;
}
if (e->state == L2T_STATE_SWITCHING || e->v6)
ip[0] = 0;
else
snprintf(ip, sizeof(ip), "%s",
inet_ntoa(*(struct in_addr *)&e->addr[0]));
/* XXX: accessing lle probably not safe? */
sbuf_printf(sb, "\n%4u %-15s %02x:%02x:%02x:%02x:%02x:%02x %4d"
" %u %2u %c %5u %s",
e->idx, ip, e->dmac[0], e->dmac[1], e->dmac[2],
e->dmac[3], e->dmac[4], e->dmac[5],
e->vlan & 0xfff, vlan_prio(e), e->lport,
l2e_state(e), atomic_load_acq_int(&e->refcnt),
e->lle ? e->lle->lle_tbl->llt_ifp->if_xname : "");
skip:
mtx_unlock(&e->lock);
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
#ifndef TCP_OFFLOAD_DISABLE
static inline void
l2t_hold(struct l2t_data *d, struct l2t_entry *e)
{
if (atomic_fetchadd_int(&e->refcnt, 1) == 0) /* 0 -> 1 transition */
atomic_subtract_int(&d->nfree, 1);
}
/*
* To avoid having to check address families we do not allow v4 and v6
* neighbors to be on the same hash chain. We keep v4 entries in the first
* half of available hash buckets and v6 in the second.
*/
enum {
L2T_SZ_HALF = L2T_SIZE / 2,
L2T_HASH_MASK = L2T_SZ_HALF - 1
};
static inline unsigned int
arp_hash(const uint32_t *key, int ifindex)
{
return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK;
}
static inline unsigned int
ipv6_hash(const uint32_t *key, int ifindex)
{
uint32_t xor = key[0] ^ key[1] ^ key[2] ^ key[3];
return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK);
}
static inline unsigned int
addr_hash(const uint32_t *addr, int addr_len, int ifindex)
{
return addr_len == 4 ? arp_hash(addr, ifindex) :
ipv6_hash(addr, ifindex);
}
/*
* Checks if an L2T entry is for the given IP/IPv6 address. It does not check
* whether the L2T entry and the address are of the same address family.
* Callers ensure an address is only checked against L2T entries of the same
* family, something made trivial by the separation of IP and IPv6 hash chains
* mentioned above. Returns 0 if there's a match,
*/
static inline int
addreq(const struct l2t_entry *e, const uint32_t *addr)
{
if (e->v6)
return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
(e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
return e->addr[0] ^ addr[0];
}
/*
* Add a packet to an L2T entry's queue of packets awaiting resolution.
* Must be called with the entry's lock held.
*/
static inline void
arpq_enqueue(struct l2t_entry *e, struct mbuf *m)
{
mtx_assert(&e->lock, MA_OWNED);
KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt not NULL", __func__));
if (e->arpq_head)
e->arpq_tail->m_nextpkt = m;
else
e->arpq_head = m;
e->arpq_tail = m;
}
static inline void
send_pending(struct adapter *sc, struct l2t_entry *e)
{
struct mbuf *m, *next;
mtx_assert(&e->lock, MA_OWNED);
for (m = e->arpq_head; m; m = next) {
next = m->m_nextpkt;
m->m_nextpkt = NULL;
t4_wrq_tx(sc, MBUF_EQ(m), m);
}
e->arpq_head = e->arpq_tail = NULL;
}
#ifdef INET
/*
* Looks up and fills up an l2t_entry's lle. We grab all the locks that we need
* ourself, and update e->state at the end if e->lle was successfully filled.
*
* The lle passed in comes from arpresolve and is ignored as it does not appear
* to be of much use.
*/
static int
l2t_fill_lle(struct adapter *sc, struct l2t_entry *e, struct llentry *unused)
{
int rc = 0;
struct sockaddr_in sin;
struct ifnet *ifp = e->ifp;
struct llentry *lle;
bzero(&sin, sizeof(struct sockaddr_in));
if (e->v6)
panic("%s: IPv6 L2 resolution not supported yet.", __func__);
sin.sin_family = AF_INET;
sin.sin_len = sizeof(struct sockaddr_in);
memcpy(&sin.sin_addr, e->addr, sizeof(struct sockaddr_in));
mtx_assert(&e->lock, MA_NOTOWNED);
KASSERT(e->addr && ifp, ("%s: bad prep before call", __func__));
IF_AFDATA_LOCK(ifp);
lle = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, SA(&sin));
IF_AFDATA_UNLOCK(ifp);
if (!LLE_IS_VALID(lle))
return (ENOMEM);
if (!(lle->la_flags & LLE_VALID)) {
rc = EINVAL;
goto done;
}
LLE_ADDREF(lle);
mtx_lock(&e->lock);
if (e->state == L2T_STATE_RESOLVING) {
KASSERT(e->lle == NULL, ("%s: lle already valid", __func__));
e->lle = lle;
memcpy(e->dmac, &lle->ll_addr, ETHER_ADDR_LEN);
write_l2e(sc, e, 1);
} else {
KASSERT(e->lle == lle, ("%s: lle changed", __func__));
LLE_REMREF(lle);
}
mtx_unlock(&e->lock);
done:
LLE_WUNLOCK(lle);
return (rc);
}
#endif
int
t4_l2t_send(struct adapter *sc, struct mbuf *m, struct l2t_entry *e)
{
#ifndef INET
return (EINVAL);
#else
struct llentry *lle = NULL;
struct sockaddr_in sin;
struct ifnet *ifp = e->ifp;
if (e->v6)
panic("%s: IPv6 L2 resolution not supported yet.", __func__);
bzero(&sin, sizeof(struct sockaddr_in));
sin.sin_family = AF_INET;
sin.sin_len = sizeof(struct sockaddr_in);
memcpy(&sin.sin_addr, e->addr, sizeof(struct sockaddr_in));
again:
switch (e->state) {
case L2T_STATE_STALE: /* entry is stale, kick off revalidation */
if (arpresolve(ifp, NULL, NULL, SA(&sin), e->dmac, &lle) == 0)
l2t_fill_lle(sc, e, lle);
/* Fall through */
case L2T_STATE_VALID: /* fast-path, send the packet on */
return t4_wrq_tx(sc, MBUF_EQ(m), m);
case L2T_STATE_RESOLVING:
case L2T_STATE_SYNC_WRITE:
mtx_lock(&e->lock);
if (e->state != L2T_STATE_SYNC_WRITE &&
e->state != L2T_STATE_RESOLVING) {
/* state changed by the time we got here */
mtx_unlock(&e->lock);
goto again;
}
arpq_enqueue(e, m);
mtx_unlock(&e->lock);
if (e->state == L2T_STATE_RESOLVING &&
arpresolve(ifp, NULL, NULL, SA(&sin), e->dmac, &lle) == 0)
l2t_fill_lle(sc, e, lle);
}
return (0);
#endif
}
/*
* Called when an L2T entry has no more users. The entry is left in the hash
* table since it is likely to be reused but we also bump nfree to indicate
* that the entry can be reallocated for a different neighbor. We also drop
* the existing neighbor reference in case the neighbor is going away and is
* waiting on our reference.
*
* Because entries can be reallocated to other neighbors once their ref count
* drops to 0 we need to take the entry's lock to avoid races with a new
* incarnation.
*/
static void
t4_l2e_free(struct l2t_entry *e)
{
struct llentry *lle = NULL;
struct l2t_data *d;
mtx_lock(&e->lock);
if (atomic_load_acq_int(&e->refcnt) == 0) { /* hasn't been recycled */
lle = e->lle;
e->lle = NULL;
/*
* Don't need to worry about the arpq, an L2T entry can't be
* released if any packets are waiting for resolution as we
* need to be able to communicate with the device to close a
* connection.
*/
}
mtx_unlock(&e->lock);
d = container_of(e, struct l2t_data, l2tab[e->idx]);
atomic_add_int(&d->nfree, 1);
if (lle)
LLE_FREE(lle);
}
void
t4_l2t_release(struct l2t_entry *e)
{
if (atomic_fetchadd_int(&e->refcnt, -1) == 1)
t4_l2e_free(e);
}
static int
do_l2t_write_rpl(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(rpl);
unsigned int idx = tid & (L2T_SIZE - 1);
if (__predict_false(rpl->status != CPL_ERR_NONE)) {
log(LOG_ERR,
"Unexpected L2T_WRITE_RPL status %u for entry %u\n",
rpl->status, idx);
return (EINVAL);
}
if (tid & F_SYNC_WR) {
struct l2t_entry *e = &sc->l2t->l2tab[idx];
mtx_lock(&e->lock);
if (e->state != L2T_STATE_SWITCHING) {
send_pending(sc, e);
e->state = L2T_STATE_VALID;
}
mtx_unlock(&e->lock);
}
return (0);
}
/*
* Reuse an L2T entry that was previously used for the same next hop.
*/
static void
reuse_entry(struct l2t_entry *e)
{
struct llentry *lle;
mtx_lock(&e->lock); /* avoid race with t4_l2t_free */
lle = e->lle;
if (lle) {
KASSERT(lle->la_flags & LLE_VALID,
("%s: invalid lle stored in l2t_entry", __func__));
if (lle->la_expire >= time_uptime)
e->state = L2T_STATE_STALE;
else
e->state = L2T_STATE_VALID;
} else
e->state = L2T_STATE_RESOLVING;
mtx_unlock(&e->lock);
}
/*
* The TOE wants an L2 table entry that it can use to reach the next hop over
* the specified port. Produce such an entry - create one if needed.
*
* Note that the ifnet could be a pseudo-device like if_vlan, if_lagg, etc. on
* top of the real cxgbe interface.
*/
struct l2t_entry *
t4_l2t_get(struct port_info *pi, struct ifnet *ifp, struct sockaddr *sa)
{
struct l2t_entry *e;
struct l2t_data *d = pi->adapter->l2t;
int addr_len;
uint32_t *addr;
int hash;
struct sockaddr_in6 *sin6;
unsigned int smt_idx = pi->port_id;
if (sa->sa_family == AF_INET) {
addr = (uint32_t *)&SINADDR(sa);
addr_len = sizeof(SINADDR(sa));
} else if (sa->sa_family == AF_INET6) {
sin6 = (struct sockaddr_in6 *)sa;
addr = (uint32_t *)&sin6->sin6_addr.s6_addr;
addr_len = sizeof(sin6->sin6_addr.s6_addr);
} else
return (NULL);
hash = addr_hash(addr, addr_len, ifp->if_index);
rw_wlock(&d->lock);
for (e = d->l2tab[hash].first; e; e = e->next) {
if (!addreq(e, addr) && e->ifp == ifp && e->smt_idx == smt_idx){
l2t_hold(d, e);
if (atomic_load_acq_int(&e->refcnt) == 1)
reuse_entry(e);
goto done;
}
}
/* Need to allocate a new entry */
e = alloc_l2e(d);
if (e) {
mtx_lock(&e->lock); /* avoid race with t4_l2t_free */
e->state = L2T_STATE_RESOLVING;
memcpy(e->addr, addr, addr_len);
e->ifindex = ifp->if_index;
e->smt_idx = smt_idx;
e->ifp = ifp;
e->hash = hash;
e->lport = pi->lport;
e->v6 = (addr_len == 16);
e->lle = NULL;
atomic_store_rel_int(&e->refcnt, 1);
if (ifp->if_type == IFT_L2VLAN)
VLAN_TAG(ifp, &e->vlan);
else
e->vlan = VLAN_NONE;
e->next = d->l2tab[hash].first;
d->l2tab[hash].first = e;
mtx_unlock(&e->lock);
}
done:
rw_wunlock(&d->lock);
return e;
}
/*
* Called when the host's neighbor layer makes a change to some entry that is
* loaded into the HW L2 table.
*/
void
t4_l2t_update(struct adapter *sc, struct llentry *lle)
{
struct l2t_entry *e;
struct l2t_data *d = sc->l2t;
struct sockaddr *sa = L3_ADDR(lle);
struct llentry *old_lle = NULL;
uint32_t *addr = (uint32_t *)&SINADDR(sa);
struct ifnet *ifp = lle->lle_tbl->llt_ifp;
int hash = addr_hash(addr, sizeof(*addr), ifp->if_index);
KASSERT(d != NULL, ("%s: no L2 table", __func__));
LLE_WLOCK_ASSERT(lle);
KASSERT(lle->la_flags & LLE_VALID || lle->la_flags & LLE_DELETED,
("%s: entry neither valid nor deleted.", __func__));
rw_rlock(&d->lock);
for (e = d->l2tab[hash].first; e; e = e->next) {
if (!addreq(e, addr) && e->ifp == ifp) {
mtx_lock(&e->lock);
if (atomic_load_acq_int(&e->refcnt))
goto found;
e->state = L2T_STATE_STALE;
mtx_unlock(&e->lock);
break;
}
}
rw_runlock(&d->lock);
/* The TOE has no interest in this LLE */
return;
found:
rw_runlock(&d->lock);
if (atomic_load_acq_int(&e->refcnt)) {
/* Entry is referenced by at least 1 offloaded connection. */
/* Handle deletes first */
if (lle->la_flags & LLE_DELETED) {
if (lle == e->lle) {
e->lle = NULL;
e->state = L2T_STATE_RESOLVING;
LLE_REMREF(lle);
}
goto done;
}
if (lle != e->lle) {
old_lle = e->lle;
LLE_ADDREF(lle);
e->lle = lle;
}
if (e->state == L2T_STATE_RESOLVING ||
memcmp(e->dmac, &lle->ll_addr, ETHER_ADDR_LEN)) {
/* unresolved -> resolved; or dmac changed */
memcpy(e->dmac, &lle->ll_addr, ETHER_ADDR_LEN);
write_l2e(sc, e, 1);
} else {
/* +ve reinforcement of a valid or stale entry */
}
e->state = L2T_STATE_VALID;
} else {
/*
* Entry was used previously but is unreferenced right now.
* e->lle has been released and NULL'd out by t4_l2t_free, or
* l2t_release is about to call t4_l2t_free and do that.
*
* Either way this is of no interest to us.
*/
}
done:
mtx_unlock(&e->lock);
if (old_lle)
LLE_FREE(old_lle);
}
#endif