265 lines
8.3 KiB
C++
265 lines
8.3 KiB
C++
//===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements hazard recognizers for scheduling on GCN processors.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "GCNHazardRecognizer.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Hazard Recoginizer Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
|
|
CurrCycleInstr(nullptr),
|
|
MF(MF),
|
|
ST(MF.getSubtarget<SISubtarget>()) {
|
|
MaxLookAhead = 5;
|
|
}
|
|
|
|
void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
|
|
EmitInstruction(SU->getInstr());
|
|
}
|
|
|
|
void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
|
|
CurrCycleInstr = MI;
|
|
}
|
|
|
|
ScheduleHazardRecognizer::HazardType
|
|
GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
|
|
MachineInstr *MI = SU->getInstr();
|
|
|
|
if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
|
|
return NoopHazard;
|
|
|
|
if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0)
|
|
return NoopHazard;
|
|
|
|
if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
|
|
return NoopHazard;
|
|
|
|
return NoHazard;
|
|
}
|
|
|
|
unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) {
|
|
return PreEmitNoops(SU->getInstr());
|
|
}
|
|
|
|
unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
|
|
if (SIInstrInfo::isSMRD(*MI))
|
|
return std::max(0, checkSMRDHazards(MI));
|
|
|
|
if (SIInstrInfo::isVMEM(*MI))
|
|
return std::max(0, checkVMEMHazards(MI));
|
|
|
|
if (SIInstrInfo::isDPP(*MI))
|
|
return std::max(0, checkDPPHazards(MI));
|
|
|
|
return 0;
|
|
}
|
|
|
|
void GCNHazardRecognizer::EmitNoop() {
|
|
EmittedInstrs.push_front(nullptr);
|
|
}
|
|
|
|
void GCNHazardRecognizer::AdvanceCycle() {
|
|
|
|
// When the scheduler detects a stall, it will call AdvanceCycle() without
|
|
// emitting any instructions.
|
|
if (!CurrCycleInstr)
|
|
return;
|
|
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
unsigned NumWaitStates = TII->getNumWaitStates(*CurrCycleInstr);
|
|
|
|
// Keep track of emitted instructions
|
|
EmittedInstrs.push_front(CurrCycleInstr);
|
|
|
|
// Add a nullptr for each additional wait state after the first. Make sure
|
|
// not to add more than getMaxLookAhead() items to the list, since we
|
|
// truncate the list to that size right after this loop.
|
|
for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
|
|
i < e; ++i) {
|
|
EmittedInstrs.push_front(nullptr);
|
|
}
|
|
|
|
// getMaxLookahead() is the largest number of wait states we will ever need
|
|
// to insert, so there is no point in keeping track of more than that many
|
|
// wait states.
|
|
EmittedInstrs.resize(getMaxLookAhead());
|
|
|
|
CurrCycleInstr = nullptr;
|
|
}
|
|
|
|
void GCNHazardRecognizer::RecedeCycle() {
|
|
llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
int GCNHazardRecognizer::getWaitStatesSinceDef(
|
|
unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) {
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
|
|
int WaitStates = -1;
|
|
for (MachineInstr *MI : EmittedInstrs) {
|
|
++WaitStates;
|
|
if (!MI || !IsHazardDef(MI))
|
|
continue;
|
|
if (MI->modifiesRegister(Reg, TRI))
|
|
return WaitStates;
|
|
}
|
|
return std::numeric_limits<int>::max();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// No-op Hazard Detection
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops,
|
|
std::set<unsigned> &Set) {
|
|
for (const MachineOperand &Op : Ops) {
|
|
if (Op.isReg())
|
|
Set.insert(Op.getReg());
|
|
}
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) {
|
|
// SMEM soft clause are only present on VI+
|
|
if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
|
|
return 0;
|
|
|
|
// A soft-clause is any group of consecutive SMEM instructions. The
|
|
// instructions in this group may return out of order and/or may be
|
|
// replayed (i.e. the same instruction issued more than once).
|
|
//
|
|
// In order to handle these situations correctly we need to make sure
|
|
// that when a clause has more than one instruction, no instruction in the
|
|
// clause writes to a register that is read another instruction in the clause
|
|
// (including itself). If we encounter this situaion, we need to break the
|
|
// clause by inserting a non SMEM instruction.
|
|
|
|
std::set<unsigned> ClauseDefs;
|
|
std::set<unsigned> ClauseUses;
|
|
|
|
for (MachineInstr *MI : EmittedInstrs) {
|
|
|
|
// When we hit a non-SMEM instruction then we have passed the start of the
|
|
// clause and we can stop.
|
|
if (!MI || !SIInstrInfo::isSMRD(*MI))
|
|
break;
|
|
|
|
addRegsToSet(MI->defs(), ClauseDefs);
|
|
addRegsToSet(MI->uses(), ClauseUses);
|
|
}
|
|
|
|
if (ClauseDefs.empty())
|
|
return 0;
|
|
|
|
// FIXME: When we support stores, we need to make sure not to put loads and
|
|
// stores in the same clause if they use the same address. For now, just
|
|
// start a new clause whenever we see a store.
|
|
if (SMEM->mayStore())
|
|
return 1;
|
|
|
|
addRegsToSet(SMEM->defs(), ClauseDefs);
|
|
addRegsToSet(SMEM->uses(), ClauseUses);
|
|
|
|
std::vector<unsigned> Result(std::max(ClauseDefs.size(), ClauseUses.size()));
|
|
std::vector<unsigned>::iterator End;
|
|
|
|
End = std::set_intersection(ClauseDefs.begin(), ClauseDefs.end(),
|
|
ClauseUses.begin(), ClauseUses.end(), Result.begin());
|
|
|
|
// If the set of defs and uses intersect then we cannot add this instruction
|
|
// to the clause, so we have a hazard.
|
|
if (End != Result.begin())
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
|
|
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
int WaitStatesNeeded = 0;
|
|
|
|
WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD);
|
|
|
|
// This SMRD hazard only affects SI.
|
|
if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS)
|
|
return WaitStatesNeeded;
|
|
|
|
// A read of an SGPR by SMRD instruction requires 4 wait states when the
|
|
// SGPR was written by a VALU instruction.
|
|
int SmrdSgprWaitStates = 4;
|
|
auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
|
|
|
|
for (const MachineOperand &Use : SMRD->uses()) {
|
|
if (!Use.isReg())
|
|
continue;
|
|
int WaitStatesNeededForUse =
|
|
SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
|
|
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
|
}
|
|
return WaitStatesNeeded;
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
|
|
if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
|
|
return 0;
|
|
|
|
const SIRegisterInfo &TRI = TII->getRegisterInfo();
|
|
|
|
// A read of an SGPR by a VMEM instruction requires 5 wait states when the
|
|
// SGPR was written by a VALU Instruction.
|
|
int VmemSgprWaitStates = 5;
|
|
int WaitStatesNeeded = 0;
|
|
auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
|
|
|
|
for (const MachineOperand &Use : VMEM->uses()) {
|
|
if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
|
|
continue;
|
|
|
|
int WaitStatesNeededForUse =
|
|
VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
|
|
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
|
}
|
|
return WaitStatesNeeded;
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
|
|
// Check for DPP VGPR read after VALU VGPR write.
|
|
int DppVgprWaitStates = 2;
|
|
int WaitStatesNeeded = 0;
|
|
|
|
for (const MachineOperand &Use : DPP->uses()) {
|
|
if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
|
|
continue;
|
|
int WaitStatesNeededForUse =
|
|
DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg());
|
|
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
|
}
|
|
|
|
return WaitStatesNeeded;
|
|
}
|