freebsd-dev/sys/dev/cxgbe/crypto/t4_keyctx.c
John Baldwin 0065d9a47f Explicitly zero AES key schedules on the stack.
Reviewed by:	delphij
MFC after:	1 week
Sponsored by:	Netflix
Differential Revision:	https://reviews.freebsd.org/D25057
2020-06-03 22:18:21 +00:00

175 lines
5.2 KiB
C

/*-
* Copyright (c) 2017-2019 Chelsio Communications, Inc.
* All rights reserved.
* Written by: John Baldwin <jhb@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/malloc.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h>
#include "common/common.h"
#include "crypto/t4_crypto.h"
/*
* Crypto operations use a key context to store cipher keys and
* partial hash digests. They can either be passed inline as part of
* a work request using crypto or they can be stored in card RAM. For
* the latter case, work requests must replace the inline key context
* with a request to read the context from card RAM.
*
* The format of a key context:
*
* +-------------------------------+
* | key context header |
* +-------------------------------+
* | AES key | ----- For requests with AES
* +-------------------------------+
* | Hash state | ----- For hash-only requests
* +-------------------------------+ -
* | IPAD (16-byte aligned) | \
* +-------------------------------+ +---- For requests with HMAC
* | OPAD (16-byte aligned) | /
* +-------------------------------+ -
* | GMAC H | ----- For AES-GCM
* +-------------------------------+ -
*/
/*
* Generate the initial GMAC hash state for a AES-GCM key.
*
* Borrowed from AES_GMAC_Setkey().
*/
void
t4_init_gmac_hash(const char *key, int klen, char *ghash)
{
static char zeroes[GMAC_BLOCK_LEN];
uint32_t keysched[4 * (RIJNDAEL_MAXNR + 1)];
int rounds;
rounds = rijndaelKeySetupEnc(keysched, key, klen * 8);
rijndaelEncrypt(keysched, rounds, zeroes, ghash);
explicit_bzero(keysched, sizeof(keysched));
}
/* Copy out the partial hash state from a software hash implementation. */
void
t4_copy_partial_hash(int alg, union authctx *auth_ctx, void *dst)
{
uint32_t *u32;
uint64_t *u64;
u_int i;
u32 = (uint32_t *)dst;
u64 = (uint64_t *)dst;
switch (alg) {
case CRYPTO_SHA1:
case CRYPTO_SHA1_HMAC:
for (i = 0; i < SHA1_HASH_LEN / 4; i++)
u32[i] = htobe32(auth_ctx->sha1ctx.h.b32[i]);
break;
case CRYPTO_SHA2_224:
case CRYPTO_SHA2_224_HMAC:
for (i = 0; i < SHA2_256_HASH_LEN / 4; i++)
u32[i] = htobe32(auth_ctx->sha224ctx.state[i]);
break;
case CRYPTO_SHA2_256:
case CRYPTO_SHA2_256_HMAC:
for (i = 0; i < SHA2_256_HASH_LEN / 4; i++)
u32[i] = htobe32(auth_ctx->sha256ctx.state[i]);
break;
case CRYPTO_SHA2_384:
case CRYPTO_SHA2_384_HMAC:
for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
u64[i] = htobe64(auth_ctx->sha384ctx.state[i]);
break;
case CRYPTO_SHA2_512:
case CRYPTO_SHA2_512_HMAC:
for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
u64[i] = htobe64(auth_ctx->sha512ctx.state[i]);
break;
}
}
void
t4_init_hmac_digest(struct auth_hash *axf, u_int partial_digest_len,
const char *key, int klen, char *dst)
{
union authctx auth_ctx;
hmac_init_ipad(axf, key, klen, &auth_ctx);
t4_copy_partial_hash(axf->type, &auth_ctx, dst);
dst += roundup2(partial_digest_len, 16);
hmac_init_opad(axf, key, klen, &auth_ctx);
t4_copy_partial_hash(axf->type, &auth_ctx, dst);
explicit_bzero(&auth_ctx, sizeof(auth_ctx));
}
/*
* Borrowed from cesa_prep_aes_key().
*
* NB: The crypto engine wants the words in the decryption key in reverse
* order.
*/
void
t4_aes_getdeckey(void *dec_key, const void *enc_key, unsigned int kbits)
{
uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
uint32_t *dkey;
int i;
rijndaelKeySetupEnc(ek, enc_key, kbits);
dkey = dec_key;
dkey += (kbits / 8) / 4;
switch (kbits) {
case 128:
for (i = 0; i < 4; i++)
*--dkey = htobe32(ek[4 * 10 + i]);
break;
case 192:
for (i = 0; i < 2; i++)
*--dkey = htobe32(ek[4 * 11 + 2 + i]);
for (i = 0; i < 4; i++)
*--dkey = htobe32(ek[4 * 12 + i]);
break;
case 256:
for (i = 0; i < 4; i++)
*--dkey = htobe32(ek[4 * 13 + i]);
for (i = 0; i < 4; i++)
*--dkey = htobe32(ek[4 * 14 + i]);
break;
}
MPASS(dkey == dec_key);
explicit_bzero(ek, sizeof(ek));
}