freebsd-dev/sys/kern/kern_rmlock.c
Mateusz Guzik 42e7abd5db rms: several cleanups + debug read lockers handling
This adds a dedicated counter updated with atomics when INVARIANTS
is used. As a side effect one can reliably determine the lock is held
for reading by at least one thread, but it's still not possible to
find out whether curthread has the lock in said mode.

This should be good enough in practice.

Problem spotted by avg.
2020-11-07 16:57:53 +00:00

1249 lines
28 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2007 Stephan Uphoff <ups@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Machine independent bits of reader/writer lock implementation.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kdb.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rmlock.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/turnstile.h>
#include <sys/lock_profile.h>
#include <machine/cpu.h>
#include <vm/uma.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
/*
* A cookie to mark destroyed rmlocks. This is stored in the head of
* rm_activeReaders.
*/
#define RM_DESTROYED ((void *)0xdead)
#define rm_destroyed(rm) \
(LIST_FIRST(&(rm)->rm_activeReaders) == RM_DESTROYED)
#define RMPF_ONQUEUE 1
#define RMPF_SIGNAL 2
#ifndef INVARIANTS
#define _rm_assert(c, what, file, line)
#endif
static void assert_rm(const struct lock_object *lock, int what);
#ifdef DDB
static void db_show_rm(const struct lock_object *lock);
#endif
static void lock_rm(struct lock_object *lock, uintptr_t how);
#ifdef KDTRACE_HOOKS
static int owner_rm(const struct lock_object *lock, struct thread **owner);
#endif
static uintptr_t unlock_rm(struct lock_object *lock);
struct lock_class lock_class_rm = {
.lc_name = "rm",
.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
.lc_assert = assert_rm,
#ifdef DDB
.lc_ddb_show = db_show_rm,
#endif
.lc_lock = lock_rm,
.lc_unlock = unlock_rm,
#ifdef KDTRACE_HOOKS
.lc_owner = owner_rm,
#endif
};
struct lock_class lock_class_rm_sleepable = {
.lc_name = "sleepable rm",
.lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE,
.lc_assert = assert_rm,
#ifdef DDB
.lc_ddb_show = db_show_rm,
#endif
.lc_lock = lock_rm,
.lc_unlock = unlock_rm,
#ifdef KDTRACE_HOOKS
.lc_owner = owner_rm,
#endif
};
static void
assert_rm(const struct lock_object *lock, int what)
{
rm_assert((const struct rmlock *)lock, what);
}
static void
lock_rm(struct lock_object *lock, uintptr_t how)
{
struct rmlock *rm;
struct rm_priotracker *tracker;
rm = (struct rmlock *)lock;
if (how == 0)
rm_wlock(rm);
else {
tracker = (struct rm_priotracker *)how;
rm_rlock(rm, tracker);
}
}
static uintptr_t
unlock_rm(struct lock_object *lock)
{
struct thread *td;
struct pcpu *pc;
struct rmlock *rm;
struct rm_queue *queue;
struct rm_priotracker *tracker;
uintptr_t how;
rm = (struct rmlock *)lock;
tracker = NULL;
how = 0;
rm_assert(rm, RA_LOCKED | RA_NOTRECURSED);
if (rm_wowned(rm))
rm_wunlock(rm);
else {
/*
* Find the right rm_priotracker structure for curthread.
* The guarantee about its uniqueness is given by the fact
* we already asserted the lock wasn't recursively acquired.
*/
critical_enter();
td = curthread;
pc = get_pcpu();
for (queue = pc->pc_rm_queue.rmq_next;
queue != &pc->pc_rm_queue; queue = queue->rmq_next) {
tracker = (struct rm_priotracker *)queue;
if ((tracker->rmp_rmlock == rm) &&
(tracker->rmp_thread == td)) {
how = (uintptr_t)tracker;
break;
}
}
KASSERT(tracker != NULL,
("rm_priotracker is non-NULL when lock held in read mode"));
critical_exit();
rm_runlock(rm, tracker);
}
return (how);
}
#ifdef KDTRACE_HOOKS
static int
owner_rm(const struct lock_object *lock, struct thread **owner)
{
const struct rmlock *rm;
struct lock_class *lc;
rm = (const struct rmlock *)lock;
lc = LOCK_CLASS(&rm->rm_wlock_object);
return (lc->lc_owner(&rm->rm_wlock_object, owner));
}
#endif
static struct mtx rm_spinlock;
MTX_SYSINIT(rm_spinlock, &rm_spinlock, "rm_spinlock", MTX_SPIN);
/*
* Add or remove tracker from per-cpu list.
*
* The per-cpu list can be traversed at any time in forward direction from an
* interrupt on the *local* cpu.
*/
static void inline
rm_tracker_add(struct pcpu *pc, struct rm_priotracker *tracker)
{
struct rm_queue *next;
/* Initialize all tracker pointers */
tracker->rmp_cpuQueue.rmq_prev = &pc->pc_rm_queue;
next = pc->pc_rm_queue.rmq_next;
tracker->rmp_cpuQueue.rmq_next = next;
/* rmq_prev is not used during froward traversal. */
next->rmq_prev = &tracker->rmp_cpuQueue;
/* Update pointer to first element. */
pc->pc_rm_queue.rmq_next = &tracker->rmp_cpuQueue;
}
/*
* Return a count of the number of trackers the thread 'td' already
* has on this CPU for the lock 'rm'.
*/
static int
rm_trackers_present(const struct pcpu *pc, const struct rmlock *rm,
const struct thread *td)
{
struct rm_queue *queue;
struct rm_priotracker *tracker;
int count;
count = 0;
for (queue = pc->pc_rm_queue.rmq_next; queue != &pc->pc_rm_queue;
queue = queue->rmq_next) {
tracker = (struct rm_priotracker *)queue;
if ((tracker->rmp_rmlock == rm) && (tracker->rmp_thread == td))
count++;
}
return (count);
}
static void inline
rm_tracker_remove(struct pcpu *pc, struct rm_priotracker *tracker)
{
struct rm_queue *next, *prev;
next = tracker->rmp_cpuQueue.rmq_next;
prev = tracker->rmp_cpuQueue.rmq_prev;
/* Not used during forward traversal. */
next->rmq_prev = prev;
/* Remove from list. */
prev->rmq_next = next;
}
static void
rm_cleanIPI(void *arg)
{
struct pcpu *pc;
struct rmlock *rm = arg;
struct rm_priotracker *tracker;
struct rm_queue *queue;
pc = get_pcpu();
for (queue = pc->pc_rm_queue.rmq_next; queue != &pc->pc_rm_queue;
queue = queue->rmq_next) {
tracker = (struct rm_priotracker *)queue;
if (tracker->rmp_rmlock == rm && tracker->rmp_flags == 0) {
tracker->rmp_flags = RMPF_ONQUEUE;
mtx_lock_spin(&rm_spinlock);
LIST_INSERT_HEAD(&rm->rm_activeReaders, tracker,
rmp_qentry);
mtx_unlock_spin(&rm_spinlock);
}
}
}
void
rm_init_flags(struct rmlock *rm, const char *name, int opts)
{
struct lock_class *lc;
int liflags, xflags;
liflags = 0;
if (!(opts & RM_NOWITNESS))
liflags |= LO_WITNESS;
if (opts & RM_RECURSE)
liflags |= LO_RECURSABLE;
if (opts & RM_NEW)
liflags |= LO_NEW;
rm->rm_writecpus = all_cpus;
LIST_INIT(&rm->rm_activeReaders);
if (opts & RM_SLEEPABLE) {
liflags |= LO_SLEEPABLE;
lc = &lock_class_rm_sleepable;
xflags = (opts & RM_NEW ? SX_NEW : 0);
sx_init_flags(&rm->rm_lock_sx, "rmlock_sx",
xflags | SX_NOWITNESS);
} else {
lc = &lock_class_rm;
xflags = (opts & RM_NEW ? MTX_NEW : 0);
mtx_init(&rm->rm_lock_mtx, name, "rmlock_mtx",
xflags | MTX_NOWITNESS);
}
lock_init(&rm->lock_object, lc, name, NULL, liflags);
}
void
rm_init(struct rmlock *rm, const char *name)
{
rm_init_flags(rm, name, 0);
}
void
rm_destroy(struct rmlock *rm)
{
rm_assert(rm, RA_UNLOCKED);
LIST_FIRST(&rm->rm_activeReaders) = RM_DESTROYED;
if (rm->lock_object.lo_flags & LO_SLEEPABLE)
sx_destroy(&rm->rm_lock_sx);
else
mtx_destroy(&rm->rm_lock_mtx);
lock_destroy(&rm->lock_object);
}
int
rm_wowned(const struct rmlock *rm)
{
if (rm->lock_object.lo_flags & LO_SLEEPABLE)
return (sx_xlocked(&rm->rm_lock_sx));
else
return (mtx_owned(&rm->rm_lock_mtx));
}
void
rm_sysinit(void *arg)
{
struct rm_args *args;
args = arg;
rm_init_flags(args->ra_rm, args->ra_desc, args->ra_flags);
}
static __noinline int
_rm_rlock_hard(struct rmlock *rm, struct rm_priotracker *tracker, int trylock)
{
struct pcpu *pc;
critical_enter();
pc = get_pcpu();
/* Check if we just need to do a proper critical_exit. */
if (!CPU_ISSET(pc->pc_cpuid, &rm->rm_writecpus)) {
critical_exit();
return (1);
}
/* Remove our tracker from the per-cpu list. */
rm_tracker_remove(pc, tracker);
/* Check to see if the IPI granted us the lock after all. */
if (tracker->rmp_flags) {
/* Just add back tracker - we hold the lock. */
rm_tracker_add(pc, tracker);
critical_exit();
return (1);
}
/*
* We allow readers to acquire a lock even if a writer is blocked if
* the lock is recursive and the reader already holds the lock.
*/
if ((rm->lock_object.lo_flags & LO_RECURSABLE) != 0) {
/*
* Just grant the lock if this thread already has a tracker
* for this lock on the per-cpu queue.
*/
if (rm_trackers_present(pc, rm, curthread) != 0) {
mtx_lock_spin(&rm_spinlock);
LIST_INSERT_HEAD(&rm->rm_activeReaders, tracker,
rmp_qentry);
tracker->rmp_flags = RMPF_ONQUEUE;
mtx_unlock_spin(&rm_spinlock);
rm_tracker_add(pc, tracker);
critical_exit();
return (1);
}
}
sched_unpin();
critical_exit();
if (trylock) {
if (rm->lock_object.lo_flags & LO_SLEEPABLE) {
if (!sx_try_xlock(&rm->rm_lock_sx))
return (0);
} else {
if (!mtx_trylock(&rm->rm_lock_mtx))
return (0);
}
} else {
if (rm->lock_object.lo_flags & LO_SLEEPABLE) {
THREAD_SLEEPING_OK();
sx_xlock(&rm->rm_lock_sx);
THREAD_NO_SLEEPING();
} else
mtx_lock(&rm->rm_lock_mtx);
}
critical_enter();
pc = get_pcpu();
CPU_CLR(pc->pc_cpuid, &rm->rm_writecpus);
rm_tracker_add(pc, tracker);
sched_pin();
critical_exit();
if (rm->lock_object.lo_flags & LO_SLEEPABLE)
sx_xunlock(&rm->rm_lock_sx);
else
mtx_unlock(&rm->rm_lock_mtx);
return (1);
}
int
_rm_rlock(struct rmlock *rm, struct rm_priotracker *tracker, int trylock)
{
struct thread *td = curthread;
struct pcpu *pc;
if (SCHEDULER_STOPPED())
return (1);
tracker->rmp_flags = 0;
tracker->rmp_thread = td;
tracker->rmp_rmlock = rm;
if (rm->lock_object.lo_flags & LO_SLEEPABLE)
THREAD_NO_SLEEPING();
td->td_critnest++; /* critical_enter(); */
__compiler_membar();
pc = cpuid_to_pcpu[td->td_oncpu]; /* pcpu_find(td->td_oncpu); */
rm_tracker_add(pc, tracker);
sched_pin();
__compiler_membar();
td->td_critnest--;
/*
* Fast path to combine two common conditions into a single
* conditional jump.
*/
if (__predict_true(0 == (td->td_owepreempt |
CPU_ISSET(pc->pc_cpuid, &rm->rm_writecpus))))
return (1);
/* We do not have a read token and need to acquire one. */
return _rm_rlock_hard(rm, tracker, trylock);
}
static __noinline void
_rm_unlock_hard(struct thread *td,struct rm_priotracker *tracker)
{
if (td->td_owepreempt) {
td->td_critnest++;
critical_exit();
}
if (!tracker->rmp_flags)
return;
mtx_lock_spin(&rm_spinlock);
LIST_REMOVE(tracker, rmp_qentry);
if (tracker->rmp_flags & RMPF_SIGNAL) {
struct rmlock *rm;
struct turnstile *ts;
rm = tracker->rmp_rmlock;
turnstile_chain_lock(&rm->lock_object);
mtx_unlock_spin(&rm_spinlock);
ts = turnstile_lookup(&rm->lock_object);
turnstile_signal(ts, TS_EXCLUSIVE_QUEUE);
turnstile_unpend(ts);
turnstile_chain_unlock(&rm->lock_object);
} else
mtx_unlock_spin(&rm_spinlock);
}
void
_rm_runlock(struct rmlock *rm, struct rm_priotracker *tracker)
{
struct pcpu *pc;
struct thread *td = tracker->rmp_thread;
if (SCHEDULER_STOPPED())
return;
td->td_critnest++; /* critical_enter(); */
pc = cpuid_to_pcpu[td->td_oncpu]; /* pcpu_find(td->td_oncpu); */
rm_tracker_remove(pc, tracker);
td->td_critnest--;
sched_unpin();
if (rm->lock_object.lo_flags & LO_SLEEPABLE)
THREAD_SLEEPING_OK();
if (__predict_true(0 == (td->td_owepreempt | tracker->rmp_flags)))
return;
_rm_unlock_hard(td, tracker);
}
void
_rm_wlock(struct rmlock *rm)
{
struct rm_priotracker *prio;
struct turnstile *ts;
cpuset_t readcpus;
if (SCHEDULER_STOPPED())
return;
if (rm->lock_object.lo_flags & LO_SLEEPABLE)
sx_xlock(&rm->rm_lock_sx);
else
mtx_lock(&rm->rm_lock_mtx);
if (CPU_CMP(&rm->rm_writecpus, &all_cpus)) {
/* Get all read tokens back */
readcpus = all_cpus;
CPU_ANDNOT(&readcpus, &rm->rm_writecpus);
rm->rm_writecpus = all_cpus;
/*
* Assumes rm->rm_writecpus update is visible on other CPUs
* before rm_cleanIPI is called.
*/
#ifdef SMP
smp_rendezvous_cpus(readcpus,
smp_no_rendezvous_barrier,
rm_cleanIPI,
smp_no_rendezvous_barrier,
rm);
#else
rm_cleanIPI(rm);
#endif
mtx_lock_spin(&rm_spinlock);
while ((prio = LIST_FIRST(&rm->rm_activeReaders)) != NULL) {
ts = turnstile_trywait(&rm->lock_object);
prio->rmp_flags = RMPF_ONQUEUE | RMPF_SIGNAL;
mtx_unlock_spin(&rm_spinlock);
turnstile_wait(ts, prio->rmp_thread,
TS_EXCLUSIVE_QUEUE);
mtx_lock_spin(&rm_spinlock);
}
mtx_unlock_spin(&rm_spinlock);
}
}
void
_rm_wunlock(struct rmlock *rm)
{
if (rm->lock_object.lo_flags & LO_SLEEPABLE)
sx_xunlock(&rm->rm_lock_sx);
else
mtx_unlock(&rm->rm_lock_mtx);
}
#if LOCK_DEBUG > 0
void
_rm_wlock_debug(struct rmlock *rm, const char *file, int line)
{
if (SCHEDULER_STOPPED())
return;
KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
("rm_wlock() by idle thread %p on rmlock %s @ %s:%d",
curthread, rm->lock_object.lo_name, file, line));
KASSERT(!rm_destroyed(rm),
("rm_wlock() of destroyed rmlock @ %s:%d", file, line));
_rm_assert(rm, RA_UNLOCKED, file, line);
WITNESS_CHECKORDER(&rm->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE,
file, line, NULL);
_rm_wlock(rm);
LOCK_LOG_LOCK("RMWLOCK", &rm->lock_object, 0, 0, file, line);
WITNESS_LOCK(&rm->lock_object, LOP_EXCLUSIVE, file, line);
TD_LOCKS_INC(curthread);
}
void
_rm_wunlock_debug(struct rmlock *rm, const char *file, int line)
{
if (SCHEDULER_STOPPED())
return;
KASSERT(!rm_destroyed(rm),
("rm_wunlock() of destroyed rmlock @ %s:%d", file, line));
_rm_assert(rm, RA_WLOCKED, file, line);
WITNESS_UNLOCK(&rm->lock_object, LOP_EXCLUSIVE, file, line);
LOCK_LOG_LOCK("RMWUNLOCK", &rm->lock_object, 0, 0, file, line);
_rm_wunlock(rm);
TD_LOCKS_DEC(curthread);
}
int
_rm_rlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
int trylock, const char *file, int line)
{
if (SCHEDULER_STOPPED())
return (1);
#ifdef INVARIANTS
if (!(rm->lock_object.lo_flags & LO_RECURSABLE) && !trylock) {
critical_enter();
KASSERT(rm_trackers_present(get_pcpu(), rm,
curthread) == 0,
("rm_rlock: recursed on non-recursive rmlock %s @ %s:%d\n",
rm->lock_object.lo_name, file, line));
critical_exit();
}
#endif
KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
("rm_rlock() by idle thread %p on rmlock %s @ %s:%d",
curthread, rm->lock_object.lo_name, file, line));
KASSERT(!rm_destroyed(rm),
("rm_rlock() of destroyed rmlock @ %s:%d", file, line));
if (!trylock) {
KASSERT(!rm_wowned(rm),
("rm_rlock: wlock already held for %s @ %s:%d",
rm->lock_object.lo_name, file, line));
WITNESS_CHECKORDER(&rm->lock_object,
LOP_NEWORDER | LOP_NOSLEEP, file, line, NULL);
}
if (_rm_rlock(rm, tracker, trylock)) {
if (trylock)
LOCK_LOG_TRY("RMRLOCK", &rm->lock_object, 0, 1, file,
line);
else
LOCK_LOG_LOCK("RMRLOCK", &rm->lock_object, 0, 0, file,
line);
WITNESS_LOCK(&rm->lock_object, LOP_NOSLEEP, file, line);
TD_LOCKS_INC(curthread);
return (1);
} else if (trylock)
LOCK_LOG_TRY("RMRLOCK", &rm->lock_object, 0, 0, file, line);
return (0);
}
void
_rm_runlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
const char *file, int line)
{
if (SCHEDULER_STOPPED())
return;
KASSERT(!rm_destroyed(rm),
("rm_runlock() of destroyed rmlock @ %s:%d", file, line));
_rm_assert(rm, RA_RLOCKED, file, line);
WITNESS_UNLOCK(&rm->lock_object, 0, file, line);
LOCK_LOG_LOCK("RMRUNLOCK", &rm->lock_object, 0, 0, file, line);
_rm_runlock(rm, tracker);
TD_LOCKS_DEC(curthread);
}
#else
/*
* Just strip out file and line arguments if no lock debugging is enabled in
* the kernel - we are called from a kernel module.
*/
void
_rm_wlock_debug(struct rmlock *rm, const char *file, int line)
{
_rm_wlock(rm);
}
void
_rm_wunlock_debug(struct rmlock *rm, const char *file, int line)
{
_rm_wunlock(rm);
}
int
_rm_rlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
int trylock, const char *file, int line)
{
return _rm_rlock(rm, tracker, trylock);
}
void
_rm_runlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
const char *file, int line)
{
_rm_runlock(rm, tracker);
}
#endif
#ifdef INVARIANT_SUPPORT
#ifndef INVARIANTS
#undef _rm_assert
#endif
/*
* Note that this does not need to use witness_assert() for read lock
* assertions since an exact count of read locks held by this thread
* is computable.
*/
void
_rm_assert(const struct rmlock *rm, int what, const char *file, int line)
{
int count;
if (SCHEDULER_STOPPED())
return;
switch (what) {
case RA_LOCKED:
case RA_LOCKED | RA_RECURSED:
case RA_LOCKED | RA_NOTRECURSED:
case RA_RLOCKED:
case RA_RLOCKED | RA_RECURSED:
case RA_RLOCKED | RA_NOTRECURSED:
/*
* Handle the write-locked case. Unlike other
* primitives, writers can never recurse.
*/
if (rm_wowned(rm)) {
if (what & RA_RLOCKED)
panic("Lock %s exclusively locked @ %s:%d\n",
rm->lock_object.lo_name, file, line);
if (what & RA_RECURSED)
panic("Lock %s not recursed @ %s:%d\n",
rm->lock_object.lo_name, file, line);
break;
}
critical_enter();
count = rm_trackers_present(get_pcpu(), rm, curthread);
critical_exit();
if (count == 0)
panic("Lock %s not %slocked @ %s:%d\n",
rm->lock_object.lo_name, (what & RA_RLOCKED) ?
"read " : "", file, line);
if (count > 1) {
if (what & RA_NOTRECURSED)
panic("Lock %s recursed @ %s:%d\n",
rm->lock_object.lo_name, file, line);
} else if (what & RA_RECURSED)
panic("Lock %s not recursed @ %s:%d\n",
rm->lock_object.lo_name, file, line);
break;
case RA_WLOCKED:
if (!rm_wowned(rm))
panic("Lock %s not exclusively locked @ %s:%d\n",
rm->lock_object.lo_name, file, line);
break;
case RA_UNLOCKED:
if (rm_wowned(rm))
panic("Lock %s exclusively locked @ %s:%d\n",
rm->lock_object.lo_name, file, line);
critical_enter();
count = rm_trackers_present(get_pcpu(), rm, curthread);
critical_exit();
if (count != 0)
panic("Lock %s read locked @ %s:%d\n",
rm->lock_object.lo_name, file, line);
break;
default:
panic("Unknown rm lock assertion: %d @ %s:%d", what, file,
line);
}
}
#endif /* INVARIANT_SUPPORT */
#ifdef DDB
static void
print_tracker(struct rm_priotracker *tr)
{
struct thread *td;
td = tr->rmp_thread;
db_printf(" thread %p (tid %d, pid %d, \"%s\") {", td, td->td_tid,
td->td_proc->p_pid, td->td_name);
if (tr->rmp_flags & RMPF_ONQUEUE) {
db_printf("ONQUEUE");
if (tr->rmp_flags & RMPF_SIGNAL)
db_printf(",SIGNAL");
} else
db_printf("0");
db_printf("}\n");
}
static void
db_show_rm(const struct lock_object *lock)
{
struct rm_priotracker *tr;
struct rm_queue *queue;
const struct rmlock *rm;
struct lock_class *lc;
struct pcpu *pc;
rm = (const struct rmlock *)lock;
db_printf(" writecpus: ");
ddb_display_cpuset(__DEQUALIFY(const cpuset_t *, &rm->rm_writecpus));
db_printf("\n");
db_printf(" per-CPU readers:\n");
STAILQ_FOREACH(pc, &cpuhead, pc_allcpu)
for (queue = pc->pc_rm_queue.rmq_next;
queue != &pc->pc_rm_queue; queue = queue->rmq_next) {
tr = (struct rm_priotracker *)queue;
if (tr->rmp_rmlock == rm)
print_tracker(tr);
}
db_printf(" active readers:\n");
LIST_FOREACH(tr, &rm->rm_activeReaders, rmp_qentry)
print_tracker(tr);
lc = LOCK_CLASS(&rm->rm_wlock_object);
db_printf("Backing write-lock (%s):\n", lc->lc_name);
lc->lc_ddb_show(&rm->rm_wlock_object);
}
#endif
/*
* Read-mostly sleepable locks.
*
* These primitives allow both readers and writers to sleep. However, neither
* readers nor writers are tracked and subsequently there is no priority
* propagation.
*
* They are intended to be only used when write-locking is almost never needed
* (e.g., they can guard against unloading a kernel module) while read-locking
* happens all the time.
*
* Concurrent writers take turns taking the lock while going off cpu. If this is
* of concern for your usecase, this is not the right primitive.
*
* Neither rms_rlock nor rms_runlock use fences. Instead compiler barriers are
* inserted to prevert reordering of generated code. Execution ordering is
* provided with the use of an IPI handler.
*
* No attempt is made to track which CPUs read locked at least once,
* consequently write locking sends IPIs to all of them. This will become a
* problem at some point. The easiest way to lessen it is to provide a bitmap.
*/
#define rms_int_membar() __compiler_membar()
#define RMS_NOOWNER ((void *)0x1)
#define RMS_TRANSIENT ((void *)0x2)
#define RMS_FLAGMASK 0xf
struct rmslock_pcpu {
int influx;
int readers;
};
_Static_assert(sizeof(struct rmslock_pcpu) == 8, "bad size");
/*
* Internal routines
*/
static struct rmslock_pcpu *
rms_int_pcpu(struct rmslock *rms)
{
CRITICAL_ASSERT(curthread);
return (zpcpu_get(rms->pcpu));
}
static struct rmslock_pcpu *
rms_int_remote_pcpu(struct rmslock *rms, int cpu)
{
return (zpcpu_get_cpu(rms->pcpu, cpu));
}
static void
rms_int_influx_enter(struct rmslock *rms, struct rmslock_pcpu *pcpu)
{
CRITICAL_ASSERT(curthread);
MPASS(pcpu->influx == 0);
pcpu->influx = 1;
}
static void
rms_int_influx_exit(struct rmslock *rms, struct rmslock_pcpu *pcpu)
{
CRITICAL_ASSERT(curthread);
MPASS(pcpu->influx == 1);
pcpu->influx = 0;
}
#ifdef INVARIANTS
static void
rms_int_debug_readers_inc(struct rmslock *rms)
{
int old;
old = atomic_fetchadd_int(&rms->debug_readers, 1);
KASSERT(old >= 0, ("%s: bad readers count %d\n", __func__, old));
}
static void
rms_int_debug_readers_dec(struct rmslock *rms)
{
int old;
old = atomic_fetchadd_int(&rms->debug_readers, -1);
KASSERT(old > 0, ("%s: bad readers count %d\n", __func__, old));
}
#else
static void
rms_int_debug_readers_inc(struct rmslock *rms)
{
}
static void
rms_int_debug_readers_dec(struct rmslock *rms)
{
}
#endif
static void
rms_int_readers_inc(struct rmslock *rms, struct rmslock_pcpu *pcpu)
{
CRITICAL_ASSERT(curthread);
rms_int_debug_readers_inc(rms);
pcpu->readers++;
}
static void
rms_int_readers_dec(struct rmslock *rms, struct rmslock_pcpu *pcpu)
{
CRITICAL_ASSERT(curthread);
rms_int_debug_readers_dec(rms);
pcpu->readers--;
}
/*
* Public API
*/
void
rms_init(struct rmslock *rms, const char *name)
{
rms->owner = RMS_NOOWNER;
rms->writers = 0;
rms->readers = 0;
rms->debug_readers = 0;
mtx_init(&rms->mtx, name, NULL, MTX_DEF | MTX_NEW);
rms->pcpu = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK | M_ZERO);
}
void
rms_destroy(struct rmslock *rms)
{
MPASS(rms->writers == 0);
MPASS(rms->readers == 0);
mtx_destroy(&rms->mtx);
uma_zfree_pcpu(pcpu_zone_8, rms->pcpu);
}
static void __noinline
rms_rlock_fallback(struct rmslock *rms)
{
rms_int_influx_exit(rms, rms_int_pcpu(rms));
critical_exit();
mtx_lock(&rms->mtx);
while (rms->writers > 0)
msleep(&rms->readers, &rms->mtx, PUSER - 1, mtx_name(&rms->mtx), 0);
critical_enter();
rms_int_readers_inc(rms, rms_int_pcpu(rms));
mtx_unlock(&rms->mtx);
critical_exit();
}
void
rms_rlock(struct rmslock *rms)
{
struct rmslock_pcpu *pcpu;
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
MPASS(atomic_load_ptr(&rms->owner) != curthread);
critical_enter();
pcpu = rms_int_pcpu(rms);
rms_int_influx_enter(rms, pcpu);
rms_int_membar();
if (__predict_false(rms->writers > 0)) {
rms_rlock_fallback(rms);
return;
}
rms_int_membar();
rms_int_readers_inc(rms, pcpu);
rms_int_membar();
rms_int_influx_exit(rms, pcpu);
critical_exit();
}
int
rms_try_rlock(struct rmslock *rms)
{
struct rmslock_pcpu *pcpu;
MPASS(atomic_load_ptr(&rms->owner) != curthread);
critical_enter();
pcpu = rms_int_pcpu(rms);
rms_int_influx_enter(rms, pcpu);
rms_int_membar();
if (__predict_false(rms->writers > 0)) {
rms_int_influx_exit(rms, pcpu);
critical_exit();
return (0);
}
rms_int_membar();
rms_int_readers_inc(rms, pcpu);
rms_int_membar();
rms_int_influx_exit(rms, pcpu);
critical_exit();
return (1);
}
static void __noinline
rms_runlock_fallback(struct rmslock *rms)
{
rms_int_influx_exit(rms, rms_int_pcpu(rms));
critical_exit();
mtx_lock(&rms->mtx);
MPASS(rms->writers > 0);
MPASS(rms->readers > 0);
MPASS(rms->debug_readers == rms->readers);
rms_int_debug_readers_dec(rms);
rms->readers--;
if (rms->readers == 0)
wakeup_one(&rms->writers);
mtx_unlock(&rms->mtx);
}
void
rms_runlock(struct rmslock *rms)
{
struct rmslock_pcpu *pcpu;
critical_enter();
pcpu = rms_int_pcpu(rms);
rms_int_influx_enter(rms, pcpu);
rms_int_membar();
if (__predict_false(rms->writers > 0)) {
rms_runlock_fallback(rms);
return;
}
rms_int_membar();
rms_int_readers_dec(rms, pcpu);
rms_int_membar();
rms_int_influx_exit(rms, pcpu);
critical_exit();
}
struct rmslock_ipi {
struct rmslock *rms;
struct smp_rendezvous_cpus_retry_arg srcra;
};
static void
rms_action_func(void *arg)
{
struct rmslock_ipi *rmsipi;
struct rmslock_pcpu *pcpu;
struct rmslock *rms;
rmsipi = __containerof(arg, struct rmslock_ipi, srcra);
rms = rmsipi->rms;
pcpu = rms_int_pcpu(rms);
if (pcpu->influx)
return;
if (pcpu->readers != 0) {
atomic_add_int(&rms->readers, pcpu->readers);
pcpu->readers = 0;
}
smp_rendezvous_cpus_done(arg);
}
static void
rms_wait_func(void *arg, int cpu)
{
struct rmslock_ipi *rmsipi;
struct rmslock_pcpu *pcpu;
struct rmslock *rms;
rmsipi = __containerof(arg, struct rmslock_ipi, srcra);
rms = rmsipi->rms;
pcpu = rms_int_remote_pcpu(rms, cpu);
while (atomic_load_int(&pcpu->influx))
cpu_spinwait();
}
#ifdef INVARIANTS
static void
rms_assert_no_pcpu_readers(struct rmslock *rms)
{
struct rmslock_pcpu *pcpu;
int cpu;
CPU_FOREACH(cpu) {
pcpu = rms_int_remote_pcpu(rms, cpu);
if (pcpu->readers != 0) {
panic("%s: got %d readers on cpu %d\n", __func__,
pcpu->readers, cpu);
}
}
}
#else
static void
rms_assert_no_pcpu_readers(struct rmslock *rms)
{
}
#endif
static void
rms_wlock_switch(struct rmslock *rms)
{
struct rmslock_ipi rmsipi;
MPASS(rms->readers == 0);
MPASS(rms->writers == 1);
rmsipi.rms = rms;
smp_rendezvous_cpus_retry(all_cpus,
smp_no_rendezvous_barrier,
rms_action_func,
smp_no_rendezvous_barrier,
rms_wait_func,
&rmsipi.srcra);
}
void
rms_wlock(struct rmslock *rms)
{
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
MPASS(atomic_load_ptr(&rms->owner) != curthread);
mtx_lock(&rms->mtx);
rms->writers++;
if (rms->writers > 1) {
msleep(&rms->owner, &rms->mtx, (PUSER - 1),
mtx_name(&rms->mtx), 0);
MPASS(rms->readers == 0);
KASSERT(rms->owner == RMS_TRANSIENT,
("%s: unexpected owner value %p\n", __func__,
rms->owner));
goto out_grab;
}
KASSERT(rms->owner == RMS_NOOWNER,
("%s: unexpected owner value %p\n", __func__, rms->owner));
rms_wlock_switch(rms);
rms_assert_no_pcpu_readers(rms);
if (rms->readers > 0) {
msleep(&rms->writers, &rms->mtx, (PUSER - 1),
mtx_name(&rms->mtx), 0);
}
out_grab:
rms->owner = curthread;
rms_assert_no_pcpu_readers(rms);
mtx_unlock(&rms->mtx);
MPASS(rms->readers == 0);
}
void
rms_wunlock(struct rmslock *rms)
{
mtx_lock(&rms->mtx);
KASSERT(rms->owner == curthread,
("%s: unexpected owner value %p\n", __func__, rms->owner));
MPASS(rms->writers >= 1);
MPASS(rms->readers == 0);
rms->writers--;
if (rms->writers > 0) {
wakeup_one(&rms->owner);
rms->owner = RMS_TRANSIENT;
} else {
wakeup(&rms->readers);
rms->owner = RMS_NOOWNER;
}
mtx_unlock(&rms->mtx);
}
void
rms_unlock(struct rmslock *rms)
{
if (rms_wowned(rms))
rms_wunlock(rms);
else
rms_runlock(rms);
}