freebsd-dev/sys/dev/enetc/if_enetc.c
Justin Hibbits ec22a3a259 DrvAPI: Trivial mechanical conversions for various drivers
Mechanically convert the following drivers, with trivial changes:
* ipw(4)
* igc(4)
* enetc(4)
* malo(4)
* nfe(4)
* bxe(4)
* awg(4)
* otus(4)
* rtwn(4)
* bnxt(4)
* ath(4)

Sponsored by:	Juniper Networks, Inc.
2022-12-21 15:36:59 -05:00

1524 lines
37 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2021 Alstom Group.
* Copyright (c) 2021 Semihalf.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_var.h>
#include <net/if_types.h>
#include <net/if_media.h>
#include <net/iflib.h>
#include <dev/enetc/enetc_hw.h>
#include <dev/enetc/enetc.h>
#include <dev/enetc/enetc_mdio.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include "ifdi_if.h"
#include "miibus_if.h"
static device_register_t enetc_register;
static ifdi_attach_pre_t enetc_attach_pre;
static ifdi_attach_post_t enetc_attach_post;
static ifdi_detach_t enetc_detach;
static ifdi_tx_queues_alloc_t enetc_tx_queues_alloc;
static ifdi_rx_queues_alloc_t enetc_rx_queues_alloc;
static ifdi_queues_free_t enetc_queues_free;
static ifdi_init_t enetc_init;
static ifdi_stop_t enetc_stop;
static ifdi_msix_intr_assign_t enetc_msix_intr_assign;
static ifdi_tx_queue_intr_enable_t enetc_tx_queue_intr_enable;
static ifdi_rx_queue_intr_enable_t enetc_rx_queue_intr_enable;
static ifdi_intr_enable_t enetc_intr_enable;
static ifdi_intr_disable_t enetc_intr_disable;
static int enetc_isc_txd_encap(void*, if_pkt_info_t);
static void enetc_isc_txd_flush(void*, uint16_t, qidx_t);
static int enetc_isc_txd_credits_update(void*, uint16_t, bool);
static int enetc_isc_rxd_available(void*, uint16_t, qidx_t, qidx_t);
static int enetc_isc_rxd_pkt_get(void*, if_rxd_info_t);
static void enetc_isc_rxd_refill(void*, if_rxd_update_t);
static void enetc_isc_rxd_flush(void*, uint16_t, uint8_t, qidx_t);
static void enetc_vlan_register(if_ctx_t, uint16_t);
static void enetc_vlan_unregister(if_ctx_t, uint16_t);
static uint64_t enetc_get_counter(if_ctx_t, ift_counter);
static int enetc_promisc_set(if_ctx_t, int);
static int enetc_mtu_set(if_ctx_t, uint32_t);
static void enetc_setup_multicast(if_ctx_t);
static void enetc_timer(if_ctx_t, uint16_t);
static void enetc_update_admin_status(if_ctx_t);
static miibus_readreg_t enetc_miibus_readreg;
static miibus_writereg_t enetc_miibus_writereg;
static miibus_linkchg_t enetc_miibus_linkchg;
static miibus_statchg_t enetc_miibus_statchg;
static int enetc_media_change(if_t);
static void enetc_media_status(if_t, struct ifmediareq*);
static int enetc_fixed_media_change(if_t);
static void enetc_fixed_media_status(if_t, struct ifmediareq*);
static void enetc_max_nqueues(struct enetc_softc*, int*, int*);
static int enetc_setup_phy(struct enetc_softc*);
static void enetc_get_hwaddr(struct enetc_softc*);
static void enetc_set_hwaddr(struct enetc_softc*);
static int enetc_setup_rss(struct enetc_softc*);
static void enetc_init_hw(struct enetc_softc*);
static void enetc_init_ctrl(struct enetc_softc*);
static void enetc_init_tx(struct enetc_softc*);
static void enetc_init_rx(struct enetc_softc*);
static int enetc_ctrl_send(struct enetc_softc*,
uint16_t, uint16_t, iflib_dma_info_t);
static const char enetc_driver_version[] = "1.0.0";
static pci_vendor_info_t enetc_vendor_info_array[] = {
PVID(PCI_VENDOR_FREESCALE, ENETC_DEV_ID_PF,
"Freescale ENETC PCIe Gigabit Ethernet Controller"),
PVID_END
};
#define ENETC_IFCAPS (IFCAP_VLAN_MTU | IFCAP_RXCSUM | IFCAP_JUMBO_MTU | \
IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWFILTER)
static device_method_t enetc_methods[] = {
DEVMETHOD(device_register, enetc_register),
DEVMETHOD(device_probe, iflib_device_probe),
DEVMETHOD(device_attach, iflib_device_attach),
DEVMETHOD(device_detach, iflib_device_detach),
DEVMETHOD(device_shutdown, iflib_device_shutdown),
DEVMETHOD(device_suspend, iflib_device_suspend),
DEVMETHOD(device_resume, iflib_device_resume),
DEVMETHOD(miibus_readreg, enetc_miibus_readreg),
DEVMETHOD(miibus_writereg, enetc_miibus_writereg),
DEVMETHOD(miibus_linkchg, enetc_miibus_linkchg),
DEVMETHOD(miibus_statchg, enetc_miibus_statchg),
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
DEVMETHOD(bus_release_resource, bus_generic_release_resource),
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
DEVMETHOD(bus_adjust_resource, bus_generic_adjust_resource),
DEVMETHOD(bus_alloc_resource, bus_generic_alloc_resource),
DEVMETHOD_END
};
static driver_t enetc_driver = {
"enetc", enetc_methods, sizeof(struct enetc_softc)
};
DRIVER_MODULE(miibus, enetc, miibus_fdt_driver, NULL, NULL);
/* Make sure miibus gets procesed first. */
DRIVER_MODULE_ORDERED(enetc, pci, enetc_driver, NULL, NULL, SI_ORDER_ANY);
MODULE_VERSION(enetc, 1);
IFLIB_PNP_INFO(pci, enetc, enetc_vendor_info_array);
MODULE_DEPEND(enetc, ether, 1, 1, 1);
MODULE_DEPEND(enetc, iflib, 1, 1, 1);
MODULE_DEPEND(enetc, miibus, 1, 1, 1);
static device_method_t enetc_iflib_methods[] = {
DEVMETHOD(ifdi_attach_pre, enetc_attach_pre),
DEVMETHOD(ifdi_attach_post, enetc_attach_post),
DEVMETHOD(ifdi_detach, enetc_detach),
DEVMETHOD(ifdi_init, enetc_init),
DEVMETHOD(ifdi_stop, enetc_stop),
DEVMETHOD(ifdi_tx_queues_alloc, enetc_tx_queues_alloc),
DEVMETHOD(ifdi_rx_queues_alloc, enetc_rx_queues_alloc),
DEVMETHOD(ifdi_queues_free, enetc_queues_free),
DEVMETHOD(ifdi_msix_intr_assign, enetc_msix_intr_assign),
DEVMETHOD(ifdi_tx_queue_intr_enable, enetc_tx_queue_intr_enable),
DEVMETHOD(ifdi_rx_queue_intr_enable, enetc_rx_queue_intr_enable),
DEVMETHOD(ifdi_intr_enable, enetc_intr_enable),
DEVMETHOD(ifdi_intr_disable, enetc_intr_disable),
DEVMETHOD(ifdi_vlan_register, enetc_vlan_register),
DEVMETHOD(ifdi_vlan_unregister, enetc_vlan_unregister),
DEVMETHOD(ifdi_get_counter, enetc_get_counter),
DEVMETHOD(ifdi_mtu_set, enetc_mtu_set),
DEVMETHOD(ifdi_multi_set, enetc_setup_multicast),
DEVMETHOD(ifdi_promisc_set, enetc_promisc_set),
DEVMETHOD(ifdi_timer, enetc_timer),
DEVMETHOD(ifdi_update_admin_status, enetc_update_admin_status),
DEVMETHOD_END
};
static driver_t enetc_iflib_driver = {
"enetc", enetc_iflib_methods, sizeof(struct enetc_softc)
};
static struct if_txrx enetc_txrx = {
.ift_txd_encap = enetc_isc_txd_encap,
.ift_txd_flush = enetc_isc_txd_flush,
.ift_txd_credits_update = enetc_isc_txd_credits_update,
.ift_rxd_available = enetc_isc_rxd_available,
.ift_rxd_pkt_get = enetc_isc_rxd_pkt_get,
.ift_rxd_refill = enetc_isc_rxd_refill,
.ift_rxd_flush = enetc_isc_rxd_flush
};
static struct if_shared_ctx enetc_sctx_init = {
.isc_magic = IFLIB_MAGIC,
.isc_q_align = ENETC_RING_ALIGN,
.isc_tx_maxsize = ENETC_MAX_FRAME_LEN,
.isc_tx_maxsegsize = PAGE_SIZE,
.isc_rx_maxsize = ENETC_MAX_FRAME_LEN,
.isc_rx_maxsegsize = ENETC_MAX_FRAME_LEN,
.isc_rx_nsegments = ENETC_MAX_SCATTER,
.isc_admin_intrcnt = 0,
.isc_nfl = 1,
.isc_nrxqs = 1,
.isc_ntxqs = 1,
.isc_vendor_info = enetc_vendor_info_array,
.isc_driver_version = enetc_driver_version,
.isc_driver = &enetc_iflib_driver,
.isc_flags = IFLIB_DRIVER_MEDIA | IFLIB_PRESERVE_TX_INDICES,
.isc_ntxd_min = {ENETC_MIN_DESC},
.isc_ntxd_max = {ENETC_MAX_DESC},
.isc_ntxd_default = {ENETC_DEFAULT_DESC},
.isc_nrxd_min = {ENETC_MIN_DESC},
.isc_nrxd_max = {ENETC_MAX_DESC},
.isc_nrxd_default = {ENETC_DEFAULT_DESC}
};
static void*
enetc_register(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (NULL);
return (&enetc_sctx_init);
}
static void
enetc_max_nqueues(struct enetc_softc *sc, int *max_tx_nqueues,
int *max_rx_nqueues)
{
uint32_t val;
val = ENETC_PORT_RD4(sc, ENETC_PCAPR0);
*max_tx_nqueues = MIN(ENETC_PCAPR0_TXBDR(val), ENETC_MAX_QUEUES);
*max_rx_nqueues = MIN(ENETC_PCAPR0_RXBDR(val), ENETC_MAX_QUEUES);
}
static int
enetc_setup_fixed(struct enetc_softc *sc, phandle_t node)
{
ssize_t size;
int speed;
size = OF_getencprop(node, "speed", &speed, sizeof(speed));
if (size <= 0) {
device_printf(sc->dev,
"Device has fixed-link node without link speed specified\n");
return (ENXIO);
}
switch (speed) {
case 10:
speed = IFM_10_T;
break;
case 100:
speed = IFM_100_TX;
break;
case 1000:
speed = IFM_1000_T;
break;
case 2500:
speed = IFM_2500_T;
break;
default:
device_printf(sc->dev, "Unsupported link speed value of %d\n",
speed);
return (ENXIO);
}
speed |= IFM_ETHER;
if (OF_hasprop(node, "full-duplex"))
speed |= IFM_FDX;
else
speed |= IFM_HDX;
sc->fixed_link = true;
ifmedia_init(&sc->fixed_ifmedia, 0, enetc_fixed_media_change,
enetc_fixed_media_status);
ifmedia_add(&sc->fixed_ifmedia, speed, 0, NULL);
ifmedia_set(&sc->fixed_ifmedia, speed);
sc->shared->isc_media = &sc->fixed_ifmedia;
return (0);
}
static int
enetc_setup_phy(struct enetc_softc *sc)
{
phandle_t node, fixed_link, phy_handle;
struct mii_data *miid;
int phy_addr, error;
ssize_t size;
node = ofw_bus_get_node(sc->dev);
fixed_link = ofw_bus_find_child(node, "fixed-link");
if (fixed_link != 0)
return (enetc_setup_fixed(sc, fixed_link));
size = OF_getencprop(node, "phy-handle", &phy_handle, sizeof(phy_handle));
if (size <= 0) {
device_printf(sc->dev,
"Failed to acquire PHY handle from FDT.\n");
return (ENXIO);
}
phy_handle = OF_node_from_xref(phy_handle);
size = OF_getencprop(phy_handle, "reg", &phy_addr, sizeof(phy_addr));
if (size <= 0) {
device_printf(sc->dev, "Failed to obtain PHY address\n");
return (ENXIO);
}
error = mii_attach(sc->dev, &sc->miibus, iflib_get_ifp(sc->ctx),
enetc_media_change, enetc_media_status,
BMSR_DEFCAPMASK, phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
if (error != 0) {
device_printf(sc->dev, "mii_attach failed\n");
return (error);
}
miid = device_get_softc(sc->miibus);
sc->shared->isc_media = &miid->mii_media;
return (0);
}
static int
enetc_attach_pre(if_ctx_t ctx)
{
if_softc_ctx_t scctx;
struct enetc_softc *sc;
int error, rid;
sc = iflib_get_softc(ctx);
scctx = iflib_get_softc_ctx(ctx);
sc->ctx = ctx;
sc->dev = iflib_get_dev(ctx);
sc->shared = scctx;
mtx_init(&sc->mii_lock, "enetc_mdio", NULL, MTX_DEF);
pci_save_state(sc->dev);
pcie_flr(sc->dev, 1000, false);
pci_restore_state(sc->dev);
rid = PCIR_BAR(ENETC_BAR_REGS);
sc->regs = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (sc->regs == NULL) {
device_printf(sc->dev,
"Failed to allocate BAR %d\n", ENETC_BAR_REGS);
return (ENXIO);
}
error = iflib_dma_alloc_align(ctx,
ENETC_MIN_DESC * sizeof(struct enetc_cbd),
ENETC_RING_ALIGN,
&sc->ctrl_queue.dma,
0);
if (error != 0) {
device_printf(sc->dev, "Failed to allocate control ring\n");
goto fail;
}
sc->ctrl_queue.ring = (struct enetc_cbd*)sc->ctrl_queue.dma.idi_vaddr;
scctx->isc_txrx = &enetc_txrx;
scctx->isc_tx_nsegments = ENETC_MAX_SCATTER;
enetc_max_nqueues(sc, &scctx->isc_nrxqsets_max, &scctx->isc_ntxqsets_max);
if (scctx->isc_ntxd[0] % ENETC_DESC_ALIGN != 0) {
device_printf(sc->dev,
"The number of TX descriptors has to be a multiple of %d\n",
ENETC_DESC_ALIGN);
error = EINVAL;
goto fail;
}
if (scctx->isc_nrxd[0] % ENETC_DESC_ALIGN != 0) {
device_printf(sc->dev,
"The number of RX descriptors has to be a multiple of %d\n",
ENETC_DESC_ALIGN);
error = EINVAL;
goto fail;
}
scctx->isc_txqsizes[0] = scctx->isc_ntxd[0] * sizeof(union enetc_tx_bd);
scctx->isc_rxqsizes[0] = scctx->isc_nrxd[0] * sizeof(union enetc_rx_bd);
scctx->isc_txd_size[0] = sizeof(union enetc_tx_bd);
scctx->isc_rxd_size[0] = sizeof(union enetc_rx_bd);
scctx->isc_tx_csum_flags = 0;
scctx->isc_capabilities = scctx->isc_capenable = ENETC_IFCAPS;
error = enetc_mtu_set(ctx, ETHERMTU);
if (error != 0)
goto fail;
scctx->isc_msix_bar = pci_msix_table_bar(sc->dev);
error = enetc_setup_phy(sc);
if (error != 0)
goto fail;
enetc_get_hwaddr(sc);
return (0);
fail:
enetc_detach(ctx);
return (error);
}
static int
enetc_attach_post(if_ctx_t ctx)
{
enetc_init_hw(iflib_get_softc(ctx));
return (0);
}
static int
enetc_detach(if_ctx_t ctx)
{
struct enetc_softc *sc;
int error = 0, i;
sc = iflib_get_softc(ctx);
for (i = 0; i < sc->rx_num_queues; i++)
iflib_irq_free(ctx, &sc->rx_queues[i].irq);
if (sc->miibus != NULL)
device_delete_child(sc->dev, sc->miibus);
if (sc->regs != NULL)
error = bus_release_resource(sc->dev, SYS_RES_MEMORY,
rman_get_rid(sc->regs), sc->regs);
if (sc->ctrl_queue.dma.idi_size != 0)
iflib_dma_free(&sc->ctrl_queue.dma);
mtx_destroy(&sc->mii_lock);
return (error);
}
static int
enetc_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
int ntxqs, int ntxqsets)
{
struct enetc_softc *sc;
struct enetc_tx_queue *queue;
int i;
sc = iflib_get_softc(ctx);
MPASS(ntxqs == 1);
sc->tx_queues = mallocarray(sc->tx_num_queues,
sizeof(struct enetc_tx_queue), M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->tx_queues == NULL) {
device_printf(sc->dev,
"Failed to allocate memory for TX queues.\n");
return (ENOMEM);
}
for (i = 0; i < sc->tx_num_queues; i++) {
queue = &sc->tx_queues[i];
queue->sc = sc;
queue->ring = (union enetc_tx_bd*)(vaddrs[i]);
queue->ring_paddr = paddrs[i];
queue->cidx = 0;
}
return (0);
}
static int
enetc_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
int nrxqs, int nrxqsets)
{
struct enetc_softc *sc;
struct enetc_rx_queue *queue;
int i;
sc = iflib_get_softc(ctx);
MPASS(nrxqs == 1);
sc->rx_queues = mallocarray(sc->rx_num_queues,
sizeof(struct enetc_rx_queue), M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->rx_queues == NULL) {
device_printf(sc->dev,
"Failed to allocate memory for RX queues.\n");
return (ENOMEM);
}
for (i = 0; i < sc->rx_num_queues; i++) {
queue = &sc->rx_queues[i];
queue->sc = sc;
queue->qid = i;
queue->ring = (union enetc_rx_bd*)(vaddrs[i]);
queue->ring_paddr = paddrs[i];
}
return (0);
}
static void
enetc_queues_free(if_ctx_t ctx)
{
struct enetc_softc *sc;
sc = iflib_get_softc(ctx);
if (sc->tx_queues != NULL) {
free(sc->tx_queues, M_DEVBUF);
sc->tx_queues = NULL;
}
if (sc->rx_queues != NULL) {
free(sc->rx_queues, M_DEVBUF);
sc->rx_queues = NULL;
}
}
static void
enetc_get_hwaddr(struct enetc_softc *sc)
{
struct ether_addr hwaddr;
uint16_t high;
uint32_t low;
low = ENETC_PORT_RD4(sc, ENETC_PSIPMAR0(0));
high = ENETC_PORT_RD2(sc, ENETC_PSIPMAR1(0));
memcpy(&hwaddr.octet[0], &low, 4);
memcpy(&hwaddr.octet[4], &high, 2);
if (ETHER_IS_BROADCAST(hwaddr.octet) ||
ETHER_IS_MULTICAST(hwaddr.octet) ||
ETHER_IS_ZERO(hwaddr.octet)) {
ether_gen_addr(iflib_get_ifp(sc->ctx), &hwaddr);
device_printf(sc->dev,
"Failed to obtain MAC address, using a random one\n");
memcpy(&low, &hwaddr.octet[0], 4);
memcpy(&high, &hwaddr.octet[4], 2);
}
iflib_set_mac(sc->ctx, hwaddr.octet);
}
static void
enetc_set_hwaddr(struct enetc_softc *sc)
{
if_t ifp;
uint16_t high;
uint32_t low;
uint8_t *hwaddr;
ifp = iflib_get_ifp(sc->ctx);
hwaddr = (uint8_t*)if_getlladdr(ifp);
low = *((uint32_t*)hwaddr);
high = *((uint16_t*)(hwaddr+4));
ENETC_PORT_WR4(sc, ENETC_PSIPMAR0(0), low);
ENETC_PORT_WR2(sc, ENETC_PSIPMAR1(0), high);
}
static int
enetc_setup_rss(struct enetc_softc *sc)
{
struct iflib_dma_info dma;
int error, i, buckets_num = 0;
uint8_t *rss_table;
uint32_t reg;
reg = ENETC_RD4(sc, ENETC_SIPCAPR0);
if (reg & ENETC_SIPCAPR0_RSS) {
reg = ENETC_RD4(sc, ENETC_SIRSSCAPR);
buckets_num = ENETC_SIRSSCAPR_GET_NUM_RSS(reg);
}
if (buckets_num == 0)
return (ENOTSUP);
for (i = 0; i < ENETC_RSSHASH_KEY_SIZE / sizeof(uint32_t); i++) {
arc4rand((uint8_t *)&reg, sizeof(reg), 0);
ENETC_PORT_WR4(sc, ENETC_PRSSK(i), reg);
}
ENETC_WR4(sc, ENETC_SIRBGCR, sc->rx_num_queues);
error = iflib_dma_alloc_align(sc->ctx,
buckets_num * sizeof(*rss_table),
ENETC_RING_ALIGN,
&dma,
0);
if (error != 0) {
device_printf(sc->dev, "Failed to allocate DMA buffer for RSS\n");
return (error);
}
rss_table = (uint8_t *)dma.idi_vaddr;
for (i = 0; i < buckets_num; i++)
rss_table[i] = i % sc->rx_num_queues;
error = enetc_ctrl_send(sc, (BDCR_CMD_RSS << 8) | BDCR_CMD_RSS_WRITE,
buckets_num * sizeof(*rss_table), &dma);
if (error != 0)
device_printf(sc->dev, "Failed to setup RSS table\n");
iflib_dma_free(&dma);
return (error);
}
static int
enetc_ctrl_send(struct enetc_softc *sc, uint16_t cmd, uint16_t size,
iflib_dma_info_t dma)
{
struct enetc_ctrl_queue *queue;
struct enetc_cbd *desc;
int timeout = 1000;
queue = &sc->ctrl_queue;
desc = &queue->ring[queue->pidx];
if (++queue->pidx == ENETC_MIN_DESC)
queue->pidx = 0;
desc->addr[0] = (uint32_t)dma->idi_paddr;
desc->addr[1] = (uint32_t)(dma->idi_paddr >> 32);
desc->index = 0;
desc->length = (uint16_t)size;
desc->cmd = (uint8_t)cmd;
desc->cls = (uint8_t)(cmd >> 8);
desc->status_flags = 0;
/* Sync command packet, */
bus_dmamap_sync(dma->idi_tag, dma->idi_map, BUS_DMASYNC_PREWRITE);
/* and the control ring. */
bus_dmamap_sync(queue->dma.idi_tag, queue->dma.idi_map, BUS_DMASYNC_PREWRITE);
ENETC_WR4(sc, ENETC_SICBDRPIR, queue->pidx);
while (--timeout != 0) {
DELAY(20);
if (ENETC_RD4(sc, ENETC_SICBDRCIR) == queue->pidx)
break;
}
if (timeout == 0)
return (ETIMEDOUT);
bus_dmamap_sync(dma->idi_tag, dma->idi_map, BUS_DMASYNC_POSTREAD);
return (0);
}
static void
enetc_init_hw(struct enetc_softc *sc)
{
uint32_t val;
int error;
ENETC_PORT_WR4(sc, ENETC_PM0_CMD_CFG,
ENETC_PM0_CMD_TXP | ENETC_PM0_PROMISC |
ENETC_PM0_TX_EN | ENETC_PM0_RX_EN);
ENETC_PORT_WR4(sc, ENETC_PM0_RX_FIFO, ENETC_PM0_RX_FIFO_VAL);
val = ENETC_PSICFGR0_SET_TXBDR(sc->tx_num_queues);
val |= ENETC_PSICFGR0_SET_RXBDR(sc->rx_num_queues);
val |= ENETC_PSICFGR0_SIVC(ENETC_VLAN_TYPE_C | ENETC_VLAN_TYPE_S);
ENETC_PORT_WR4(sc, ENETC_PSICFGR0(0), val);
ENETC_PORT_WR4(sc, ENETC_PSIPVMR, ENETC_PSIPVMR_SET_VUTA(1));
ENETC_PORT_WR4(sc, ENETC_PVCLCTR, ENETC_VLAN_TYPE_C | ENETC_VLAN_TYPE_S);
ENETC_PORT_WR4(sc, ENETC_PSIVLANFMR, ENETC_PSIVLANFMR_VS);
ENETC_PORT_WR4(sc, ENETC_PAR_PORT_CFG, ENETC_PAR_PORT_L4CD);
ENETC_PORT_WR4(sc, ENETC_PMR, ENETC_PMR_SI0EN | ENETC_PMR_PSPEED_1000M);
ENETC_WR4(sc, ENETC_SICAR0,
ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
ENETC_WR4(sc, ENETC_SICAR1, ENETC_SICAR_MSI);
ENETC_WR4(sc, ENETC_SICAR2,
ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
enetc_init_ctrl(sc);
error = enetc_setup_rss(sc);
if (error != 0)
ENETC_WR4(sc, ENETC_SIMR, ENETC_SIMR_EN);
else
ENETC_WR4(sc, ENETC_SIMR, ENETC_SIMR_EN | ENETC_SIMR_RSSE);
}
static void
enetc_init_ctrl(struct enetc_softc *sc)
{
struct enetc_ctrl_queue *queue = &sc->ctrl_queue;
ENETC_WR4(sc, ENETC_SICBDRBAR0,
(uint32_t)queue->dma.idi_paddr);
ENETC_WR4(sc, ENETC_SICBDRBAR1,
(uint32_t)(queue->dma.idi_paddr >> 32));
ENETC_WR4(sc, ENETC_SICBDRLENR,
queue->dma.idi_size / sizeof(struct enetc_cbd));
queue->pidx = 0;
ENETC_WR4(sc, ENETC_SICBDRPIR, queue->pidx);
ENETC_WR4(sc, ENETC_SICBDRCIR, queue->pidx);
ENETC_WR4(sc, ENETC_SICBDRMR, ENETC_SICBDRMR_EN);
}
static void
enetc_init_tx(struct enetc_softc *sc)
{
struct enetc_tx_queue *queue;
int i;
for (i = 0; i < sc->tx_num_queues; i++) {
queue = &sc->tx_queues[i];
ENETC_TXQ_WR4(sc, i, ENETC_TBBAR0,
(uint32_t)queue->ring_paddr);
ENETC_TXQ_WR4(sc, i, ENETC_TBBAR1,
(uint32_t)(queue->ring_paddr >> 32));
ENETC_TXQ_WR4(sc, i, ENETC_TBLENR, sc->tx_queue_size);
/*
* Even though it is undoccumented resetting the TX ring
* indices results in TX hang.
* Do the same as Linux and simply keep those unchanged
* for the drivers lifetime.
*/
#if 0
ENETC_TXQ_WR4(sc, i, ENETC_TBPIR, 0);
ENETC_TXQ_WR4(sc, i, ENETC_TBCIR, 0);
#endif
ENETC_TXQ_WR4(sc, i, ENETC_TBMR, ENETC_TBMR_EN);
}
}
static void
enetc_init_rx(struct enetc_softc *sc)
{
struct enetc_rx_queue *queue;
uint32_t rx_buf_size;
int i;
rx_buf_size = iflib_get_rx_mbuf_sz(sc->ctx);
for (i = 0; i < sc->rx_num_queues; i++) {
queue = &sc->rx_queues[i];
ENETC_RXQ_WR4(sc, i, ENETC_RBBAR0,
(uint32_t)queue->ring_paddr);
ENETC_RXQ_WR4(sc, i, ENETC_RBBAR1,
(uint32_t)(queue->ring_paddr >> 32));
ENETC_RXQ_WR4(sc, i, ENETC_RBLENR, sc->rx_queue_size);
ENETC_RXQ_WR4(sc, i, ENETC_RBBSR, rx_buf_size);
ENETC_RXQ_WR4(sc, i, ENETC_RBPIR, 0);
ENETC_RXQ_WR4(sc, i, ENETC_RBCIR, 0);
queue->enabled = false;
}
}
static u_int
enetc_hash_mac(void *arg, struct sockaddr_dl *sdl, u_int cnt)
{
uint64_t *bitmap = arg;
uint64_t address = 0;
uint8_t hash = 0;
bool bit;
int i, j;
bcopy(LLADDR(sdl), &address, ETHER_ADDR_LEN);
/*
* The six bit hash is calculated by xoring every
* 6th bit of the address.
* It is then used as an index in a bitmap that is
* written to the device.
*/
for (i = 0; i < 6; i++) {
bit = 0;
for (j = 0; j < 8; j++)
bit ^= !!(address & BIT(i + j*6));
hash |= bit << i;
}
*bitmap |= (1 << hash);
return (1);
}
static void
enetc_setup_multicast(if_ctx_t ctx)
{
struct enetc_softc *sc;
if_t ifp;
uint64_t bitmap = 0;
uint8_t revid;
sc = iflib_get_softc(ctx);
ifp = iflib_get_ifp(ctx);
revid = pci_get_revid(sc->dev);
if_foreach_llmaddr(ifp, enetc_hash_mac, &bitmap);
/*
* In revid 1 of this chip the positions multicast and unicast
* hash filter registers are flipped.
*/
ENETC_PORT_WR4(sc, ENETC_PSIMMHFR0(0, revid == 1), bitmap & UINT32_MAX);
ENETC_PORT_WR4(sc, ENETC_PSIMMHFR1(0), bitmap >> 32);
}
static uint8_t
enetc_hash_vid(uint16_t vid)
{
uint8_t hash = 0;
bool bit;
int i;
for (i = 0;i < 6;i++) {
bit = vid & BIT(i);
bit ^= !!(vid & BIT(i + 6));
hash |= bit << i;
}
return (hash);
}
static void
enetc_vlan_register(if_ctx_t ctx, uint16_t vid)
{
struct enetc_softc *sc;
uint8_t hash;
uint64_t bitmap;
sc = iflib_get_softc(ctx);
hash = enetc_hash_vid(vid);
/* Check if hash is already present in the bitmap. */
if (++sc->vlan_bitmap[hash] != 1)
return;
bitmap = ENETC_PORT_RD4(sc, ENETC_PSIVHFR0(0));
bitmap |= (uint64_t)ENETC_PORT_RD4(sc, ENETC_PSIVHFR1(0)) << 32;
bitmap |= BIT(hash);
ENETC_PORT_WR4(sc, ENETC_PSIVHFR0(0), bitmap & UINT32_MAX);
ENETC_PORT_WR4(sc, ENETC_PSIVHFR1(0), bitmap >> 32);
}
static void
enetc_vlan_unregister(if_ctx_t ctx, uint16_t vid)
{
struct enetc_softc *sc;
uint8_t hash;
uint64_t bitmap;
sc = iflib_get_softc(ctx);
hash = enetc_hash_vid(vid);
MPASS(sc->vlan_bitmap[hash] > 0);
if (--sc->vlan_bitmap[hash] != 0)
return;
bitmap = ENETC_PORT_RD4(sc, ENETC_PSIVHFR0(0));
bitmap |= (uint64_t)ENETC_PORT_RD4(sc, ENETC_PSIVHFR1(0)) << 32;
bitmap &= ~BIT(hash);
ENETC_PORT_WR4(sc, ENETC_PSIVHFR0(0), bitmap & UINT32_MAX);
ENETC_PORT_WR4(sc, ENETC_PSIVHFR1(0), bitmap >> 32);
}
static void
enetc_init(if_ctx_t ctx)
{
struct enetc_softc *sc;
struct mii_data *miid;
if_t ifp;
uint16_t max_frame_length;
int baudrate;
sc = iflib_get_softc(ctx);
ifp = iflib_get_ifp(ctx);
max_frame_length = sc->shared->isc_max_frame_size;
MPASS(max_frame_length < ENETC_MAX_FRAME_LEN);
/* Set max RX and TX frame lengths. */
ENETC_PORT_WR4(sc, ENETC_PM0_MAXFRM, max_frame_length);
ENETC_PORT_WR4(sc, ENETC_PTCMSDUR(0), max_frame_length);
ENETC_PORT_WR4(sc, ENETC_PTXMBAR, 2 * max_frame_length);
/* Set "VLAN promiscious" mode if filtering is disabled. */
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) == 0)
ENETC_PORT_WR4(sc, ENETC_PSIPVMR,
ENETC_PSIPVMR_SET_VUTA(1) | ENETC_PSIPVMR_SET_VP(1));
else
ENETC_PORT_WR4(sc, ENETC_PSIPVMR,
ENETC_PSIPVMR_SET_VUTA(1));
sc->rbmr = ENETC_RBMR_EN;
if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
sc->rbmr |= ENETC_RBMR_VTE;
/* Write MAC address to hardware. */
enetc_set_hwaddr(sc);
enetc_init_tx(sc);
enetc_init_rx(sc);
if (sc->fixed_link) {
baudrate = ifmedia_baudrate(sc->fixed_ifmedia.ifm_cur->ifm_media);
iflib_link_state_change(sc->ctx, LINK_STATE_UP, baudrate);
} else {
/*
* Can't return an error from this function, there is not much
* we can do if this fails.
*/
miid = device_get_softc(sc->miibus);
(void)mii_mediachg(miid);
}
enetc_promisc_set(ctx, if_getflags(ifp));
}
static void
enetc_disable_txq(struct enetc_softc *sc, int qid)
{
qidx_t cidx, pidx;
int timeout = 10000; /* this * DELAY(100) = 1s */
/* At this point iflib shouldn't be enquing any more frames. */
pidx = ENETC_TXQ_RD4(sc, qid, ENETC_TBPIR);
cidx = ENETC_TXQ_RD4(sc, qid, ENETC_TBCIR);
while (pidx != cidx && timeout--) {
DELAY(100);
cidx = ENETC_TXQ_RD4(sc, qid, ENETC_TBCIR);
}
if (timeout == 0)
device_printf(sc->dev,
"Timeout while waiting for txq%d to stop transmitting packets\n",
qid);
ENETC_TXQ_WR4(sc, qid, ENETC_TBMR, 0);
}
static void
enetc_stop(if_ctx_t ctx)
{
struct enetc_softc *sc;
int i;
sc = iflib_get_softc(ctx);
for (i = 0; i < sc->rx_num_queues; i++)
ENETC_RXQ_WR4(sc, i, ENETC_RBMR, 0);
for (i = 0; i < sc->tx_num_queues; i++)
enetc_disable_txq(sc, i);
}
static int
enetc_msix_intr_assign(if_ctx_t ctx, int msix)
{
struct enetc_softc *sc;
struct enetc_rx_queue *rx_queue;
struct enetc_tx_queue *tx_queue;
int vector = 0, i, error;
char irq_name[16];
sc = iflib_get_softc(ctx);
MPASS(sc->rx_num_queues + 1 <= ENETC_MSIX_COUNT);
MPASS(sc->rx_num_queues == sc->tx_num_queues);
for (i = 0; i < sc->rx_num_queues; i++, vector++) {
rx_queue = &sc->rx_queues[i];
snprintf(irq_name, sizeof(irq_name), "rxtxq%d", i);
error = iflib_irq_alloc_generic(ctx,
&rx_queue->irq, vector + 1, IFLIB_INTR_RXTX,
NULL, rx_queue, i, irq_name);
if (error != 0)
goto fail;
ENETC_WR4(sc, ENETC_SIMSIRRV(i), vector);
ENETC_RXQ_WR4(sc, i, ENETC_RBICR1, ENETC_RX_INTR_TIME_THR);
ENETC_RXQ_WR4(sc, i, ENETC_RBICR0,
ENETC_RBICR0_ICEN | ENETC_RBICR0_SET_ICPT(ENETC_RX_INTR_PKT_THR));
}
vector = 0;
for (i = 0;i < sc->tx_num_queues; i++, vector++) {
tx_queue = &sc->tx_queues[i];
snprintf(irq_name, sizeof(irq_name), "txq%d", i);
iflib_softirq_alloc_generic(ctx, &tx_queue->irq,
IFLIB_INTR_TX, tx_queue, i, irq_name);
ENETC_WR4(sc, ENETC_SIMSITRV(i), vector);
}
return (0);
fail:
for (i = 0; i < sc->rx_num_queues; i++) {
rx_queue = &sc->rx_queues[i];
iflib_irq_free(ctx, &rx_queue->irq);
}
return (error);
}
static int
enetc_tx_queue_intr_enable(if_ctx_t ctx, uint16_t qid)
{
struct enetc_softc *sc;
sc = iflib_get_softc(ctx);
ENETC_TXQ_RD4(sc, qid, ENETC_TBIDR);
return (0);
}
static int
enetc_rx_queue_intr_enable(if_ctx_t ctx, uint16_t qid)
{
struct enetc_softc *sc;
sc = iflib_get_softc(ctx);
ENETC_RXQ_RD4(sc, qid, ENETC_RBIDR);
return (0);
}
static void
enetc_intr_enable(if_ctx_t ctx)
{
struct enetc_softc *sc;
int i;
sc = iflib_get_softc(ctx);
for (i = 0; i < sc->rx_num_queues; i++)
ENETC_RXQ_WR4(sc, i, ENETC_RBIER, ENETC_RBIER_RXTIE);
for (i = 0; i < sc->tx_num_queues; i++)
ENETC_TXQ_WR4(sc, i, ENETC_TBIER, ENETC_TBIER_TXF);
}
static void
enetc_intr_disable(if_ctx_t ctx)
{
struct enetc_softc *sc;
int i;
sc = iflib_get_softc(ctx);
for (i = 0; i < sc->rx_num_queues; i++)
ENETC_RXQ_WR4(sc, i, ENETC_RBIER, 0);
for (i = 0; i < sc->tx_num_queues; i++)
ENETC_TXQ_WR4(sc, i, ENETC_TBIER, 0);
}
static int
enetc_isc_txd_encap(void *data, if_pkt_info_t ipi)
{
struct enetc_softc *sc = data;
struct enetc_tx_queue *queue;
union enetc_tx_bd *desc;
bus_dma_segment_t *segs;
qidx_t pidx, queue_len;
qidx_t i = 0;
queue = &sc->tx_queues[ipi->ipi_qsidx];
segs = ipi->ipi_segs;
pidx = ipi->ipi_pidx;
queue_len = sc->tx_queue_size;
/*
* First descriptor is special. We use it to set frame
* related information and offloads, e.g. VLAN tag.
*/
desc = &queue->ring[pidx];
bzero(desc, sizeof(*desc));
desc->frm_len = ipi->ipi_len;
desc->addr = segs[i].ds_addr;
desc->buf_len = segs[i].ds_len;
if (ipi->ipi_flags & IPI_TX_INTR)
desc->flags = ENETC_TXBD_FLAGS_FI;
i++;
if (++pidx == queue_len)
pidx = 0;
if (ipi->ipi_mflags & M_VLANTAG) {
/* VLAN tag is inserted in a separate descriptor. */
desc->flags |= ENETC_TXBD_FLAGS_EX;
desc = &queue->ring[pidx];
bzero(desc, sizeof(*desc));
desc->ext.vid = ipi->ipi_vtag;
desc->ext.e_flags = ENETC_TXBD_E_FLAGS_VLAN_INS;
if (++pidx == queue_len)
pidx = 0;
}
/* Now add remaining descriptors. */
for (;i < ipi->ipi_nsegs; i++) {
desc = &queue->ring[pidx];
bzero(desc, sizeof(*desc));
desc->addr = segs[i].ds_addr;
desc->buf_len = segs[i].ds_len;
if (++pidx == queue_len)
pidx = 0;
}
desc->flags |= ENETC_TXBD_FLAGS_F;
ipi->ipi_new_pidx = pidx;
return (0);
}
static void
enetc_isc_txd_flush(void *data, uint16_t qid, qidx_t pidx)
{
struct enetc_softc *sc = data;
ENETC_TXQ_WR4(sc, qid, ENETC_TBPIR, pidx);
}
static int
enetc_isc_txd_credits_update(void *data, uint16_t qid, bool clear)
{
struct enetc_softc *sc = data;
struct enetc_tx_queue *queue;
int cidx, hw_cidx, count;
queue = &sc->tx_queues[qid];
hw_cidx = ENETC_TXQ_RD4(sc, qid, ENETC_TBCIR) & ENETC_TBCIR_IDX_MASK;
cidx = queue->cidx;
/*
* RM states that the ring can hold at most ring_size - 1 descriptors.
* Thanks to that we can assume that the ring is empty if cidx == pidx.
* This requirement is guaranteed implicitly by iflib as it will only
* encap a new frame if we have at least nfrags + 2 descriptors available
* on the ring. This driver uses at most one additional descriptor for
* VLAN tag insertion.
* Also RM states that the TBCIR register is only updated once all
* descriptors in the chain have been processed.
*/
if (cidx == hw_cidx)
return (0);
if (!clear)
return (1);
count = hw_cidx - cidx;
if (count < 0)
count += sc->tx_queue_size;
queue->cidx = hw_cidx;
return (count);
}
static int
enetc_isc_rxd_available(void *data, uint16_t qid, qidx_t pidx, qidx_t budget)
{
struct enetc_softc *sc = data;
struct enetc_rx_queue *queue;
qidx_t hw_pidx, queue_len;
union enetc_rx_bd *desc;
int count = 0;
queue = &sc->rx_queues[qid];
desc = &queue->ring[pidx];
queue_len = sc->rx_queue_size;
if (desc->r.lstatus == 0)
return (0);
if (budget == 1)
return (1);
hw_pidx = ENETC_RXQ_RD4(sc, qid, ENETC_RBPIR);
while (pidx != hw_pidx && count < budget) {
desc = &queue->ring[pidx];
if (desc->r.lstatus & ENETC_RXBD_LSTATUS_F)
count++;
if (++pidx == queue_len)
pidx = 0;
}
return (count);
}
static int
enetc_isc_rxd_pkt_get(void *data, if_rxd_info_t ri)
{
struct enetc_softc *sc = data;
struct enetc_rx_queue *queue;
union enetc_rx_bd *desc;
uint16_t buf_len, pkt_size = 0;
qidx_t cidx, queue_len;
uint32_t status;
int i;
cidx = ri->iri_cidx;
queue = &sc->rx_queues[ri->iri_qsidx];
desc = &queue->ring[cidx];
status = desc->r.lstatus;
queue_len = sc->rx_queue_size;
/*
* Ready bit will be set only when all descriptors
* in the chain have been processed.
*/
if ((status & ENETC_RXBD_LSTATUS_R) == 0)
return (EAGAIN);
/* Pass RSS hash. */
if (status & ENETC_RXBD_FLAG_RSSV) {
ri->iri_flowid = desc->r.rss_hash;
ri->iri_rsstype = M_HASHTYPE_OPAQUE_HASH;
}
/* Pass IP checksum status. */
ri->iri_csum_flags = CSUM_IP_CHECKED;
if ((desc->r.parse_summary & ENETC_RXBD_PARSER_ERROR) == 0)
ri->iri_csum_flags |= CSUM_IP_VALID;
/* Pass extracted VLAN tag. */
if (status & ENETC_RXBD_FLAG_VLAN) {
ri->iri_vtag = desc->r.vlan_opt;
ri->iri_flags = M_VLANTAG;
}
for (i = 0; i < ENETC_MAX_SCATTER; i++) {
buf_len = desc->r.buf_len;
ri->iri_frags[i].irf_idx = cidx;
ri->iri_frags[i].irf_len = buf_len;
pkt_size += buf_len;
if (desc->r.lstatus & ENETC_RXBD_LSTATUS_F)
break;
if (++cidx == queue_len)
cidx = 0;
desc = &queue->ring[cidx];
}
ri->iri_nfrags = i + 1;
ri->iri_len = pkt_size;
MPASS(desc->r.lstatus & ENETC_RXBD_LSTATUS_F);
if (status & ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))
return (EBADMSG);
return (0);
}
static void
enetc_isc_rxd_refill(void *data, if_rxd_update_t iru)
{
struct enetc_softc *sc = data;
struct enetc_rx_queue *queue;
union enetc_rx_bd *desc;
qidx_t pidx, queue_len;
uint64_t *paddrs;
int i, count;
queue = &sc->rx_queues[iru->iru_qsidx];
paddrs = iru->iru_paddrs;
pidx = iru->iru_pidx;
count = iru->iru_count;
queue_len = sc->rx_queue_size;
for (i = 0; i < count; i++) {
desc = &queue->ring[pidx];
bzero(desc, sizeof(*desc));
desc->w.addr = paddrs[i];
if (++pidx == queue_len)
pidx = 0;
}
/*
* After enabling the queue NIC will prefetch the first
* 8 descriptors. It probably assumes that the RX is fully
* refilled when cidx == pidx.
* Enable it only if we have enough descriptors ready on the ring.
*/
if (!queue->enabled && pidx >= 8) {
ENETC_RXQ_WR4(sc, iru->iru_qsidx, ENETC_RBMR, sc->rbmr);
queue->enabled = true;
}
}
static void
enetc_isc_rxd_flush(void *data, uint16_t qid, uint8_t flid, qidx_t pidx)
{
struct enetc_softc *sc = data;
ENETC_RXQ_WR4(sc, qid, ENETC_RBCIR, pidx);
}
static uint64_t
enetc_get_counter(if_ctx_t ctx, ift_counter cnt)
{
struct enetc_softc *sc;
if_t ifp;
sc = iflib_get_softc(ctx);
ifp = iflib_get_ifp(ctx);
switch (cnt) {
case IFCOUNTER_IERRORS:
return (ENETC_PORT_RD8(sc, ENETC_PM0_RERR));
case IFCOUNTER_OERRORS:
return (ENETC_PORT_RD8(sc, ENETC_PM0_TERR));
default:
return (if_get_counter_default(ifp, cnt));
}
}
static int
enetc_mtu_set(if_ctx_t ctx, uint32_t mtu)
{
struct enetc_softc *sc = iflib_get_softc(ctx);
uint32_t max_frame_size;
max_frame_size = mtu +
ETHER_HDR_LEN +
ETHER_CRC_LEN +
sizeof(struct ether_vlan_header);
if (max_frame_size > ENETC_MAX_FRAME_LEN)
return (EINVAL);
sc->shared->isc_max_frame_size = max_frame_size;
return (0);
}
static int
enetc_promisc_set(if_ctx_t ctx, int flags)
{
struct enetc_softc *sc;
uint32_t reg = 0;
sc = iflib_get_softc(ctx);
if (flags & IFF_PROMISC)
reg = ENETC_PSIPMR_SET_UP(0) | ENETC_PSIPMR_SET_MP(0);
else if (flags & IFF_ALLMULTI)
reg = ENETC_PSIPMR_SET_MP(0);
ENETC_PORT_WR4(sc, ENETC_PSIPMR, reg);
return (0);
}
static void
enetc_timer(if_ctx_t ctx, uint16_t qid)
{
/*
* Poll PHY status. Do this only for qid 0 to save
* some cycles.
*/
if (qid == 0)
iflib_admin_intr_deferred(ctx);
}
static void
enetc_update_admin_status(if_ctx_t ctx)
{
struct enetc_softc *sc;
struct mii_data *miid;
sc = iflib_get_softc(ctx);
if (!sc->fixed_link) {
miid = device_get_softc(sc->miibus);
mii_tick(miid);
}
}
static int
enetc_miibus_readreg(device_t dev, int phy, int reg)
{
struct enetc_softc *sc;
int val;
sc = iflib_get_softc(device_get_softc(dev));
mtx_lock(&sc->mii_lock);
val = enetc_mdio_read(sc->regs, ENETC_PORT_BASE + ENETC_EMDIO_BASE,
phy, reg);
mtx_unlock(&sc->mii_lock);
return (val);
}
static int
enetc_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct enetc_softc *sc;
int ret;
sc = iflib_get_softc(device_get_softc(dev));
mtx_lock(&sc->mii_lock);
ret = enetc_mdio_write(sc->regs, ENETC_PORT_BASE + ENETC_EMDIO_BASE,
phy, reg, data);
mtx_unlock(&sc->mii_lock);
return (ret);
}
static void
enetc_miibus_linkchg(device_t dev)
{
enetc_miibus_statchg(dev);
}
static void
enetc_miibus_statchg(device_t dev)
{
struct enetc_softc *sc;
struct mii_data *miid;
int link_state, baudrate;
sc = iflib_get_softc(device_get_softc(dev));
miid = device_get_softc(sc->miibus);
baudrate = ifmedia_baudrate(miid->mii_media_active);
if (miid->mii_media_status & IFM_AVALID) {
if (miid->mii_media_status & IFM_ACTIVE)
link_state = LINK_STATE_UP;
else
link_state = LINK_STATE_DOWN;
} else {
link_state = LINK_STATE_UNKNOWN;
}
iflib_link_state_change(sc->ctx, link_state, baudrate);
}
static int
enetc_media_change(if_t ifp)
{
struct enetc_softc *sc;
struct mii_data *miid;
sc = iflib_get_softc(if_getsoftc(ifp));
miid = device_get_softc(sc->miibus);
mii_mediachg(miid);
return (0);
}
static void
enetc_media_status(if_t ifp, struct ifmediareq* ifmr)
{
struct enetc_softc *sc;
struct mii_data *miid;
sc = iflib_get_softc(if_getsoftc(ifp));
miid = device_get_softc(sc->miibus);
mii_pollstat(miid);
ifmr->ifm_active = miid->mii_media_active;
ifmr->ifm_status = miid->mii_media_status;
}
static int
enetc_fixed_media_change(if_t ifp)
{
if_printf(ifp, "Can't change media in fixed-link mode.\n");
return (0);
}
static void
enetc_fixed_media_status(if_t ifp, struct ifmediareq* ifmr)
{
struct enetc_softc *sc;
sc = iflib_get_softc(if_getsoftc(ifp));
ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
ifmr->ifm_active = sc->fixed_ifmedia.ifm_cur->ifm_media;
return;
}