freebsd-dev/sys/dev/cxgbe/t4_sched.c
Navdeep Parhar eb6f5d6e72 cxgbe(4): Make it clear that VI_INIT_DONE implies vi->ntxq > 0, and so
rc will never be returned uninitialized.

Reported by:	Coverity (CID 1394884).  This is a false positive though.
Sponsored by:	Chelsio Communications
2018-08-21 21:42:17 +00:00

908 lines
22 KiB
C

/*-
* Copyright (c) 2017 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ratelimit.h"
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/taskqueue.h>
#include <sys/sysctl.h>
#include "common/common.h"
#include "common/t4_regs.h"
#include "common/t4_regs_values.h"
#include "common/t4_msg.h"
static int
in_range(int val, int lo, int hi)
{
return (val < 0 || (val <= hi && val >= lo));
}
static int
set_sched_class_config(struct adapter *sc, int minmax)
{
int rc;
if (minmax < 0)
return (EINVAL);
rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4sscc");
if (rc)
return (rc);
rc = -t4_sched_config(sc, FW_SCHED_TYPE_PKTSCHED, minmax, 1);
end_synchronized_op(sc, 0);
return (rc);
}
static int
set_sched_class_params(struct adapter *sc, struct t4_sched_class_params *p,
int sleep_ok)
{
int rc, top_speed, fw_level, fw_mode, fw_rateunit, fw_ratemode;
struct port_info *pi;
struct tx_cl_rl_params *tc, old;
bool check_pktsize = false;
if (p->level == SCHED_CLASS_LEVEL_CL_RL)
fw_level = FW_SCHED_PARAMS_LEVEL_CL_RL;
else if (p->level == SCHED_CLASS_LEVEL_CL_WRR)
fw_level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
else if (p->level == SCHED_CLASS_LEVEL_CH_RL)
fw_level = FW_SCHED_PARAMS_LEVEL_CH_RL;
else
return (EINVAL);
if (p->level == SCHED_CLASS_LEVEL_CL_RL) {
if (p->mode == SCHED_CLASS_MODE_CLASS)
fw_mode = FW_SCHED_PARAMS_MODE_CLASS;
else if (p->mode == SCHED_CLASS_MODE_FLOW) {
check_pktsize = true;
fw_mode = FW_SCHED_PARAMS_MODE_FLOW;
} else
return (EINVAL);
} else
fw_mode = 0;
/* Valid channel must always be provided. */
if (p->channel < 0)
return (EINVAL);
if (!in_range(p->channel, 0, sc->chip_params->nchan - 1))
return (ERANGE);
pi = sc->port[sc->chan_map[p->channel]];
if (pi == NULL)
return (ENXIO);
MPASS(pi->tx_chan == p->channel);
top_speed = port_top_speed(pi) * 1000000; /* Gbps -> Kbps */
if (p->level == SCHED_CLASS_LEVEL_CL_RL ||
p->level == SCHED_CLASS_LEVEL_CH_RL) {
/*
* Valid rate (mode, unit and values) must be provided.
*/
if (p->minrate < 0)
p->minrate = 0;
if (p->maxrate < 0)
return (EINVAL);
if (p->rateunit == SCHED_CLASS_RATEUNIT_BITS) {
fw_rateunit = FW_SCHED_PARAMS_UNIT_BITRATE;
/* ratemode could be relative (%) or absolute. */
if (p->ratemode == SCHED_CLASS_RATEMODE_REL) {
fw_ratemode = FW_SCHED_PARAMS_RATE_REL;
/* maxrate is % of port bandwidth. */
if (!in_range(p->minrate, 0, 100) ||
!in_range(p->maxrate, 0, 100)) {
return (ERANGE);
}
} else if (p->ratemode == SCHED_CLASS_RATEMODE_ABS) {
fw_ratemode = FW_SCHED_PARAMS_RATE_ABS;
/* maxrate is absolute value in kbps. */
if (!in_range(p->minrate, 0, top_speed) ||
!in_range(p->maxrate, 0, top_speed)) {
return (ERANGE);
}
} else
return (EINVAL);
} else if (p->rateunit == SCHED_CLASS_RATEUNIT_PKTS) {
/* maxrate is the absolute value in pps. */
check_pktsize = true;
fw_rateunit = FW_SCHED_PARAMS_UNIT_PKTRATE;
} else
return (EINVAL);
} else {
MPASS(p->level == SCHED_CLASS_LEVEL_CL_WRR);
/*
* Valid weight must be provided.
*/
if (p->weight < 0)
return (EINVAL);
if (!in_range(p->weight, 1, 99))
return (ERANGE);
fw_rateunit = 0;
fw_ratemode = 0;
}
if (p->level == SCHED_CLASS_LEVEL_CL_RL ||
p->level == SCHED_CLASS_LEVEL_CL_WRR) {
/*
* Valid scheduling class must be provided.
*/
if (p->cl < 0)
return (EINVAL);
if (!in_range(p->cl, 0, sc->chip_params->nsched_cls - 1))
return (ERANGE);
}
if (check_pktsize) {
if (p->pktsize < 0)
return (EINVAL);
if (!in_range(p->pktsize, 64, pi->vi[0].ifp->if_mtu))
return (ERANGE);
}
if (p->level == SCHED_CLASS_LEVEL_CL_RL) {
tc = &pi->sched_params->cl_rl[p->cl];
mtx_lock(&sc->tc_lock);
if (tc->refcount > 0 || tc->flags & (CLRL_SYNC | CLRL_ASYNC))
rc = EBUSY;
else {
tc->flags |= CLRL_SYNC | CLRL_USER;
tc->ratemode = fw_ratemode;
tc->rateunit = fw_rateunit;
tc->mode = fw_mode;
tc->maxrate = p->maxrate;
tc->pktsize = p->pktsize;
rc = 0;
old= *tc;
}
mtx_unlock(&sc->tc_lock);
if (rc != 0)
return (rc);
}
rc = begin_synchronized_op(sc, NULL,
sleep_ok ? (SLEEP_OK | INTR_OK) : HOLD_LOCK, "t4sscp");
if (rc != 0) {
if (p->level == SCHED_CLASS_LEVEL_CL_RL) {
mtx_lock(&sc->tc_lock);
*tc = old;
mtx_unlock(&sc->tc_lock);
}
return (rc);
}
rc = -t4_sched_params(sc, FW_SCHED_TYPE_PKTSCHED, fw_level, fw_mode,
fw_rateunit, fw_ratemode, p->channel, p->cl, p->minrate, p->maxrate,
p->weight, p->pktsize, 0, sleep_ok);
end_synchronized_op(sc, sleep_ok ? 0 : LOCK_HELD);
if (p->level == SCHED_CLASS_LEVEL_CL_RL) {
mtx_lock(&sc->tc_lock);
MPASS(tc->flags & CLRL_SYNC);
MPASS(tc->flags & CLRL_USER);
MPASS(tc->refcount == 0);
tc->flags &= ~CLRL_SYNC;
if (rc == 0)
tc->flags &= ~CLRL_ERR;
else
tc->flags |= CLRL_ERR;
mtx_unlock(&sc->tc_lock);
}
return (rc);
}
static void
update_tx_sched(void *context, int pending)
{
int i, j, rc;
struct port_info *pi;
struct tx_cl_rl_params *tc;
struct adapter *sc = context;
const int n = sc->chip_params->nsched_cls;
mtx_lock(&sc->tc_lock);
for_each_port(sc, i) {
pi = sc->port[i];
tc = &pi->sched_params->cl_rl[0];
for (j = 0; j < n; j++, tc++) {
MPASS(mtx_owned(&sc->tc_lock));
if ((tc->flags & CLRL_ASYNC) == 0)
continue;
mtx_unlock(&sc->tc_lock);
if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
"t4utxs") != 0) {
mtx_lock(&sc->tc_lock);
continue;
}
rc = -t4_sched_params(sc, FW_SCHED_TYPE_PKTSCHED,
FW_SCHED_PARAMS_LEVEL_CL_RL, tc->mode, tc->rateunit,
tc->ratemode, pi->tx_chan, j, 0, tc->maxrate, 0,
tc->pktsize, tc->burstsize, 1);
end_synchronized_op(sc, 0);
mtx_lock(&sc->tc_lock);
MPASS(tc->flags & CLRL_ASYNC);
tc->flags &= ~CLRL_ASYNC;
if (rc == 0)
tc->flags &= ~CLRL_ERR;
else
tc->flags |= CLRL_ERR;
}
}
mtx_unlock(&sc->tc_lock);
}
int
t4_set_sched_class(struct adapter *sc, struct t4_sched_params *p)
{
if (p->type != SCHED_CLASS_TYPE_PACKET)
return (EINVAL);
if (p->subcmd == SCHED_CLASS_SUBCMD_CONFIG)
return (set_sched_class_config(sc, p->u.config.minmax));
if (p->subcmd == SCHED_CLASS_SUBCMD_PARAMS)
return (set_sched_class_params(sc, &p->u.params, 1));
return (EINVAL);
}
static int
bind_txq_to_traffic_class(struct adapter *sc, struct sge_txq *txq, int idx)
{
struct tx_cl_rl_params *tc0, *tc;
int rc, old_idx;
uint32_t fw_mnem, fw_class;
if (!(txq->eq.flags & EQ_ALLOCATED))
return (EAGAIN);
mtx_lock(&sc->tc_lock);
if (txq->tc_idx == -2) {
rc = EBUSY; /* Another bind/unbind in progress already. */
goto done;
}
if (idx == txq->tc_idx) {
rc = 0; /* No change, nothing to do. */
goto done;
}
tc0 = &sc->port[txq->eq.tx_chan]->sched_params->cl_rl[0];
if (idx != -1) {
/*
* Bind to a different class at index idx.
*/
tc = &tc0[idx];
if (tc->flags & CLRL_ERR) {
rc = ENXIO;
goto done;
} else {
/*
* Ok to proceed. Place a reference on the new class
* while still holding on to the reference on the
* previous class, if any.
*/
tc->refcount++;
}
}
/* Mark as busy before letting go of the lock. */
old_idx = txq->tc_idx;
txq->tc_idx = -2;
mtx_unlock(&sc->tc_lock);
rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4btxq");
if (rc != 0)
return (rc);
fw_mnem = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) |
V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id));
fw_class = idx < 0 ? 0xffffffff : idx;
rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_mnem, &fw_class);
end_synchronized_op(sc, 0);
mtx_lock(&sc->tc_lock);
MPASS(txq->tc_idx == -2);
if (rc == 0) {
/*
* Unbind, bind, or bind to a different class succeeded. Remove
* the reference on the old traffic class, if any.
*/
if (old_idx != -1) {
tc = &tc0[old_idx];
MPASS(tc->refcount > 0);
tc->refcount--;
}
txq->tc_idx = idx;
} else {
/*
* Unbind, bind, or bind to a different class failed. Remove
* the anticipatory reference on the new traffic class, if any.
*/
if (idx != -1) {
tc = &tc0[idx];
MPASS(tc->refcount > 0);
tc->refcount--;
}
txq->tc_idx = old_idx;
}
done:
MPASS(txq->tc_idx >= -1 && txq->tc_idx < sc->chip_params->nsched_cls);
mtx_unlock(&sc->tc_lock);
return (rc);
}
int
t4_set_sched_queue(struct adapter *sc, struct t4_sched_queue *p)
{
struct port_info *pi = NULL;
struct vi_info *vi;
struct sge_txq *txq;
int i, rc;
if (p->port >= sc->params.nports)
return (EINVAL);
/*
* XXX: cxgbetool allows the user to specify the physical port only. So
* we always operate on the main VI.
*/
pi = sc->port[p->port];
vi = &pi->vi[0];
/* Checking VI_INIT_DONE outside a synch-op is a harmless race here. */
if (!(vi->flags & VI_INIT_DONE))
return (EAGAIN);
MPASS(vi->ntxq > 0);
if (!in_range(p->queue, 0, vi->ntxq - 1) ||
!in_range(p->cl, 0, sc->chip_params->nsched_cls - 1))
return (EINVAL);
if (p->queue < 0) {
/*
* Change the scheduling on all the TX queues for the
* interface.
*/
for_each_txq(vi, i, txq) {
rc = bind_txq_to_traffic_class(sc, txq, p->cl);
if (rc != 0)
break;
}
} else {
/*
* If op.queue is non-negative, then we're only changing the
* scheduling on a single specified TX queue.
*/
txq = &sc->sge.txq[vi->first_txq + p->queue];
rc = bind_txq_to_traffic_class(sc, txq, p->cl);
}
return (rc);
}
int
t4_init_tx_sched(struct adapter *sc)
{
int i, j;
const int n = sc->chip_params->nsched_cls;
struct port_info *pi;
struct tx_cl_rl_params *tc;
mtx_init(&sc->tc_lock, "tx_sched lock", NULL, MTX_DEF);
TASK_INIT(&sc->tc_task, 0, update_tx_sched, sc);
for_each_port(sc, i) {
pi = sc->port[i];
pi->sched_params = malloc(sizeof(*pi->sched_params) +
n * sizeof(*tc), M_CXGBE, M_ZERO | M_WAITOK);
tc = &pi->sched_params->cl_rl[0];
for (j = 0; j < n; j++, tc++) {
tc->refcount = 0;
tc->ratemode = FW_SCHED_PARAMS_RATE_ABS;
tc->rateunit = FW_SCHED_PARAMS_UNIT_BITRATE;
tc->mode = FW_SCHED_PARAMS_MODE_CLASS;
tc->maxrate = 1000 * 1000; /* 1 Gbps. Arbitrary */
if (t4_sched_params_cl_rl_kbps(sc, pi->tx_chan, j,
tc->mode, tc->maxrate, tc->pktsize, 1) != 0)
tc->flags = CLRL_ERR;
}
}
return (0);
}
int
t4_free_tx_sched(struct adapter *sc)
{
int i;
taskqueue_drain(taskqueue_thread, &sc->tc_task);
for_each_port(sc, i) {
if (sc->port[i] != NULL)
free(sc->port[i]->sched_params, M_CXGBE);
}
if (mtx_initialized(&sc->tc_lock))
mtx_destroy(&sc->tc_lock);
return (0);
}
void
t4_update_tx_sched(struct adapter *sc)
{
taskqueue_enqueue(taskqueue_thread, &sc->tc_task);
}
int
t4_reserve_cl_rl_kbps(struct adapter *sc, int port_id, u_int maxrate,
int *tc_idx)
{
int rc = 0, fa = -1, i, pktsize, burstsize;
bool update;
struct tx_cl_rl_params *tc;
struct port_info *pi;
MPASS(port_id >= 0 && port_id < sc->params.nports);
pi = sc->port[port_id];
if (pi->sched_params->pktsize > 0)
pktsize = pi->sched_params->pktsize;
else
pktsize = pi->vi[0].ifp->if_mtu;
if (pi->sched_params->burstsize > 0)
burstsize = pi->sched_params->burstsize;
else
burstsize = pktsize * 4;
tc = &pi->sched_params->cl_rl[0];
update = false;
mtx_lock(&sc->tc_lock);
for (i = 0; i < sc->chip_params->nsched_cls; i++, tc++) {
if (fa < 0 && tc->refcount == 0 && !(tc->flags & CLRL_USER))
fa = i; /* first available */
if (tc->ratemode == FW_SCHED_PARAMS_RATE_ABS &&
tc->rateunit == FW_SCHED_PARAMS_UNIT_BITRATE &&
tc->mode == FW_SCHED_PARAMS_MODE_FLOW &&
tc->maxrate == maxrate && tc->pktsize == pktsize &&
tc->burstsize == burstsize) {
tc->refcount++;
*tc_idx = i;
if ((tc->flags & (CLRL_ERR | CLRL_ASYNC | CLRL_SYNC)) ==
CLRL_ERR) {
update = true;
}
goto done;
}
}
/* Not found */
MPASS(i == sc->chip_params->nsched_cls);
if (fa != -1) {
tc = &pi->sched_params->cl_rl[fa];
tc->refcount = 1;
tc->ratemode = FW_SCHED_PARAMS_RATE_ABS;
tc->rateunit = FW_SCHED_PARAMS_UNIT_BITRATE;
tc->mode = FW_SCHED_PARAMS_MODE_FLOW;
tc->maxrate = maxrate;
tc->pktsize = pktsize;
tc->burstsize = burstsize;
*tc_idx = fa;
update = true;
} else {
*tc_idx = -1;
rc = ENOSPC;
}
done:
mtx_unlock(&sc->tc_lock);
if (update) {
tc->flags |= CLRL_ASYNC;
t4_update_tx_sched(sc);
}
return (rc);
}
void
t4_release_cl_rl(struct adapter *sc, int port_id, int tc_idx)
{
struct tx_cl_rl_params *tc;
MPASS(port_id >= 0 && port_id < sc->params.nports);
MPASS(tc_idx >= 0 && tc_idx < sc->chip_params->nsched_cls);
mtx_lock(&sc->tc_lock);
tc = &sc->port[port_id]->sched_params->cl_rl[tc_idx];
MPASS(tc->refcount > 0);
tc->refcount--;
mtx_unlock(&sc->tc_lock);
}
int
sysctl_tc(SYSCTL_HANDLER_ARGS)
{
struct vi_info *vi = arg1;
struct port_info *pi;
struct adapter *sc;
struct sge_txq *txq;
int qidx = arg2, rc, tc_idx;
MPASS(qidx >= 0 && qidx < vi->ntxq);
pi = vi->pi;
sc = pi->adapter;
txq = &sc->sge.txq[vi->first_txq + qidx];
tc_idx = txq->tc_idx;
rc = sysctl_handle_int(oidp, &tc_idx, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if (sc->flags & IS_VF)
return (EPERM);
if (!in_range(tc_idx, 0, sc->chip_params->nsched_cls - 1))
return (EINVAL);
return (bind_txq_to_traffic_class(sc, txq, tc_idx));
}
int
sysctl_tc_params(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct tx_cl_rl_params tc;
struct sbuf *sb;
int i, rc, port_id, mbps, gbps;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
port_id = arg2 >> 16;
MPASS(port_id < sc->params.nports);
MPASS(sc->port[port_id] != NULL);
i = arg2 & 0xffff;
MPASS(i < sc->chip_params->nsched_cls);
mtx_lock(&sc->tc_lock);
tc = sc->port[port_id]->sched_params->cl_rl[i];
mtx_unlock(&sc->tc_lock);
switch (tc.rateunit) {
case SCHED_CLASS_RATEUNIT_BITS:
switch (tc.ratemode) {
case SCHED_CLASS_RATEMODE_REL:
/* XXX: top speed or actual link speed? */
gbps = port_top_speed(sc->port[port_id]);
sbuf_printf(sb, "%u%% of %uGbps", tc.maxrate, gbps);
break;
case SCHED_CLASS_RATEMODE_ABS:
mbps = tc.maxrate / 1000;
gbps = tc.maxrate / 1000000;
if (tc.maxrate == gbps * 1000000)
sbuf_printf(sb, "%uGbps", gbps);
else if (tc.maxrate == mbps * 1000)
sbuf_printf(sb, "%uMbps", mbps);
else
sbuf_printf(sb, "%uKbps", tc.maxrate);
break;
default:
rc = ENXIO;
goto done;
}
break;
case SCHED_CLASS_RATEUNIT_PKTS:
sbuf_printf(sb, "%upps", tc.maxrate);
break;
default:
rc = ENXIO;
goto done;
}
switch (tc.mode) {
case SCHED_CLASS_MODE_CLASS:
sbuf_printf(sb, " aggregate");
break;
case SCHED_CLASS_MODE_FLOW:
sbuf_printf(sb, " per-flow");
if (tc.pktsize > 0)
sbuf_printf(sb, " pkt-size %u", tc.pktsize);
if (tc.burstsize > 0)
sbuf_printf(sb, " burst-size %u", tc.burstsize);
break;
default:
rc = ENXIO;
goto done;
}
done:
if (rc == 0)
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
#ifdef RATELIMIT
void
t4_init_etid_table(struct adapter *sc)
{
int i;
struct tid_info *t;
if (!is_ethoffload(sc))
return;
t = &sc->tids;
MPASS(t->netids > 0);
mtx_init(&t->etid_lock, "etid lock", NULL, MTX_DEF);
t->etid_tab = malloc(sizeof(*t->etid_tab) * t->netids, M_CXGBE,
M_ZERO | M_WAITOK);
t->efree = t->etid_tab;
t->etids_in_use = 0;
for (i = 1; i < t->netids; i++)
t->etid_tab[i - 1].next = &t->etid_tab[i];
t->etid_tab[t->netids - 1].next = NULL;
}
void
t4_free_etid_table(struct adapter *sc)
{
struct tid_info *t;
if (!is_ethoffload(sc))
return;
t = &sc->tids;
MPASS(t->netids > 0);
free(t->etid_tab, M_CXGBE);
t->etid_tab = NULL;
if (mtx_initialized(&t->etid_lock))
mtx_destroy(&t->etid_lock);
}
/* etid services */
static int alloc_etid(struct adapter *, struct cxgbe_snd_tag *);
static void free_etid(struct adapter *, int);
static int
alloc_etid(struct adapter *sc, struct cxgbe_snd_tag *cst)
{
struct tid_info *t = &sc->tids;
int etid = -1;
mtx_lock(&t->etid_lock);
if (t->efree) {
union etid_entry *p = t->efree;
etid = p - t->etid_tab + t->etid_base;
t->efree = p->next;
p->cst = cst;
t->etids_in_use++;
}
mtx_unlock(&t->etid_lock);
return (etid);
}
struct cxgbe_snd_tag *
lookup_etid(struct adapter *sc, int etid)
{
struct tid_info *t = &sc->tids;
return (t->etid_tab[etid - t->etid_base].cst);
}
static void
free_etid(struct adapter *sc, int etid)
{
struct tid_info *t = &sc->tids;
union etid_entry *p = &t->etid_tab[etid - t->etid_base];
mtx_lock(&t->etid_lock);
p->next = t->efree;
t->efree = p;
t->etids_in_use--;
mtx_unlock(&t->etid_lock);
}
int
cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params,
struct m_snd_tag **pt)
{
int rc, schedcl;
struct vi_info *vi = ifp->if_softc;
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
struct cxgbe_snd_tag *cst;
if (params->hdr.type != IF_SND_TAG_TYPE_RATE_LIMIT)
return (ENOTSUP);
rc = t4_reserve_cl_rl_kbps(sc, pi->port_id,
(params->rate_limit.max_rate * 8ULL / 1000), &schedcl);
if (rc != 0)
return (rc);
MPASS(schedcl >= 0 && schedcl < sc->chip_params->nsched_cls);
cst = malloc(sizeof(*cst), M_CXGBE, M_ZERO | M_NOWAIT);
if (cst == NULL) {
failed:
t4_release_cl_rl(sc, pi->port_id, schedcl);
return (ENOMEM);
}
cst->etid = alloc_etid(sc, cst);
if (cst->etid < 0) {
free(cst, M_CXGBE);
goto failed;
}
mtx_init(&cst->lock, "cst_lock", NULL, MTX_DEF);
mbufq_init(&cst->pending_tx, INT_MAX);
mbufq_init(&cst->pending_fwack, INT_MAX);
cst->com.ifp = ifp;
cst->flags |= EO_FLOWC_PENDING | EO_SND_TAG_REF;
cst->adapter = sc;
cst->port_id = pi->port_id;
cst->schedcl = schedcl;
cst->max_rate = params->rate_limit.max_rate;
cst->tx_credits = sc->params.eo_wr_cred;
cst->tx_total = cst->tx_credits;
cst->plen = 0;
cst->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
/*
* Queues will be selected later when the connection flowid is available.
*/
*pt = &cst->com;
return (0);
}
/*
* Change in parameters, no change in ifp.
*/
int
cxgbe_snd_tag_modify(struct m_snd_tag *mst,
union if_snd_tag_modify_params *params)
{
int rc, schedcl;
struct cxgbe_snd_tag *cst = mst_to_cst(mst);
struct adapter *sc = cst->adapter;
/* XXX: is schedcl -1 ok here? */
MPASS(cst->schedcl >= 0 && cst->schedcl < sc->chip_params->nsched_cls);
mtx_lock(&cst->lock);
MPASS(cst->flags & EO_SND_TAG_REF);
rc = t4_reserve_cl_rl_kbps(sc, cst->port_id,
(params->rate_limit.max_rate * 8ULL / 1000), &schedcl);
if (rc != 0)
return (rc);
MPASS(schedcl >= 0 && schedcl < sc->chip_params->nsched_cls);
t4_release_cl_rl(sc, cst->port_id, cst->schedcl);
cst->schedcl = schedcl;
cst->max_rate = params->rate_limit.max_rate;
mtx_unlock(&cst->lock);
return (0);
}
int
cxgbe_snd_tag_query(struct m_snd_tag *mst,
union if_snd_tag_query_params *params)
{
struct cxgbe_snd_tag *cst = mst_to_cst(mst);
params->rate_limit.max_rate = cst->max_rate;
#define CST_TO_MST_QLEVEL_SCALE (IF_SND_QUEUE_LEVEL_MAX / cst->tx_total)
params->rate_limit.queue_level =
(cst->tx_total - cst->tx_credits) * CST_TO_MST_QLEVEL_SCALE;
return (0);
}
/*
* Unlocks cst and frees it.
*/
void
cxgbe_snd_tag_free_locked(struct cxgbe_snd_tag *cst)
{
struct adapter *sc = cst->adapter;
mtx_assert(&cst->lock, MA_OWNED);
MPASS((cst->flags & EO_SND_TAG_REF) == 0);
MPASS(cst->tx_credits == cst->tx_total);
MPASS(cst->plen == 0);
MPASS(mbufq_first(&cst->pending_tx) == NULL);
MPASS(mbufq_first(&cst->pending_fwack) == NULL);
if (cst->etid >= 0)
free_etid(sc, cst->etid);
if (cst->schedcl != -1)
t4_release_cl_rl(sc, cst->port_id, cst->schedcl);
mtx_unlock(&cst->lock);
mtx_destroy(&cst->lock);
free(cst, M_CXGBE);
}
void
cxgbe_snd_tag_free(struct m_snd_tag *mst)
{
struct cxgbe_snd_tag *cst = mst_to_cst(mst);
mtx_lock(&cst->lock);
/* The kernel is done with the snd_tag. Remove its reference. */
MPASS(cst->flags & EO_SND_TAG_REF);
cst->flags &= ~EO_SND_TAG_REF;
if (cst->ncompl == 0) {
/*
* No fw4_ack in flight. Free the tag right away if there are
* no outstanding credits. Request the firmware to return all
* credits for the etid otherwise.
*/
if (cst->tx_credits == cst->tx_total) {
cxgbe_snd_tag_free_locked(cst);
return; /* cst is gone. */
}
send_etid_flush_wr(cst);
}
mtx_unlock(&cst->lock);
}
#endif