freebsd-dev/sys/netinet/tcp_subr.c
Alexander V. Chernikov 29c47f18da * Split tcp_signature_compute() into 2 pieces:
- tcp_get_sav() - SADB key lookup
 - tcp_signature_do_compute() - actual computation
* Fix TCP signature case for listening socket:
  do not assume EVERY connection coming to socket
  with TCP_SIGNATURE set to be md5 signed regardless
  of SADB key existance for particular address. This
  fixes the case for routing software having _some_
  BGP sessions secured by md5.
* Simplify TCP_SIGNATURE handling in tcp_input()

MFC after:	2 weeks
2014-09-27 07:04:12 +00:00

2454 lines
65 KiB
C

/*-
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ipsec.h"
#include "opt_tcpdebug.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/hhook.h>
#include <sys/kernel.h>
#include <sys/khelp.h>
#include <sys/sysctl.h>
#include <sys/jail.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#ifdef INET6
#include <sys/domain.h>
#endif
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/sdt.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/random.h>
#include <vm/uma.h>
#include <net/route.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/vnet.h>
#include <netinet/cc.h>
#include <netinet/in.h>
#include <netinet/in_kdtrace.h>
#include <netinet/in_pcb.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
#include <netinet/ip_var.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/ip6_var.h>
#include <netinet6/scope6_var.h>
#include <netinet6/nd6.h>
#endif
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcp_syncache.h>
#ifdef INET6
#include <netinet6/tcp6_var.h>
#endif
#include <netinet/tcpip.h>
#ifdef TCPDEBUG
#include <netinet/tcp_debug.h>
#endif
#ifdef INET6
#include <netinet6/ip6protosw.h>
#endif
#ifdef TCP_OFFLOAD
#include <netinet/tcp_offload.h>
#endif
#ifdef IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/xform.h>
#ifdef INET6
#include <netipsec/ipsec6.h>
#endif
#include <netipsec/key.h>
#include <sys/syslog.h>
#endif /*IPSEC*/
#include <machine/in_cksum.h>
#include <sys/md5.h>
#include <security/mac/mac_framework.h>
VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
#ifdef INET6
VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
#endif
static int
sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
{
int error, new;
new = V_tcp_mssdflt;
error = sysctl_handle_int(oidp, &new, 0, req);
if (error == 0 && req->newptr) {
if (new < TCP_MINMSS)
error = EINVAL;
else
V_tcp_mssdflt = new;
}
return (error);
}
SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
&sysctl_net_inet_tcp_mss_check, "I",
"Default TCP Maximum Segment Size");
#ifdef INET6
static int
sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
{
int error, new;
new = V_tcp_v6mssdflt;
error = sysctl_handle_int(oidp, &new, 0, req);
if (error == 0 && req->newptr) {
if (new < TCP_MINMSS)
error = EINVAL;
else
V_tcp_v6mssdflt = new;
}
return (error);
}
SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
&sysctl_net_inet_tcp_mss_v6_check, "I",
"Default TCP Maximum Segment Size for IPv6");
#endif /* INET6 */
/*
* Minimum MSS we accept and use. This prevents DoS attacks where
* we are forced to a ridiculous low MSS like 20 and send hundreds
* of packets instead of one. The effect scales with the available
* bandwidth and quickly saturates the CPU and network interface
* with packet generation and sending. Set to zero to disable MINMSS
* checking. This setting prevents us from sending too small packets.
*/
VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
&VNET_NAME(tcp_minmss), 0,
"Minimum TCP Maximum Segment Size");
VNET_DEFINE(int, tcp_do_rfc1323) = 1;
SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
&VNET_NAME(tcp_do_rfc1323), 0,
"Enable rfc1323 (high performance TCP) extensions");
static int tcp_log_debug = 0;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
&tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
static int tcp_tcbhashsize;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
&tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
static int do_tcpdrain = 1;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
"Enable tcp_drain routine for extra help when low on mbufs");
SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
&VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
static VNET_DEFINE(int, icmp_may_rst) = 1;
#define V_icmp_may_rst VNET(icmp_may_rst)
SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
&VNET_NAME(icmp_may_rst), 0,
"Certain ICMP unreachable messages may abort connections in SYN_SENT");
static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
#define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval)
SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
&VNET_NAME(tcp_isn_reseed_interval), 0,
"Seconds between reseeding of ISN secret");
static int tcp_soreceive_stream;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
&tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
#ifdef TCP_SIGNATURE
static int tcp_sig_checksigs = 1;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
&tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
#endif
VNET_DEFINE(uma_zone_t, sack_hole_zone);
#define V_sack_hole_zone VNET(sack_hole_zone)
VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
static struct inpcb *tcp_notify(struct inpcb *, int);
static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
void *ip4hdr, const void *ip6hdr);
/*
* Target size of TCP PCB hash tables. Must be a power of two.
*
* Note that this can be overridden by the kernel environment
* variable net.inet.tcp.tcbhashsize
*/
#ifndef TCBHASHSIZE
#define TCBHASHSIZE 0
#endif
/*
* XXX
* Callouts should be moved into struct tcp directly. They are currently
* separate because the tcpcb structure is exported to userland for sysctl
* parsing purposes, which do not know about callouts.
*/
struct tcpcb_mem {
struct tcpcb tcb;
struct tcp_timer tt;
struct cc_var ccv;
struct osd osd;
};
static VNET_DEFINE(uma_zone_t, tcpcb_zone);
#define V_tcpcb_zone VNET(tcpcb_zone)
MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
static struct mtx isn_mtx;
#define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
#define ISN_LOCK() mtx_lock(&isn_mtx)
#define ISN_UNLOCK() mtx_unlock(&isn_mtx)
/*
* TCP initialization.
*/
static void
tcp_zone_change(void *tag)
{
uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
uma_zone_set_max(V_tcpcb_zone, maxsockets);
tcp_tw_zone_change();
}
static int
tcp_inpcb_init(void *mem, int size, int flags)
{
struct inpcb *inp = mem;
INP_LOCK_INIT(inp, "inp", "tcpinp");
return (0);
}
/*
* Take a value and get the next power of 2 that doesn't overflow.
* Used to size the tcp_inpcb hash buckets.
*/
static int
maketcp_hashsize(int size)
{
int hashsize;
/*
* auto tune.
* get the next power of 2 higher than maxsockets.
*/
hashsize = 1 << fls(size);
/* catch overflow, and just go one power of 2 smaller */
if (hashsize < size) {
hashsize = 1 << (fls(size) - 1);
}
return (hashsize);
}
void
tcp_init(void)
{
const char *tcbhash_tuneable;
int hashsize;
tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
&V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
printf("%s: WARNING: unable to register helper hook\n", __func__);
if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
&V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
printf("%s: WARNING: unable to register helper hook\n", __func__);
hashsize = TCBHASHSIZE;
TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
if (hashsize == 0) {
/*
* Auto tune the hash size based on maxsockets.
* A perfect hash would have a 1:1 mapping
* (hashsize = maxsockets) however it's been
* suggested that O(2) average is better.
*/
hashsize = maketcp_hashsize(maxsockets / 4);
/*
* Our historical default is 512,
* do not autotune lower than this.
*/
if (hashsize < 512)
hashsize = 512;
if (bootverbose)
printf("%s: %s auto tuned to %d\n", __func__,
tcbhash_tuneable, hashsize);
}
/*
* We require a hashsize to be a power of two.
* Previously if it was not a power of two we would just reset it
* back to 512, which could be a nasty surprise if you did not notice
* the error message.
* Instead what we do is clip it to the closest power of two lower
* than the specified hash value.
*/
if (!powerof2(hashsize)) {
int oldhashsize = hashsize;
hashsize = maketcp_hashsize(hashsize);
/* prevent absurdly low value */
if (hashsize < 16)
hashsize = 16;
printf("%s: WARNING: TCB hash size not a power of 2, "
"clipped from %d to %d.\n", __func__, oldhashsize,
hashsize);
}
in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
"tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
IPI_HASHFIELDS_4TUPLE);
/*
* These have to be type stable for the benefit of the timers.
*/
V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
uma_zone_set_max(V_tcpcb_zone, maxsockets);
uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
tcp_tw_init();
syncache_init();
tcp_hc_init();
TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
/* Skip initialization of globals for non-default instances. */
if (!IS_DEFAULT_VNET(curvnet))
return;
/* XXX virtualize those bellow? */
tcp_delacktime = TCPTV_DELACK;
tcp_keepinit = TCPTV_KEEP_INIT;
tcp_keepidle = TCPTV_KEEP_IDLE;
tcp_keepintvl = TCPTV_KEEPINTVL;
tcp_maxpersistidle = TCPTV_KEEP_IDLE;
tcp_msl = TCPTV_MSL;
tcp_rexmit_min = TCPTV_MIN;
if (tcp_rexmit_min < 1)
tcp_rexmit_min = 1;
tcp_rexmit_slop = TCPTV_CPU_VAR;
tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
tcp_tcbhashsize = hashsize;
if (tcp_soreceive_stream) {
#ifdef INET
tcp_usrreqs.pru_soreceive = soreceive_stream;
#endif
#ifdef INET6
tcp6_usrreqs.pru_soreceive = soreceive_stream;
#endif /* INET6 */
}
#ifdef INET6
#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
#else /* INET6 */
#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
#endif /* INET6 */
if (max_protohdr < TCP_MINPROTOHDR)
max_protohdr = TCP_MINPROTOHDR;
if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
panic("tcp_init");
#undef TCP_MINPROTOHDR
ISN_LOCK_INIT();
EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
SHUTDOWN_PRI_DEFAULT);
EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
EVENTHANDLER_PRI_ANY);
}
#ifdef VIMAGE
void
tcp_destroy(void)
{
int error;
tcp_hc_destroy();
syncache_destroy();
tcp_tw_destroy();
in_pcbinfo_destroy(&V_tcbinfo);
uma_zdestroy(V_sack_hole_zone);
uma_zdestroy(V_tcpcb_zone);
error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
if (error != 0) {
printf("%s: WARNING: unable to deregister helper hook "
"type=%d, id=%d: error %d returned\n", __func__,
HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
}
error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
if (error != 0) {
printf("%s: WARNING: unable to deregister helper hook "
"type=%d, id=%d: error %d returned\n", __func__,
HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
}
}
#endif
void
tcp_fini(void *xtp)
{
}
/*
* Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
* tcp_template used to store this data in mbufs, but we now recopy it out
* of the tcpcb each time to conserve mbufs.
*/
void
tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
{
struct tcphdr *th = (struct tcphdr *)tcp_ptr;
INP_WLOCK_ASSERT(inp);
#ifdef INET6
if ((inp->inp_vflag & INP_IPV6) != 0) {
struct ip6_hdr *ip6;
ip6 = (struct ip6_hdr *)ip_ptr;
ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
(inp->inp_flow & IPV6_FLOWINFO_MASK);
ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
(IPV6_VERSION & IPV6_VERSION_MASK);
ip6->ip6_nxt = IPPROTO_TCP;
ip6->ip6_plen = htons(sizeof(struct tcphdr));
ip6->ip6_src = inp->in6p_laddr;
ip6->ip6_dst = inp->in6p_faddr;
}
#endif /* INET6 */
#if defined(INET6) && defined(INET)
else
#endif
#ifdef INET
{
struct ip *ip;
ip = (struct ip *)ip_ptr;
ip->ip_v = IPVERSION;
ip->ip_hl = 5;
ip->ip_tos = inp->inp_ip_tos;
ip->ip_len = 0;
ip->ip_id = 0;
ip->ip_off = 0;
ip->ip_ttl = inp->inp_ip_ttl;
ip->ip_sum = 0;
ip->ip_p = IPPROTO_TCP;
ip->ip_src = inp->inp_laddr;
ip->ip_dst = inp->inp_faddr;
}
#endif /* INET */
th->th_sport = inp->inp_lport;
th->th_dport = inp->inp_fport;
th->th_seq = 0;
th->th_ack = 0;
th->th_x2 = 0;
th->th_off = 5;
th->th_flags = 0;
th->th_win = 0;
th->th_urp = 0;
th->th_sum = 0; /* in_pseudo() is called later for ipv4 */
}
/*
* Create template to be used to send tcp packets on a connection.
* Allocates an mbuf and fills in a skeletal tcp/ip header. The only
* use for this function is in keepalives, which use tcp_respond.
*/
struct tcptemp *
tcpip_maketemplate(struct inpcb *inp)
{
struct tcptemp *t;
t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
if (t == NULL)
return (NULL);
tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
return (t);
}
/*
* Send a single message to the TCP at address specified by
* the given TCP/IP header. If m == NULL, then we make a copy
* of the tcpiphdr at th and send directly to the addressed host.
* This is used to force keep alive messages out using the TCP
* template for a connection. If flags are given then we send
* a message back to the TCP which originated the segment th,
* and discard the mbuf containing it and any other attached mbufs.
*
* In any case the ack and sequence number of the transmitted
* segment are as specified by the parameters.
*
* NOTE: If m != NULL, then th must point to *inside* the mbuf.
*/
void
tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
tcp_seq ack, tcp_seq seq, int flags)
{
int tlen;
int win = 0;
struct ip *ip;
struct tcphdr *nth;
#ifdef INET6
struct ip6_hdr *ip6;
int isipv6;
#endif /* INET6 */
int ipflags = 0;
struct inpcb *inp;
KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
#ifdef INET6
isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
ip6 = ipgen;
#endif /* INET6 */
ip = ipgen;
if (tp != NULL) {
inp = tp->t_inpcb;
KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
INP_WLOCK_ASSERT(inp);
} else
inp = NULL;
if (tp != NULL) {
if (!(flags & TH_RST)) {
win = sbspace(&inp->inp_socket->so_rcv);
if (win > (long)TCP_MAXWIN << tp->rcv_scale)
win = (long)TCP_MAXWIN << tp->rcv_scale;
}
}
if (m == NULL) {
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m == NULL)
return;
tlen = 0;
m->m_data += max_linkhdr;
#ifdef INET6
if (isipv6) {
bcopy((caddr_t)ip6, mtod(m, caddr_t),
sizeof(struct ip6_hdr));
ip6 = mtod(m, struct ip6_hdr *);
nth = (struct tcphdr *)(ip6 + 1);
} else
#endif /* INET6 */
{
bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
ip = mtod(m, struct ip *);
nth = (struct tcphdr *)(ip + 1);
}
bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
flags = TH_ACK;
} else {
/*
* reuse the mbuf.
* XXX MRT We inherrit the FIB, which is lucky.
*/
m_freem(m->m_next);
m->m_next = NULL;
m->m_data = (caddr_t)ipgen;
/* m_len is set later */
tlen = 0;
#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
#ifdef INET6
if (isipv6) {
xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
nth = (struct tcphdr *)(ip6 + 1);
} else
#endif /* INET6 */
{
xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
nth = (struct tcphdr *)(ip + 1);
}
if (th != nth) {
/*
* this is usually a case when an extension header
* exists between the IPv6 header and the
* TCP header.
*/
nth->th_sport = th->th_sport;
nth->th_dport = th->th_dport;
}
xchg(nth->th_dport, nth->th_sport, uint16_t);
#undef xchg
}
#ifdef INET6
if (isipv6) {
ip6->ip6_flow = 0;
ip6->ip6_vfc = IPV6_VERSION;
ip6->ip6_nxt = IPPROTO_TCP;
tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
ip6->ip6_plen = htons(tlen - sizeof(*ip6));
}
#endif
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
{
tlen += sizeof (struct tcpiphdr);
ip->ip_len = htons(tlen);
ip->ip_ttl = V_ip_defttl;
if (V_path_mtu_discovery)
ip->ip_off |= htons(IP_DF);
}
#endif
m->m_len = tlen;
m->m_pkthdr.len = tlen;
m->m_pkthdr.rcvif = NULL;
#ifdef MAC
if (inp != NULL) {
/*
* Packet is associated with a socket, so allow the
* label of the response to reflect the socket label.
*/
INP_WLOCK_ASSERT(inp);
mac_inpcb_create_mbuf(inp, m);
} else {
/*
* Packet is not associated with a socket, so possibly
* update the label in place.
*/
mac_netinet_tcp_reply(m);
}
#endif
nth->th_seq = htonl(seq);
nth->th_ack = htonl(ack);
nth->th_x2 = 0;
nth->th_off = sizeof (struct tcphdr) >> 2;
nth->th_flags = flags;
if (tp != NULL)
nth->th_win = htons((u_short) (win >> tp->rcv_scale));
else
nth->th_win = htons((u_short)win);
nth->th_urp = 0;
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
#ifdef INET6
if (isipv6) {
m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
nth->th_sum = in6_cksum_pseudo(ip6,
tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
NULL, NULL);
}
#endif /* INET6 */
#if defined(INET6) && defined(INET)
else
#endif
#ifdef INET
{
m->m_pkthdr.csum_flags = CSUM_TCP;
nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
}
#endif /* INET */
#ifdef TCPDEBUG
if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
#endif
if (flags & TH_RST)
TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
tp, nth);
TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
#ifdef INET6
if (isipv6)
(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
#endif /* INET6 */
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
#endif
}
/*
* Create a new TCP control block, making an
* empty reassembly queue and hooking it to the argument
* protocol control block. The `inp' parameter must have
* come from the zone allocator set up in tcp_init().
*/
struct tcpcb *
tcp_newtcpcb(struct inpcb *inp)
{
struct tcpcb_mem *tm;
struct tcpcb *tp;
#ifdef INET6
int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
#endif /* INET6 */
tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
if (tm == NULL)
return (NULL);
tp = &tm->tcb;
/* Initialise cc_var struct for this tcpcb. */
tp->ccv = &tm->ccv;
tp->ccv->type = IPPROTO_TCP;
tp->ccv->ccvc.tcp = tp;
/*
* Use the current system default CC algorithm.
*/
CC_LIST_RLOCK();
KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
CC_ALGO(tp) = CC_DEFAULT();
CC_LIST_RUNLOCK();
if (CC_ALGO(tp)->cb_init != NULL)
if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
uma_zfree(V_tcpcb_zone, tm);
return (NULL);
}
tp->osd = &tm->osd;
if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
uma_zfree(V_tcpcb_zone, tm);
return (NULL);
}
#ifdef VIMAGE
tp->t_vnet = inp->inp_vnet;
#endif
tp->t_timers = &tm->tt;
/* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */
tp->t_maxseg = tp->t_maxopd =
#ifdef INET6
isipv6 ? V_tcp_v6mssdflt :
#endif /* INET6 */
V_tcp_mssdflt;
/* Set up our timeouts. */
callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
if (V_tcp_do_rfc1323)
tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
if (V_tcp_do_sack)
tp->t_flags |= TF_SACK_PERMIT;
TAILQ_INIT(&tp->snd_holes);
tp->t_inpcb = inp; /* XXX */
/*
* Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
* rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
* reasonable initial retransmit time.
*/
tp->t_srtt = TCPTV_SRTTBASE;
tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
tp->t_rttmin = tcp_rexmit_min;
tp->t_rxtcur = TCPTV_RTOBASE;
tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
tp->t_rcvtime = ticks;
/*
* IPv4 TTL initialization is necessary for an IPv6 socket as well,
* because the socket may be bound to an IPv6 wildcard address,
* which may match an IPv4-mapped IPv6 address.
*/
inp->inp_ip_ttl = V_ip_defttl;
inp->inp_ppcb = tp;
return (tp); /* XXX */
}
/*
* Switch the congestion control algorithm back to NewReno for any active
* control blocks using an algorithm which is about to go away.
* This ensures the CC framework can allow the unload to proceed without leaving
* any dangling pointers which would trigger a panic.
* Returning non-zero would inform the CC framework that something went wrong
* and it would be unsafe to allow the unload to proceed. However, there is no
* way for this to occur with this implementation so we always return zero.
*/
int
tcp_ccalgounload(struct cc_algo *unload_algo)
{
struct cc_algo *tmpalgo;
struct inpcb *inp;
struct tcpcb *tp;
VNET_ITERATOR_DECL(vnet_iter);
/*
* Check all active control blocks across all network stacks and change
* any that are using "unload_algo" back to NewReno. If "unload_algo"
* requires cleanup code to be run, call it.
*/
VNET_LIST_RLOCK();
VNET_FOREACH(vnet_iter) {
CURVNET_SET(vnet_iter);
INP_INFO_RLOCK(&V_tcbinfo);
/*
* New connections already part way through being initialised
* with the CC algo we're removing will not race with this code
* because the INP_INFO_WLOCK is held during initialisation. We
* therefore don't enter the loop below until the connection
* list has stabilised.
*/
LIST_FOREACH(inp, &V_tcb, inp_list) {
INP_WLOCK(inp);
/* Important to skip tcptw structs. */
if (!(inp->inp_flags & INP_TIMEWAIT) &&
(tp = intotcpcb(inp)) != NULL) {
/*
* By holding INP_WLOCK here, we are assured
* that the connection is not currently
* executing inside the CC module's functions
* i.e. it is safe to make the switch back to
* NewReno.
*/
if (CC_ALGO(tp) == unload_algo) {
tmpalgo = CC_ALGO(tp);
/* NewReno does not require any init. */
CC_ALGO(tp) = &newreno_cc_algo;
if (tmpalgo->cb_destroy != NULL)
tmpalgo->cb_destroy(tp->ccv);
}
}
INP_WUNLOCK(inp);
}
INP_INFO_RUNLOCK(&V_tcbinfo);
CURVNET_RESTORE();
}
VNET_LIST_RUNLOCK();
return (0);
}
/*
* Drop a TCP connection, reporting
* the specified error. If connection is synchronized,
* then send a RST to peer.
*/
struct tcpcb *
tcp_drop(struct tcpcb *tp, int errno)
{
struct socket *so = tp->t_inpcb->inp_socket;
INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
INP_WLOCK_ASSERT(tp->t_inpcb);
if (TCPS_HAVERCVDSYN(tp->t_state)) {
tcp_state_change(tp, TCPS_CLOSED);
(void) tcp_output(tp);
TCPSTAT_INC(tcps_drops);
} else
TCPSTAT_INC(tcps_conndrops);
if (errno == ETIMEDOUT && tp->t_softerror)
errno = tp->t_softerror;
so->so_error = errno;
return (tcp_close(tp));
}
void
tcp_discardcb(struct tcpcb *tp)
{
struct inpcb *inp = tp->t_inpcb;
struct socket *so = inp->inp_socket;
#ifdef INET6
int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
#endif /* INET6 */
INP_WLOCK_ASSERT(inp);
/*
* Make sure that all of our timers are stopped before we delete the
* PCB.
*
* XXXRW: Really, we would like to use callout_drain() here in order
* to avoid races experienced in tcp_timer.c where a timer is already
* executing at this point. However, we can't, both because we're
* running in a context where we can't sleep, and also because we
* hold locks required by the timers. What we instead need to do is
* test to see if callout_drain() is required, and if so, defer some
* portion of the remainder of tcp_discardcb() to an asynchronous
* context that can callout_drain() and then continue. Some care
* will be required to ensure that no further processing takes place
* on the tcpcb, even though it hasn't been freed (a flag?).
*/
callout_stop(&tp->t_timers->tt_rexmt);
callout_stop(&tp->t_timers->tt_persist);
callout_stop(&tp->t_timers->tt_keep);
callout_stop(&tp->t_timers->tt_2msl);
callout_stop(&tp->t_timers->tt_delack);
/*
* If we got enough samples through the srtt filter,
* save the rtt and rttvar in the routing entry.
* 'Enough' is arbitrarily defined as 4 rtt samples.
* 4 samples is enough for the srtt filter to converge
* to within enough % of the correct value; fewer samples
* and we could save a bogus rtt. The danger is not high
* as tcp quickly recovers from everything.
* XXX: Works very well but needs some more statistics!
*/
if (tp->t_rttupdated >= 4) {
struct hc_metrics_lite metrics;
u_long ssthresh;
bzero(&metrics, sizeof(metrics));
/*
* Update the ssthresh always when the conditions below
* are satisfied. This gives us better new start value
* for the congestion avoidance for new connections.
* ssthresh is only set if packet loss occured on a session.
*
* XXXRW: 'so' may be NULL here, and/or socket buffer may be
* being torn down. Ideally this code would not use 'so'.
*/
ssthresh = tp->snd_ssthresh;
if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
/*
* convert the limit from user data bytes to
* packets then to packet data bytes.
*/
ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
if (ssthresh < 2)
ssthresh = 2;
ssthresh *= (u_long)(tp->t_maxseg +
#ifdef INET6
(isipv6 ? sizeof (struct ip6_hdr) +
sizeof (struct tcphdr) :
#endif
sizeof (struct tcpiphdr)
#ifdef INET6
)
#endif
);
} else
ssthresh = 0;
metrics.rmx_ssthresh = ssthresh;
metrics.rmx_rtt = tp->t_srtt;
metrics.rmx_rttvar = tp->t_rttvar;
metrics.rmx_cwnd = tp->snd_cwnd;
metrics.rmx_sendpipe = 0;
metrics.rmx_recvpipe = 0;
tcp_hc_update(&inp->inp_inc, &metrics);
}
/* free the reassembly queue, if any */
tcp_reass_flush(tp);
#ifdef TCP_OFFLOAD
/* Disconnect offload device, if any. */
if (tp->t_flags & TF_TOE)
tcp_offload_detach(tp);
#endif
tcp_free_sackholes(tp);
/* Allow the CC algorithm to clean up after itself. */
if (CC_ALGO(tp)->cb_destroy != NULL)
CC_ALGO(tp)->cb_destroy(tp->ccv);
khelp_destroy_osd(tp->osd);
CC_ALGO(tp) = NULL;
inp->inp_ppcb = NULL;
tp->t_inpcb = NULL;
uma_zfree(V_tcpcb_zone, tp);
}
/*
* Attempt to close a TCP control block, marking it as dropped, and freeing
* the socket if we hold the only reference.
*/
struct tcpcb *
tcp_close(struct tcpcb *tp)
{
struct inpcb *inp = tp->t_inpcb;
struct socket *so;
INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
INP_WLOCK_ASSERT(inp);
#ifdef TCP_OFFLOAD
if (tp->t_state == TCPS_LISTEN)
tcp_offload_listen_stop(tp);
#endif
in_pcbdrop(inp);
TCPSTAT_INC(tcps_closed);
KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
so = inp->inp_socket;
soisdisconnected(so);
if (inp->inp_flags & INP_SOCKREF) {
KASSERT(so->so_state & SS_PROTOREF,
("tcp_close: !SS_PROTOREF"));
inp->inp_flags &= ~INP_SOCKREF;
INP_WUNLOCK(inp);
ACCEPT_LOCK();
SOCK_LOCK(so);
so->so_state &= ~SS_PROTOREF;
sofree(so);
return (NULL);
}
return (tp);
}
void
tcp_drain(void)
{
VNET_ITERATOR_DECL(vnet_iter);
if (!do_tcpdrain)
return;
VNET_LIST_RLOCK_NOSLEEP();
VNET_FOREACH(vnet_iter) {
CURVNET_SET(vnet_iter);
struct inpcb *inpb;
struct tcpcb *tcpb;
/*
* Walk the tcpbs, if existing, and flush the reassembly queue,
* if there is one...
* XXX: The "Net/3" implementation doesn't imply that the TCP
* reassembly queue should be flushed, but in a situation
* where we're really low on mbufs, this is potentially
* useful.
*/
INP_INFO_RLOCK(&V_tcbinfo);
LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
if (inpb->inp_flags & INP_TIMEWAIT)
continue;
INP_WLOCK(inpb);
if ((tcpb = intotcpcb(inpb)) != NULL) {
tcp_reass_flush(tcpb);
tcp_clean_sackreport(tcpb);
}
INP_WUNLOCK(inpb);
}
INP_INFO_RUNLOCK(&V_tcbinfo);
CURVNET_RESTORE();
}
VNET_LIST_RUNLOCK_NOSLEEP();
}
/*
* Notify a tcp user of an asynchronous error;
* store error as soft error, but wake up user
* (for now, won't do anything until can select for soft error).
*
* Do not wake up user since there currently is no mechanism for
* reporting soft errors (yet - a kqueue filter may be added).
*/
static struct inpcb *
tcp_notify(struct inpcb *inp, int error)
{
struct tcpcb *tp;
INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
INP_WLOCK_ASSERT(inp);
if ((inp->inp_flags & INP_TIMEWAIT) ||
(inp->inp_flags & INP_DROPPED))
return (inp);
tp = intotcpcb(inp);
KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
/*
* Ignore some errors if we are hooked up.
* If connection hasn't completed, has retransmitted several times,
* and receives a second error, give up now. This is better
* than waiting a long time to establish a connection that
* can never complete.
*/
if (tp->t_state == TCPS_ESTABLISHED &&
(error == EHOSTUNREACH || error == ENETUNREACH ||
error == EHOSTDOWN)) {
return (inp);
} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
tp->t_softerror) {
tp = tcp_drop(tp, error);
if (tp != NULL)
return (inp);
else
return (NULL);
} else {
tp->t_softerror = error;
return (inp);
}
#if 0
wakeup( &so->so_timeo);
sorwakeup(so);
sowwakeup(so);
#endif
}
static int
tcp_pcblist(SYSCTL_HANDLER_ARGS)
{
int error, i, m, n, pcb_count;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the TCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
if (req->oldptr == NULL) {
n = V_tcbinfo.ipi_count + syncache_pcbcount();
n += imax(n / 8, 10);
req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
return (0);
}
if (req->newptr != NULL)
return (EPERM);
/*
* OK, now we're committed to doing something.
*/
INP_INFO_RLOCK(&V_tcbinfo);
gencnt = V_tcbinfo.ipi_gencnt;
n = V_tcbinfo.ipi_count;
INP_INFO_RUNLOCK(&V_tcbinfo);
m = syncache_pcbcount();
error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
+ (n + m) * sizeof(struct xtcpcb));
if (error != 0)
return (error);
xig.xig_len = sizeof xig;
xig.xig_count = n + m;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error)
return (error);
error = syncache_pcblist(req, m, &pcb_count);
if (error)
return (error);
inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
if (inp_list == NULL)
return (ENOMEM);
INP_INFO_RLOCK(&V_tcbinfo);
for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
INP_WLOCK(inp);
if (inp->inp_gencnt <= gencnt) {
/*
* XXX: This use of cr_cansee(), introduced with
* TCP state changes, is not quite right, but for
* now, better than nothing.
*/
if (inp->inp_flags & INP_TIMEWAIT) {
if (intotw(inp) != NULL)
error = cr_cansee(req->td->td_ucred,
intotw(inp)->tw_cred);
else
error = EINVAL; /* Skip this inp. */
} else
error = cr_canseeinpcb(req->td->td_ucred, inp);
if (error == 0) {
in_pcbref(inp);
inp_list[i++] = inp;
}
}
INP_WUNLOCK(inp);
}
INP_INFO_RUNLOCK(&V_tcbinfo);
n = i;
error = 0;
for (i = 0; i < n; i++) {
inp = inp_list[i];
INP_RLOCK(inp);
if (inp->inp_gencnt <= gencnt) {
struct xtcpcb xt;
void *inp_ppcb;
bzero(&xt, sizeof(xt));
xt.xt_len = sizeof xt;
/* XXX should avoid extra copy */
bcopy(inp, &xt.xt_inp, sizeof *inp);
inp_ppcb = inp->inp_ppcb;
if (inp_ppcb == NULL)
bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
else if (inp->inp_flags & INP_TIMEWAIT) {
bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
xt.xt_tp.t_state = TCPS_TIME_WAIT;
} else {
bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
if (xt.xt_tp.t_timers)
tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
}
if (inp->inp_socket != NULL)
sotoxsocket(inp->inp_socket, &xt.xt_socket);
else {
bzero(&xt.xt_socket, sizeof xt.xt_socket);
xt.xt_socket.xso_protocol = IPPROTO_TCP;
}
xt.xt_inp.inp_gencnt = inp->inp_gencnt;
INP_RUNLOCK(inp);
error = SYSCTL_OUT(req, &xt, sizeof xt);
} else
INP_RUNLOCK(inp);
}
INP_INFO_WLOCK(&V_tcbinfo);
for (i = 0; i < n; i++) {
inp = inp_list[i];
INP_RLOCK(inp);
if (!in_pcbrele_rlocked(inp))
INP_RUNLOCK(inp);
}
INP_INFO_WUNLOCK(&V_tcbinfo);
if (!error) {
/*
* Give the user an updated idea of our state.
* If the generation differs from what we told
* her before, she knows that something happened
* while we were processing this request, and it
* might be necessary to retry.
*/
INP_INFO_RLOCK(&V_tcbinfo);
xig.xig_gen = V_tcbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
INP_INFO_RUNLOCK(&V_tcbinfo);
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
free(inp_list, M_TEMP);
return (error);
}
SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
#ifdef INET
static int
tcp_getcred(SYSCTL_HANDLER_ARGS)
{
struct xucred xuc;
struct sockaddr_in addrs[2];
struct inpcb *inp;
int error;
error = priv_check(req->td, PRIV_NETINET_GETCRED);
if (error)
return (error);
error = SYSCTL_IN(req, addrs, sizeof(addrs));
if (error)
return (error);
inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
if (inp != NULL) {
if (inp->inp_socket == NULL)
error = ENOENT;
if (error == 0)
error = cr_canseeinpcb(req->td->td_ucred, inp);
if (error == 0)
cru2x(inp->inp_cred, &xuc);
INP_RUNLOCK(inp);
} else
error = ENOENT;
if (error == 0)
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
return (error);
}
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
#endif /* INET */
#ifdef INET6
static int
tcp6_getcred(SYSCTL_HANDLER_ARGS)
{
struct xucred xuc;
struct sockaddr_in6 addrs[2];
struct inpcb *inp;
int error;
#ifdef INET
int mapped = 0;
#endif
error = priv_check(req->td, PRIV_NETINET_GETCRED);
if (error)
return (error);
error = SYSCTL_IN(req, addrs, sizeof(addrs));
if (error)
return (error);
if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
(error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
return (error);
}
if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
#ifdef INET
if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
mapped = 1;
else
#endif
return (EINVAL);
}
#ifdef INET
if (mapped == 1)
inp = in_pcblookup(&V_tcbinfo,
*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
addrs[1].sin6_port,
*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
else
#endif
inp = in6_pcblookup(&V_tcbinfo,
&addrs[1].sin6_addr, addrs[1].sin6_port,
&addrs[0].sin6_addr, addrs[0].sin6_port,
INPLOOKUP_RLOCKPCB, NULL);
if (inp != NULL) {
if (inp->inp_socket == NULL)
error = ENOENT;
if (error == 0)
error = cr_canseeinpcb(req->td->td_ucred, inp);
if (error == 0)
cru2x(inp->inp_cred, &xuc);
INP_RUNLOCK(inp);
} else
error = ENOENT;
if (error == 0)
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
return (error);
}
SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
#endif /* INET6 */
#ifdef INET
void
tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
{
struct ip *ip = vip;
struct tcphdr *th;
struct in_addr faddr;
struct inpcb *inp;
struct tcpcb *tp;
struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
struct icmp *icp;
struct in_conninfo inc;
tcp_seq icmp_tcp_seq;
int mtu;
faddr = ((struct sockaddr_in *)sa)->sin_addr;
if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
return;
if (cmd == PRC_MSGSIZE)
notify = tcp_mtudisc_notify;
else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
notify = tcp_drop_syn_sent;
/*
* Redirects don't need to be handled up here.
*/
else if (PRC_IS_REDIRECT(cmd))
return;
/*
* Source quench is depreciated.
*/
else if (cmd == PRC_QUENCH)
return;
/*
* Hostdead is ugly because it goes linearly through all PCBs.
* XXX: We never get this from ICMP, otherwise it makes an
* excellent DoS attack on machines with many connections.
*/
else if (cmd == PRC_HOSTDEAD)
ip = NULL;
else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
return;
if (ip != NULL) {
icp = (struct icmp *)((caddr_t)ip
- offsetof(struct icmp, icmp_ip));
th = (struct tcphdr *)((caddr_t)ip
+ (ip->ip_hl << 2));
INP_INFO_WLOCK(&V_tcbinfo);
inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport,
ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
if (inp != NULL) {
if (!(inp->inp_flags & INP_TIMEWAIT) &&
!(inp->inp_flags & INP_DROPPED) &&
!(inp->inp_socket == NULL)) {
icmp_tcp_seq = htonl(th->th_seq);
tp = intotcpcb(inp);
if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
if (cmd == PRC_MSGSIZE) {
/*
* MTU discovery:
* If we got a needfrag set the MTU
* in the route to the suggested new
* value (if given) and then notify.
*/
bzero(&inc, sizeof(inc));
inc.inc_faddr = faddr;
inc.inc_fibnum =
inp->inp_inc.inc_fibnum;
mtu = ntohs(icp->icmp_nextmtu);
/*
* If no alternative MTU was
* proposed, try the next smaller
* one.
*/
if (!mtu)
mtu = ip_next_mtu(
ntohs(ip->ip_len), 1);
if (mtu < V_tcp_minmss
+ sizeof(struct tcpiphdr))
mtu = V_tcp_minmss
+ sizeof(struct tcpiphdr);
/*
* Only cache the MTU if it
* is smaller than the interface
* or route MTU. tcp_mtudisc()
* will do right thing by itself.
*/
if (mtu <= tcp_maxmtu(&inc, NULL))
tcp_hc_updatemtu(&inc, mtu);
tcp_mtudisc(inp, mtu);
} else
inp = (*notify)(inp,
inetctlerrmap[cmd]);
}
}
if (inp != NULL)
INP_WUNLOCK(inp);
} else {
bzero(&inc, sizeof(inc));
inc.inc_fport = th->th_dport;
inc.inc_lport = th->th_sport;
inc.inc_faddr = faddr;
inc.inc_laddr = ip->ip_src;
syncache_unreach(&inc, th);
}
INP_INFO_WUNLOCK(&V_tcbinfo);
} else
in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
}
#endif /* INET */
#ifdef INET6
void
tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
{
struct tcphdr th;
struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
struct ip6_hdr *ip6;
struct mbuf *m;
struct ip6ctlparam *ip6cp = NULL;
const struct sockaddr_in6 *sa6_src = NULL;
int off;
struct tcp_portonly {
u_int16_t th_sport;
u_int16_t th_dport;
} *thp;
if (sa->sa_family != AF_INET6 ||
sa->sa_len != sizeof(struct sockaddr_in6))
return;
if (cmd == PRC_MSGSIZE)
notify = tcp_mtudisc_notify;
else if (!PRC_IS_REDIRECT(cmd) &&
((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
return;
/* Source quench is depreciated. */
else if (cmd == PRC_QUENCH)
return;
/* if the parameter is from icmp6, decode it. */
if (d != NULL) {
ip6cp = (struct ip6ctlparam *)d;
m = ip6cp->ip6c_m;
ip6 = ip6cp->ip6c_ip6;
off = ip6cp->ip6c_off;
sa6_src = ip6cp->ip6c_src;
} else {
m = NULL;
ip6 = NULL;
off = 0; /* fool gcc */
sa6_src = &sa6_any;
}
if (ip6 != NULL) {
struct in_conninfo inc;
/*
* XXX: We assume that when IPV6 is non NULL,
* M and OFF are valid.
*/
/* check if we can safely examine src and dst ports */
if (m->m_pkthdr.len < off + sizeof(*thp))
return;
bzero(&th, sizeof(th));
m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
(struct sockaddr *)ip6cp->ip6c_src,
th.th_sport, cmd, NULL, notify);
bzero(&inc, sizeof(inc));
inc.inc_fport = th.th_dport;
inc.inc_lport = th.th_sport;
inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
inc.inc_flags |= INC_ISIPV6;
INP_INFO_WLOCK(&V_tcbinfo);
syncache_unreach(&inc, &th);
INP_INFO_WUNLOCK(&V_tcbinfo);
} else
in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
0, cmd, NULL, notify);
}
#endif /* INET6 */
/*
* Following is where TCP initial sequence number generation occurs.
*
* There are two places where we must use initial sequence numbers:
* 1. In SYN-ACK packets.
* 2. In SYN packets.
*
* All ISNs for SYN-ACK packets are generated by the syncache. See
* tcp_syncache.c for details.
*
* The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
* depends on this property. In addition, these ISNs should be
* unguessable so as to prevent connection hijacking. To satisfy
* the requirements of this situation, the algorithm outlined in
* RFC 1948 is used, with only small modifications.
*
* Implementation details:
*
* Time is based off the system timer, and is corrected so that it
* increases by one megabyte per second. This allows for proper
* recycling on high speed LANs while still leaving over an hour
* before rollover.
*
* As reading the *exact* system time is too expensive to be done
* whenever setting up a TCP connection, we increment the time
* offset in two ways. First, a small random positive increment
* is added to isn_offset for each connection that is set up.
* Second, the function tcp_isn_tick fires once per clock tick
* and increments isn_offset as necessary so that sequence numbers
* are incremented at approximately ISN_BYTES_PER_SECOND. The
* random positive increments serve only to ensure that the same
* exact sequence number is never sent out twice (as could otherwise
* happen when a port is recycled in less than the system tick
* interval.)
*
* net.inet.tcp.isn_reseed_interval controls the number of seconds
* between seeding of isn_secret. This is normally set to zero,
* as reseeding should not be necessary.
*
* Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
* isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In
* general, this means holding an exclusive (write) lock.
*/
#define ISN_BYTES_PER_SECOND 1048576
#define ISN_STATIC_INCREMENT 4096
#define ISN_RANDOM_INCREMENT (4096 - 1)
static VNET_DEFINE(u_char, isn_secret[32]);
static VNET_DEFINE(int, isn_last);
static VNET_DEFINE(int, isn_last_reseed);
static VNET_DEFINE(u_int32_t, isn_offset);
static VNET_DEFINE(u_int32_t, isn_offset_old);
#define V_isn_secret VNET(isn_secret)
#define V_isn_last VNET(isn_last)
#define V_isn_last_reseed VNET(isn_last_reseed)
#define V_isn_offset VNET(isn_offset)
#define V_isn_offset_old VNET(isn_offset_old)
tcp_seq
tcp_new_isn(struct tcpcb *tp)
{
MD5_CTX isn_ctx;
u_int32_t md5_buffer[4];
tcp_seq new_isn;
u_int32_t projected_offset;
INP_WLOCK_ASSERT(tp->t_inpcb);
ISN_LOCK();
/* Seed if this is the first use, reseed if requested. */
if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
(((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
< (u_int)ticks))) {
read_random(&V_isn_secret, sizeof(V_isn_secret));
V_isn_last_reseed = ticks;
}
/* Compute the md5 hash and return the ISN. */
MD5Init(&isn_ctx);
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
#ifdef INET6
if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
sizeof(struct in6_addr));
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
sizeof(struct in6_addr));
} else
#endif
{
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
sizeof(struct in_addr));
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
sizeof(struct in_addr));
}
MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
MD5Final((u_char *) &md5_buffer, &isn_ctx);
new_isn = (tcp_seq) md5_buffer[0];
V_isn_offset += ISN_STATIC_INCREMENT +
(arc4random() & ISN_RANDOM_INCREMENT);
if (ticks != V_isn_last) {
projected_offset = V_isn_offset_old +
ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
if (SEQ_GT(projected_offset, V_isn_offset))
V_isn_offset = projected_offset;
V_isn_offset_old = V_isn_offset;
V_isn_last = ticks;
}
new_isn += V_isn_offset;
ISN_UNLOCK();
return (new_isn);
}
/*
* When a specific ICMP unreachable message is received and the
* connection state is SYN-SENT, drop the connection. This behavior
* is controlled by the icmp_may_rst sysctl.
*/
struct inpcb *
tcp_drop_syn_sent(struct inpcb *inp, int errno)
{
struct tcpcb *tp;
INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
INP_WLOCK_ASSERT(inp);
if ((inp->inp_flags & INP_TIMEWAIT) ||
(inp->inp_flags & INP_DROPPED))
return (inp);
tp = intotcpcb(inp);
if (tp->t_state != TCPS_SYN_SENT)
return (inp);
tp = tcp_drop(tp, errno);
if (tp != NULL)
return (inp);
else
return (NULL);
}
/*
* When `need fragmentation' ICMP is received, update our idea of the MSS
* based on the new value. Also nudge TCP to send something, since we
* know the packet we just sent was dropped.
* This duplicates some code in the tcp_mss() function in tcp_input.c.
*/
static struct inpcb *
tcp_mtudisc_notify(struct inpcb *inp, int error)
{
return (tcp_mtudisc(inp, -1));
}
struct inpcb *
tcp_mtudisc(struct inpcb *inp, int mtuoffer)
{
struct tcpcb *tp;
struct socket *so;
INP_WLOCK_ASSERT(inp);
if ((inp->inp_flags & INP_TIMEWAIT) ||
(inp->inp_flags & INP_DROPPED))
return (inp);
tp = intotcpcb(inp);
KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
so = inp->inp_socket;
SOCKBUF_LOCK(&so->so_snd);
/* If the mss is larger than the socket buffer, decrease the mss. */
if (so->so_snd.sb_hiwat < tp->t_maxseg)
tp->t_maxseg = so->so_snd.sb_hiwat;
SOCKBUF_UNLOCK(&so->so_snd);
TCPSTAT_INC(tcps_mturesent);
tp->t_rtttime = 0;
tp->snd_nxt = tp->snd_una;
tcp_free_sackholes(tp);
tp->snd_recover = tp->snd_max;
if (tp->t_flags & TF_SACK_PERMIT)
EXIT_FASTRECOVERY(tp->t_flags);
tcp_output(tp);
return (inp);
}
#ifdef INET
/*
* Look-up the routing entry to the peer of this inpcb. If no route
* is found and it cannot be allocated, then return 0. This routine
* is called by TCP routines that access the rmx structure and by
* tcp_mss_update to get the peer/interface MTU.
*/
u_long
tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
{
struct route sro;
struct sockaddr_in *dst;
struct ifnet *ifp;
u_long maxmtu = 0;
KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
bzero(&sro, sizeof(sro));
if (inc->inc_faddr.s_addr != INADDR_ANY) {
dst = (struct sockaddr_in *)&sro.ro_dst;
dst->sin_family = AF_INET;
dst->sin_len = sizeof(*dst);
dst->sin_addr = inc->inc_faddr;
in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
}
if (sro.ro_rt != NULL) {
ifp = sro.ro_rt->rt_ifp;
if (sro.ro_rt->rt_mtu == 0)
maxmtu = ifp->if_mtu;
else
maxmtu = min(sro.ro_rt->rt_mtu, ifp->if_mtu);
/* Report additional interface capabilities. */
if (cap != NULL) {
if (ifp->if_capenable & IFCAP_TSO4 &&
ifp->if_hwassist & CSUM_TSO) {
cap->ifcap |= CSUM_TSO;
cap->tsomax = ifp->if_hw_tsomax;
cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
}
}
RTFREE(sro.ro_rt);
}
return (maxmtu);
}
#endif /* INET */
#ifdef INET6
u_long
tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
{
struct route_in6 sro6;
struct ifnet *ifp;
u_long maxmtu = 0;
KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
bzero(&sro6, sizeof(sro6));
if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
sro6.ro_dst.sin6_family = AF_INET6;
sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
sro6.ro_dst.sin6_addr = inc->inc6_faddr;
in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
}
if (sro6.ro_rt != NULL) {
ifp = sro6.ro_rt->rt_ifp;
if (sro6.ro_rt->rt_mtu == 0)
maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
else
maxmtu = min(sro6.ro_rt->rt_mtu,
IN6_LINKMTU(sro6.ro_rt->rt_ifp));
/* Report additional interface capabilities. */
if (cap != NULL) {
if (ifp->if_capenable & IFCAP_TSO6 &&
ifp->if_hwassist & CSUM_TSO) {
cap->ifcap |= CSUM_TSO;
cap->tsomax = ifp->if_hw_tsomax;
cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
}
}
RTFREE(sro6.ro_rt);
}
return (maxmtu);
}
#endif /* INET6 */
#ifdef IPSEC
/* compute ESP/AH header size for TCP, including outer IP header. */
size_t
ipsec_hdrsiz_tcp(struct tcpcb *tp)
{
struct inpcb *inp;
struct mbuf *m;
size_t hdrsiz;
struct ip *ip;
#ifdef INET6
struct ip6_hdr *ip6;
#endif
struct tcphdr *th;
if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
return (0);
m = m_gethdr(M_NOWAIT, MT_DATA);
if (!m)
return (0);
#ifdef INET6
if ((inp->inp_vflag & INP_IPV6) != 0) {
ip6 = mtod(m, struct ip6_hdr *);
th = (struct tcphdr *)(ip6 + 1);
m->m_pkthdr.len = m->m_len =
sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
tcpip_fillheaders(inp, ip6, th);
hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
} else
#endif /* INET6 */
{
ip = mtod(m, struct ip *);
th = (struct tcphdr *)(ip + 1);
m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
tcpip_fillheaders(inp, ip, th);
hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
}
m_free(m);
return (hdrsiz);
}
#endif /* IPSEC */
#ifdef TCP_SIGNATURE
/*
* Callback function invoked by m_apply() to digest TCP segment data
* contained within an mbuf chain.
*/
static int
tcp_signature_apply(void *fstate, void *data, u_int len)
{
MD5Update(fstate, (u_char *)data, len);
return (0);
}
/*
* XXX The key is retrieved from the system's PF_KEY SADB, by keying a
* search with the destination IP address, and a 'magic SPI' to be
* determined by the application. This is hardcoded elsewhere to 1179
*/
struct secasvar *
tcp_get_sav(struct mbuf *m, u_int direction)
{
union sockaddr_union dst;
struct secasvar *sav;
struct ip *ip;
#ifdef INET6
struct ip6_hdr *ip6;
char ip6buf[INET6_ADDRSTRLEN];
#endif
/* Extract the destination from the IP header in the mbuf. */
bzero(&dst, sizeof(union sockaddr_union));
ip = mtod(m, struct ip *);
#ifdef INET6
ip6 = NULL; /* Make the compiler happy. */
#endif
switch (ip->ip_v) {
#ifdef INET
case IPVERSION:
dst.sa.sa_len = sizeof(struct sockaddr_in);
dst.sa.sa_family = AF_INET;
dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
ip->ip_src : ip->ip_dst;
break;
#endif
#ifdef INET6
case (IPV6_VERSION >> 4):
ip6 = mtod(m, struct ip6_hdr *);
dst.sa.sa_len = sizeof(struct sockaddr_in6);
dst.sa.sa_family = AF_INET6;
dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
ip6->ip6_src : ip6->ip6_dst;
break;
#endif
default:
return (NULL);
/* NOTREACHED */
break;
}
/* Look up an SADB entry which matches the address of the peer. */
sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
if (sav == NULL) {
ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
(ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
#ifdef INET6
(ip->ip_v == (IPV6_VERSION >> 4)) ?
ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
#endif
"(unsupported)"));
}
return (sav);
}
/*
* Compute TCP-MD5 hash of a TCP segment. (RFC2385)
*
* Parameters:
* m pointer to head of mbuf chain
* len length of TCP segment data, excluding options
* optlen length of TCP segment options
* buf pointer to storage for computed MD5 digest
* sav pointer to security assosiation
*
* We do this over ip, tcphdr, segment data, and the key in the SADB.
* When called from tcp_input(), we can be sure that th_sum has been
* zeroed out and verified already.
*
* Releases reference to SADB key before return.
*
* Return 0 if successful, otherwise return -1.
*
*/
int
tcp_signature_do_compute(struct mbuf *m, int len, int optlen,
u_char *buf, struct secasvar *sav)
{
#ifdef INET
struct ippseudo ippseudo;
#endif
MD5_CTX ctx;
int doff;
struct ip *ip;
#ifdef INET
struct ipovly *ipovly;
#endif
struct tcphdr *th;
#ifdef INET6
struct ip6_hdr *ip6;
struct in6_addr in6;
uint32_t plen;
uint16_t nhdr;
#endif
u_short savecsum;
KASSERT(m != NULL, ("NULL mbuf chain"));
KASSERT(buf != NULL, ("NULL signature pointer"));
/* Extract the destination from the IP header in the mbuf. */
ip = mtod(m, struct ip *);
#ifdef INET6
ip6 = NULL; /* Make the compiler happy. */
#endif
MD5Init(&ctx);
/*
* Step 1: Update MD5 hash with IP(v6) pseudo-header.
*
* XXX The ippseudo header MUST be digested in network byte order,
* or else we'll fail the regression test. Assume all fields we've
* been doing arithmetic on have been in host byte order.
* XXX One cannot depend on ipovly->ih_len here. When called from
* tcp_output(), the underlying ip_len member has not yet been set.
*/
switch (ip->ip_v) {
#ifdef INET
case IPVERSION:
ipovly = (struct ipovly *)ip;
ippseudo.ippseudo_src = ipovly->ih_src;
ippseudo.ippseudo_dst = ipovly->ih_dst;
ippseudo.ippseudo_pad = 0;
ippseudo.ippseudo_p = IPPROTO_TCP;
ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
optlen);
MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
break;
#endif
#ifdef INET6
/*
* RFC 2385, 2.0 Proposal
* For IPv6, the pseudo-header is as described in RFC 2460, namely the
* 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
* extended next header value (to form 32 bits), and 32-bit segment
* length.
* Note: Upper-Layer Packet Length comes before Next Header.
*/
case (IPV6_VERSION >> 4):
in6 = ip6->ip6_src;
in6_clearscope(&in6);
MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
in6 = ip6->ip6_dst;
in6_clearscope(&in6);
MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
plen = htonl(len + sizeof(struct tcphdr) + optlen);
MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
nhdr = 0;
MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
nhdr = IPPROTO_TCP;
MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
break;
#endif
default:
return (-1);
/* NOTREACHED */
break;
}
/*
* Step 2: Update MD5 hash with TCP header, excluding options.
* The TCP checksum must be set to zero.
*/
savecsum = th->th_sum;
th->th_sum = 0;
MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
th->th_sum = savecsum;
/*
* Step 3: Update MD5 hash with TCP segment data.
* Use m_apply() to avoid an early m_pullup().
*/
if (len > 0)
m_apply(m, doff, len, tcp_signature_apply, &ctx);
/*
* Step 4: Update MD5 hash with shared secret.
*/
MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
MD5Final(buf, &ctx);
key_sa_recordxfer(sav, m);
KEY_FREESAV(&sav);
return (0);
}
/*
* Compute TCP-MD5 hash of a TCP segment. (RFC2385)
*
* Return 0 if successful, otherwise return -1.
*/
int
tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
u_char *buf, u_int direction)
{
struct secasvar *sav;
if ((sav = tcp_get_sav(m, direction)) == NULL)
return (-1);
return (tcp_signature_do_compute(m, len, optlen, buf, sav));
}
/*
* Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
*
* Parameters:
* m pointer to head of mbuf chain
* len length of TCP segment data, excluding options
* optlen length of TCP segment options
* buf pointer to storage for computed MD5 digest
* direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
*
* Return 1 if successful, otherwise return 0.
*/
int
tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
{
char tmpdigest[TCP_SIGLEN];
if (tcp_sig_checksigs == 0)
return (1);
if ((tcpbflag & TF_SIGNATURE) == 0) {
if ((to->to_flags & TOF_SIGNATURE) != 0) {
/*
* If this socket is not expecting signature but
* the segment contains signature just fail.
*/
TCPSTAT_INC(tcps_sig_err_sigopt);
TCPSTAT_INC(tcps_sig_rcvbadsig);
return (0);
}
/* Signature is not expected, and not present in segment. */
return (1);
}
/*
* If this socket is expecting signature but the segment does not
* contain any just fail.
*/
if ((to->to_flags & TOF_SIGNATURE) == 0) {
TCPSTAT_INC(tcps_sig_err_nosigopt);
TCPSTAT_INC(tcps_sig_rcvbadsig);
return (0);
}
if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
IPSEC_DIR_INBOUND) == -1) {
TCPSTAT_INC(tcps_sig_err_buildsig);
TCPSTAT_INC(tcps_sig_rcvbadsig);
return (0);
}
if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
TCPSTAT_INC(tcps_sig_rcvbadsig);
return (0);
}
TCPSTAT_INC(tcps_sig_rcvgoodsig);
return (1);
}
#endif /* TCP_SIGNATURE */
static int
sysctl_drop(SYSCTL_HANDLER_ARGS)
{
/* addrs[0] is a foreign socket, addrs[1] is a local one. */
struct sockaddr_storage addrs[2];
struct inpcb *inp;
struct tcpcb *tp;
struct tcptw *tw;
struct sockaddr_in *fin, *lin;
#ifdef INET6
struct sockaddr_in6 *fin6, *lin6;
#endif
int error;
inp = NULL;
fin = lin = NULL;
#ifdef INET6
fin6 = lin6 = NULL;
#endif
error = 0;
if (req->oldptr != NULL || req->oldlen != 0)
return (EINVAL);
if (req->newptr == NULL)
return (EPERM);
if (req->newlen < sizeof(addrs))
return (ENOMEM);
error = SYSCTL_IN(req, &addrs, sizeof(addrs));
if (error)
return (error);
switch (addrs[0].ss_family) {
#ifdef INET6
case AF_INET6:
fin6 = (struct sockaddr_in6 *)&addrs[0];
lin6 = (struct sockaddr_in6 *)&addrs[1];
if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
lin6->sin6_len != sizeof(struct sockaddr_in6))
return (EINVAL);
if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
return (EINVAL);
in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
fin = (struct sockaddr_in *)&addrs[0];
lin = (struct sockaddr_in *)&addrs[1];
break;
}
error = sa6_embedscope(fin6, V_ip6_use_defzone);
if (error)
return (error);
error = sa6_embedscope(lin6, V_ip6_use_defzone);
if (error)
return (error);
break;
#endif
#ifdef INET
case AF_INET:
fin = (struct sockaddr_in *)&addrs[0];
lin = (struct sockaddr_in *)&addrs[1];
if (fin->sin_len != sizeof(struct sockaddr_in) ||
lin->sin_len != sizeof(struct sockaddr_in))
return (EINVAL);
break;
#endif
default:
return (EINVAL);
}
INP_INFO_WLOCK(&V_tcbinfo);
switch (addrs[0].ss_family) {
#ifdef INET6
case AF_INET6:
inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
INPLOOKUP_WLOCKPCB, NULL);
break;
#endif
#ifdef INET
case AF_INET:
inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
break;
#endif
}
if (inp != NULL) {
if (inp->inp_flags & INP_TIMEWAIT) {
/*
* XXXRW: There currently exists a state where an
* inpcb is present, but its timewait state has been
* discarded. For now, don't allow dropping of this
* type of inpcb.
*/
tw = intotw(inp);
if (tw != NULL)
tcp_twclose(tw, 0);
else
INP_WUNLOCK(inp);
} else if (!(inp->inp_flags & INP_DROPPED) &&
!(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
tp = intotcpcb(inp);
tp = tcp_drop(tp, ECONNABORTED);
if (tp != NULL)
INP_WUNLOCK(inp);
} else
INP_WUNLOCK(inp);
} else
error = ESRCH;
INP_INFO_WUNLOCK(&V_tcbinfo);
return (error);
}
SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
0, sysctl_drop, "", "Drop TCP connection");
/*
* Generate a standardized TCP log line for use throughout the
* tcp subsystem. Memory allocation is done with M_NOWAIT to
* allow use in the interrupt context.
*
* NB: The caller MUST free(s, M_TCPLOG) the returned string.
* NB: The function may return NULL if memory allocation failed.
*
* Due to header inclusion and ordering limitations the struct ip
* and ip6_hdr pointers have to be passed as void pointers.
*/
char *
tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
const void *ip6hdr)
{
/* Is logging enabled? */
if (tcp_log_in_vain == 0)
return (NULL);
return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
}
char *
tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
const void *ip6hdr)
{
/* Is logging enabled? */
if (tcp_log_debug == 0)
return (NULL);
return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
}
static char *
tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
const void *ip6hdr)
{
char *s, *sp;
size_t size;
struct ip *ip;
#ifdef INET6
const struct ip6_hdr *ip6;
ip6 = (const struct ip6_hdr *)ip6hdr;
#endif /* INET6 */
ip = (struct ip *)ip4hdr;
/*
* The log line looks like this:
* "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
*/
size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
sizeof(PRINT_TH_FLAGS) + 1 +
#ifdef INET6
2 * INET6_ADDRSTRLEN;
#else
2 * INET_ADDRSTRLEN;
#endif /* INET6 */
s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
if (s == NULL)
return (NULL);
strcat(s, "TCP: [");
sp = s + strlen(s);
if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
inet_ntoa_r(inc->inc_faddr, sp);
sp = s + strlen(s);
sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
sp = s + strlen(s);
inet_ntoa_r(inc->inc_laddr, sp);
sp = s + strlen(s);
sprintf(sp, "]:%i", ntohs(inc->inc_lport));
#ifdef INET6
} else if (inc) {
ip6_sprintf(sp, &inc->inc6_faddr);
sp = s + strlen(s);
sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
sp = s + strlen(s);
ip6_sprintf(sp, &inc->inc6_laddr);
sp = s + strlen(s);
sprintf(sp, "]:%i", ntohs(inc->inc_lport));
} else if (ip6 && th) {
ip6_sprintf(sp, &ip6->ip6_src);
sp = s + strlen(s);
sprintf(sp, "]:%i to [", ntohs(th->th_sport));
sp = s + strlen(s);
ip6_sprintf(sp, &ip6->ip6_dst);
sp = s + strlen(s);
sprintf(sp, "]:%i", ntohs(th->th_dport));
#endif /* INET6 */
#ifdef INET
} else if (ip && th) {
inet_ntoa_r(ip->ip_src, sp);
sp = s + strlen(s);
sprintf(sp, "]:%i to [", ntohs(th->th_sport));
sp = s + strlen(s);
inet_ntoa_r(ip->ip_dst, sp);
sp = s + strlen(s);
sprintf(sp, "]:%i", ntohs(th->th_dport));
#endif /* INET */
} else {
free(s, M_TCPLOG);
return (NULL);
}
sp = s + strlen(s);
if (th)
sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
if (*(s + size - 1) != '\0')
panic("%s: string too long", __func__);
return (s);
}
/*
* A subroutine which makes it easy to track TCP state changes with DTrace.
* This function shouldn't be called for t_state initializations that don't
* correspond to actual TCP state transitions.
*/
void
tcp_state_change(struct tcpcb *tp, int newstate)
{
#if defined(KDTRACE_HOOKS)
int pstate = tp->t_state;
#endif
tp->t_state = newstate;
TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
}