freebsd-dev/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/ddt.c
Hans Petter Selasky 3da1cf1e88 Extend the meaning of the CTLFLAG_TUN flag to automatically check if
there is an environment variable which shall initialize the SYSCTL
during early boot. This works for all SYSCTL types both statically and
dynamically created ones, except for the SYSCTL NODE type and SYSCTLs
which belong to VNETs. A new flag, CTLFLAG_NOFETCH, has been added to
be used in the case a tunable sysctl has a custom initialisation
function allowing the sysctl to still be marked as a tunable. The
kernel SYSCTL API is mostly the same, with a few exceptions for some
special operations like iterating childrens of a static/extern SYSCTL
node. This operation should probably be made into a factored out
common macro, hence some device drivers use this. The reason for
changing the SYSCTL API was the need for a SYSCTL parent OID pointer
and not only the SYSCTL parent OID list pointer in order to quickly
generate the sysctl path. The motivation behind this patch is to avoid
parameter loading cludges inside the OFED driver subsystem. Instead of
adding special code to the OFED driver subsystem to post-load tunables
into dynamically created sysctls, we generalize this in the kernel.

Other changes:
- Corrected a possibly incorrect sysctl name from "hw.cbb.intr_mask"
to "hw.pcic.intr_mask".
- Removed redundant TUNABLE statements throughout the kernel.
- Some minor code rewrites in connection to removing not needed
TUNABLE statements.
- Added a missing SYSCTL_DECL().
- Wrapped two very long lines.
- Avoid malloc()/free() inside sysctl string handling, in case it is
called to initialize a sysctl from a tunable, hence malloc()/free() is
not ready when sysctls from the sysctl dataset are registered.
- Bumped FreeBSD version to indicate SYSCTL API change.

MFC after:	2 weeks
Sponsored by:	Mellanox Technologies
2014-06-27 16:33:43 +00:00

1164 lines
27 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2014 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/zio.h>
#include <sys/ddt.h>
#include <sys/zap.h>
#include <sys/dmu_tx.h>
#include <sys/arc.h>
#include <sys/dsl_pool.h>
#include <sys/zio_checksum.h>
#include <sys/zio_compress.h>
#include <sys/dsl_scan.h>
/*
* Enable/disable prefetching of dedup-ed blocks which are going to be freed.
*/
int zfs_dedup_prefetch = 1;
SYSCTL_DECL(_vfs_zfs);
SYSCTL_NODE(_vfs_zfs, OID_AUTO, dedup, CTLFLAG_RW, 0, "ZFS DEDUP");
SYSCTL_INT(_vfs_zfs_dedup, OID_AUTO, prefetch, CTLFLAG_RWTUN, &zfs_dedup_prefetch,
0, "Enable/disable prefetching of dedup-ed blocks which are going to be freed");
static const ddt_ops_t *ddt_ops[DDT_TYPES] = {
&ddt_zap_ops,
};
static const char *ddt_class_name[DDT_CLASSES] = {
"ditto",
"duplicate",
"unique",
};
static void
ddt_object_create(ddt_t *ddt, enum ddt_type type, enum ddt_class class,
dmu_tx_t *tx)
{
spa_t *spa = ddt->ddt_spa;
objset_t *os = ddt->ddt_os;
uint64_t *objectp = &ddt->ddt_object[type][class];
boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_dedup;
char name[DDT_NAMELEN];
ddt_object_name(ddt, type, class, name);
ASSERT(*objectp == 0);
VERIFY(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash) == 0);
ASSERT(*objectp != 0);
VERIFY(zap_add(os, DMU_POOL_DIRECTORY_OBJECT, name,
sizeof (uint64_t), 1, objectp, tx) == 0);
VERIFY(zap_add(os, spa->spa_ddt_stat_object, name,
sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
&ddt->ddt_histogram[type][class], tx) == 0);
}
static void
ddt_object_destroy(ddt_t *ddt, enum ddt_type type, enum ddt_class class,
dmu_tx_t *tx)
{
spa_t *spa = ddt->ddt_spa;
objset_t *os = ddt->ddt_os;
uint64_t *objectp = &ddt->ddt_object[type][class];
uint64_t count;
char name[DDT_NAMELEN];
ddt_object_name(ddt, type, class, name);
ASSERT(*objectp != 0);
VERIFY(ddt_object_count(ddt, type, class, &count) == 0 && count == 0);
ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class]));
VERIFY(zap_remove(os, DMU_POOL_DIRECTORY_OBJECT, name, tx) == 0);
VERIFY(zap_remove(os, spa->spa_ddt_stat_object, name, tx) == 0);
VERIFY(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx) == 0);
bzero(&ddt->ddt_object_stats[type][class], sizeof (ddt_object_t));
*objectp = 0;
}
static int
ddt_object_load(ddt_t *ddt, enum ddt_type type, enum ddt_class class)
{
ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
dmu_object_info_t doi;
uint64_t count;
char name[DDT_NAMELEN];
int error;
ddt_object_name(ddt, type, class, name);
error = zap_lookup(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name,
sizeof (uint64_t), 1, &ddt->ddt_object[type][class]);
if (error != 0)
return (error);
VERIFY0(zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
&ddt->ddt_histogram[type][class]));
/*
* Seed the cached statistics.
*/
VERIFY(ddt_object_info(ddt, type, class, &doi) == 0);
error = ddt_object_count(ddt, type, class, &count);
if (error)
return error;
ddo->ddo_count = count;
ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
return (0);
}
static void
ddt_object_sync(ddt_t *ddt, enum ddt_type type, enum ddt_class class,
dmu_tx_t *tx)
{
ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
dmu_object_info_t doi;
uint64_t count;
char name[DDT_NAMELEN];
ddt_object_name(ddt, type, class, name);
VERIFY(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
&ddt->ddt_histogram[type][class], tx) == 0);
/*
* Cache DDT statistics; this is the only time they'll change.
*/
VERIFY(ddt_object_info(ddt, type, class, &doi) == 0);
VERIFY(ddt_object_count(ddt, type, class, &count) == 0);
ddo->ddo_count = count;
ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
}
static int
ddt_object_lookup(ddt_t *ddt, enum ddt_type type, enum ddt_class class,
ddt_entry_t *dde)
{
if (!ddt_object_exists(ddt, type, class))
return (SET_ERROR(ENOENT));
return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os,
ddt->ddt_object[type][class], dde));
}
static void
ddt_object_prefetch(ddt_t *ddt, enum ddt_type type, enum ddt_class class,
ddt_entry_t *dde)
{
if (!ddt_object_exists(ddt, type, class))
return;
ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os,
ddt->ddt_object[type][class], dde);
}
int
ddt_object_update(ddt_t *ddt, enum ddt_type type, enum ddt_class class,
ddt_entry_t *dde, dmu_tx_t *tx)
{
ASSERT(ddt_object_exists(ddt, type, class));
return (ddt_ops[type]->ddt_op_update(ddt->ddt_os,
ddt->ddt_object[type][class], dde, tx));
}
static int
ddt_object_remove(ddt_t *ddt, enum ddt_type type, enum ddt_class class,
ddt_entry_t *dde, dmu_tx_t *tx)
{
ASSERT(ddt_object_exists(ddt, type, class));
return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os,
ddt->ddt_object[type][class], dde, tx));
}
int
ddt_object_walk(ddt_t *ddt, enum ddt_type type, enum ddt_class class,
uint64_t *walk, ddt_entry_t *dde)
{
ASSERT(ddt_object_exists(ddt, type, class));
return (ddt_ops[type]->ddt_op_walk(ddt->ddt_os,
ddt->ddt_object[type][class], dde, walk));
}
int
ddt_object_count(ddt_t *ddt, enum ddt_type type, enum ddt_class class, uint64_t *count)
{
ASSERT(ddt_object_exists(ddt, type, class));
return (ddt_ops[type]->ddt_op_count(ddt->ddt_os,
ddt->ddt_object[type][class], count));
}
int
ddt_object_info(ddt_t *ddt, enum ddt_type type, enum ddt_class class,
dmu_object_info_t *doi)
{
if (!ddt_object_exists(ddt, type, class))
return (SET_ERROR(ENOENT));
return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class],
doi));
}
boolean_t
ddt_object_exists(ddt_t *ddt, enum ddt_type type, enum ddt_class class)
{
return (!!ddt->ddt_object[type][class]);
}
void
ddt_object_name(ddt_t *ddt, enum ddt_type type, enum ddt_class class,
char *name)
{
(void) sprintf(name, DMU_POOL_DDT,
zio_checksum_table[ddt->ddt_checksum].ci_name,
ddt_ops[type]->ddt_op_name, ddt_class_name[class]);
}
void
ddt_bp_fill(const ddt_phys_t *ddp, blkptr_t *bp, uint64_t txg)
{
ASSERT(txg != 0);
for (int d = 0; d < SPA_DVAS_PER_BP; d++)
bp->blk_dva[d] = ddp->ddp_dva[d];
BP_SET_BIRTH(bp, txg, ddp->ddp_phys_birth);
}
void
ddt_bp_create(enum zio_checksum checksum,
const ddt_key_t *ddk, const ddt_phys_t *ddp, blkptr_t *bp)
{
BP_ZERO(bp);
if (ddp != NULL)
ddt_bp_fill(ddp, bp, ddp->ddp_phys_birth);
bp->blk_cksum = ddk->ddk_cksum;
bp->blk_fill = 1;
BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk));
BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk));
BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk));
BP_SET_CHECKSUM(bp, checksum);
BP_SET_TYPE(bp, DMU_OT_DEDUP);
BP_SET_LEVEL(bp, 0);
BP_SET_DEDUP(bp, 0);
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
}
void
ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp)
{
ddk->ddk_cksum = bp->blk_cksum;
ddk->ddk_prop = 0;
DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp));
DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp));
DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp));
}
void
ddt_phys_fill(ddt_phys_t *ddp, const blkptr_t *bp)
{
ASSERT(ddp->ddp_phys_birth == 0);
for (int d = 0; d < SPA_DVAS_PER_BP; d++)
ddp->ddp_dva[d] = bp->blk_dva[d];
ddp->ddp_phys_birth = BP_PHYSICAL_BIRTH(bp);
}
void
ddt_phys_clear(ddt_phys_t *ddp)
{
bzero(ddp, sizeof (*ddp));
}
void
ddt_phys_addref(ddt_phys_t *ddp)
{
ddp->ddp_refcnt++;
}
void
ddt_phys_decref(ddt_phys_t *ddp)
{
ASSERT((int64_t)ddp->ddp_refcnt > 0);
ddp->ddp_refcnt--;
}
void
ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_phys_t *ddp, uint64_t txg)
{
blkptr_t blk;
ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
ddt_phys_clear(ddp);
zio_free(ddt->ddt_spa, txg, &blk);
}
ddt_phys_t *
ddt_phys_select(const ddt_entry_t *dde, const blkptr_t *bp)
{
ddt_phys_t *ddp = (ddt_phys_t *)dde->dde_phys;
for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_dva[0]) &&
BP_PHYSICAL_BIRTH(bp) == ddp->ddp_phys_birth)
return (ddp);
}
return (NULL);
}
uint64_t
ddt_phys_total_refcnt(const ddt_entry_t *dde)
{
uint64_t refcnt = 0;
for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++)
refcnt += dde->dde_phys[p].ddp_refcnt;
return (refcnt);
}
static void
ddt_stat_generate(ddt_t *ddt, ddt_entry_t *dde, ddt_stat_t *dds)
{
spa_t *spa = ddt->ddt_spa;
ddt_phys_t *ddp = dde->dde_phys;
ddt_key_t *ddk = &dde->dde_key;
uint64_t lsize = DDK_GET_LSIZE(ddk);
uint64_t psize = DDK_GET_PSIZE(ddk);
bzero(dds, sizeof (*dds));
for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
uint64_t dsize = 0;
uint64_t refcnt = ddp->ddp_refcnt;
if (ddp->ddp_phys_birth == 0)
continue;
for (int d = 0; d < SPA_DVAS_PER_BP; d++)
dsize += dva_get_dsize_sync(spa, &ddp->ddp_dva[d]);
dds->dds_blocks += 1;
dds->dds_lsize += lsize;
dds->dds_psize += psize;
dds->dds_dsize += dsize;
dds->dds_ref_blocks += refcnt;
dds->dds_ref_lsize += lsize * refcnt;
dds->dds_ref_psize += psize * refcnt;
dds->dds_ref_dsize += dsize * refcnt;
}
}
void
ddt_stat_add(ddt_stat_t *dst, const ddt_stat_t *src, uint64_t neg)
{
const uint64_t *s = (const uint64_t *)src;
uint64_t *d = (uint64_t *)dst;
uint64_t *d_end = (uint64_t *)(dst + 1);
ASSERT(neg == 0 || neg == -1ULL); /* add or subtract */
while (d < d_end)
*d++ += (*s++ ^ neg) - neg;
}
static void
ddt_stat_update(ddt_t *ddt, ddt_entry_t *dde, uint64_t neg)
{
ddt_stat_t dds;
ddt_histogram_t *ddh;
int bucket;
ddt_stat_generate(ddt, dde, &dds);
bucket = highbit64(dds.dds_ref_blocks) - 1;
ASSERT(bucket >= 0);
ddh = &ddt->ddt_histogram[dde->dde_type][dde->dde_class];
ddt_stat_add(&ddh->ddh_stat[bucket], &dds, neg);
}
void
ddt_histogram_add(ddt_histogram_t *dst, const ddt_histogram_t *src)
{
for (int h = 0; h < 64; h++)
ddt_stat_add(&dst->ddh_stat[h], &src->ddh_stat[h], 0);
}
void
ddt_histogram_stat(ddt_stat_t *dds, const ddt_histogram_t *ddh)
{
bzero(dds, sizeof (*dds));
for (int h = 0; h < 64; h++)
ddt_stat_add(dds, &ddh->ddh_stat[h], 0);
}
boolean_t
ddt_histogram_empty(const ddt_histogram_t *ddh)
{
const uint64_t *s = (const uint64_t *)ddh;
const uint64_t *s_end = (const uint64_t *)(ddh + 1);
while (s < s_end)
if (*s++ != 0)
return (B_FALSE);
return (B_TRUE);
}
void
ddt_get_dedup_object_stats(spa_t *spa, ddt_object_t *ddo_total)
{
/* Sum the statistics we cached in ddt_object_sync(). */
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
ddt_t *ddt = spa->spa_ddt[c];
for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
for (enum ddt_class class = 0; class < DDT_CLASSES;
class++) {
ddt_object_t *ddo =
&ddt->ddt_object_stats[type][class];
ddo_total->ddo_count += ddo->ddo_count;
ddo_total->ddo_dspace += ddo->ddo_dspace;
ddo_total->ddo_mspace += ddo->ddo_mspace;
}
}
}
/* ... and compute the averages. */
if (ddo_total->ddo_count != 0) {
ddo_total->ddo_dspace /= ddo_total->ddo_count;
ddo_total->ddo_mspace /= ddo_total->ddo_count;
}
}
void
ddt_get_dedup_histogram(spa_t *spa, ddt_histogram_t *ddh)
{
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
ddt_t *ddt = spa->spa_ddt[c];
for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
for (enum ddt_class class = 0; class < DDT_CLASSES;
class++) {
ddt_histogram_add(ddh,
&ddt->ddt_histogram_cache[type][class]);
}
}
}
}
void
ddt_get_dedup_stats(spa_t *spa, ddt_stat_t *dds_total)
{
ddt_histogram_t *ddh_total;
ddh_total = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP);
ddt_get_dedup_histogram(spa, ddh_total);
ddt_histogram_stat(dds_total, ddh_total);
kmem_free(ddh_total, sizeof (ddt_histogram_t));
}
uint64_t
ddt_get_dedup_dspace(spa_t *spa)
{
ddt_stat_t dds_total = { 0 };
ddt_get_dedup_stats(spa, &dds_total);
return (dds_total.dds_ref_dsize - dds_total.dds_dsize);
}
uint64_t
ddt_get_pool_dedup_ratio(spa_t *spa)
{
ddt_stat_t dds_total = { 0 };
ddt_get_dedup_stats(spa, &dds_total);
if (dds_total.dds_dsize == 0)
return (100);
return (dds_total.dds_ref_dsize * 100 / dds_total.dds_dsize);
}
int
ddt_ditto_copies_needed(ddt_t *ddt, ddt_entry_t *dde, ddt_phys_t *ddp_willref)
{
spa_t *spa = ddt->ddt_spa;
uint64_t total_refcnt = 0;
uint64_t ditto = spa->spa_dedup_ditto;
int total_copies = 0;
int desired_copies = 0;
for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
ddt_phys_t *ddp = &dde->dde_phys[p];
zio_t *zio = dde->dde_lead_zio[p];
uint64_t refcnt = ddp->ddp_refcnt; /* committed refs */
if (zio != NULL)
refcnt += zio->io_parent_count; /* pending refs */
if (ddp == ddp_willref)
refcnt++; /* caller's ref */
if (refcnt != 0) {
total_refcnt += refcnt;
total_copies += p;
}
}
if (ditto == 0 || ditto > UINT32_MAX)
ditto = UINT32_MAX;
if (total_refcnt >= 1)
desired_copies++;
if (total_refcnt >= ditto)
desired_copies++;
if (total_refcnt >= ditto * ditto)
desired_copies++;
return (MAX(desired_copies, total_copies) - total_copies);
}
int
ddt_ditto_copies_present(ddt_entry_t *dde)
{
ddt_phys_t *ddp = &dde->dde_phys[DDT_PHYS_DITTO];
dva_t *dva = ddp->ddp_dva;
int copies = 0 - DVA_GET_GANG(dva);
for (int d = 0; d < SPA_DVAS_PER_BP; d++, dva++)
if (DVA_IS_VALID(dva))
copies++;
ASSERT(copies >= 0 && copies < SPA_DVAS_PER_BP);
return (copies);
}
size_t
ddt_compress(void *src, uchar_t *dst, size_t s_len, size_t d_len)
{
uchar_t *version = dst++;
int cpfunc = ZIO_COMPRESS_ZLE;
zio_compress_info_t *ci = &zio_compress_table[cpfunc];
size_t c_len;
ASSERT(d_len >= s_len + 1); /* no compression plus version byte */
c_len = ci->ci_compress(src, dst, s_len, d_len - 1, ci->ci_level);
if (c_len == s_len) {
cpfunc = ZIO_COMPRESS_OFF;
bcopy(src, dst, s_len);
}
*version = cpfunc;
/* CONSTCOND */
if (ZFS_HOST_BYTEORDER)
*version |= DDT_COMPRESS_BYTEORDER_MASK;
return (c_len + 1);
}
void
ddt_decompress(uchar_t *src, void *dst, size_t s_len, size_t d_len)
{
uchar_t version = *src++;
int cpfunc = version & DDT_COMPRESS_FUNCTION_MASK;
zio_compress_info_t *ci = &zio_compress_table[cpfunc];
if (ci->ci_decompress != NULL)
(void) ci->ci_decompress(src, dst, s_len, d_len, ci->ci_level);
else
bcopy(src, dst, d_len);
if (((version & DDT_COMPRESS_BYTEORDER_MASK) != 0) !=
(ZFS_HOST_BYTEORDER != 0))
byteswap_uint64_array(dst, d_len);
}
ddt_t *
ddt_select_by_checksum(spa_t *spa, enum zio_checksum c)
{
return (spa->spa_ddt[c]);
}
ddt_t *
ddt_select(spa_t *spa, const blkptr_t *bp)
{
return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]);
}
void
ddt_enter(ddt_t *ddt)
{
mutex_enter(&ddt->ddt_lock);
}
void
ddt_exit(ddt_t *ddt)
{
mutex_exit(&ddt->ddt_lock);
}
static ddt_entry_t *
ddt_alloc(const ddt_key_t *ddk)
{
ddt_entry_t *dde;
dde = kmem_zalloc(sizeof (ddt_entry_t), KM_SLEEP);
cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL);
dde->dde_key = *ddk;
return (dde);
}
static void
ddt_free(ddt_entry_t *dde)
{
ASSERT(!dde->dde_loading);
for (int p = 0; p < DDT_PHYS_TYPES; p++)
ASSERT(dde->dde_lead_zio[p] == NULL);
if (dde->dde_repair_data != NULL)
zio_buf_free(dde->dde_repair_data,
DDK_GET_PSIZE(&dde->dde_key));
cv_destroy(&dde->dde_cv);
kmem_free(dde, sizeof (*dde));
}
void
ddt_remove(ddt_t *ddt, ddt_entry_t *dde)
{
ASSERT(MUTEX_HELD(&ddt->ddt_lock));
avl_remove(&ddt->ddt_tree, dde);
ddt_free(dde);
}
ddt_entry_t *
ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t add)
{
ddt_entry_t *dde, dde_search;
enum ddt_type type;
enum ddt_class class;
avl_index_t where;
int error;
ASSERT(MUTEX_HELD(&ddt->ddt_lock));
ddt_key_fill(&dde_search.dde_key, bp);
dde = avl_find(&ddt->ddt_tree, &dde_search, &where);
if (dde == NULL) {
if (!add)
return (NULL);
dde = ddt_alloc(&dde_search.dde_key);
avl_insert(&ddt->ddt_tree, dde, where);
}
while (dde->dde_loading)
cv_wait(&dde->dde_cv, &ddt->ddt_lock);
if (dde->dde_loaded)
return (dde);
dde->dde_loading = B_TRUE;
ddt_exit(ddt);
error = ENOENT;
for (type = 0; type < DDT_TYPES; type++) {
for (class = 0; class < DDT_CLASSES; class++) {
error = ddt_object_lookup(ddt, type, class, dde);
if (error != ENOENT)
break;
}
if (error != ENOENT)
break;
}
ASSERT(error == 0 || error == ENOENT);
ddt_enter(ddt);
ASSERT(dde->dde_loaded == B_FALSE);
ASSERT(dde->dde_loading == B_TRUE);
dde->dde_type = type; /* will be DDT_TYPES if no entry found */
dde->dde_class = class; /* will be DDT_CLASSES if no entry found */
dde->dde_loaded = B_TRUE;
dde->dde_loading = B_FALSE;
if (error == 0)
ddt_stat_update(ddt, dde, -1ULL);
cv_broadcast(&dde->dde_cv);
return (dde);
}
void
ddt_prefetch(spa_t *spa, const blkptr_t *bp)
{
ddt_t *ddt;
ddt_entry_t dde;
if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp))
return;
/*
* We only remove the DDT once all tables are empty and only
* prefetch dedup blocks when there are entries in the DDT.
* Thus no locking is required as the DDT can't disappear on us.
*/
ddt = ddt_select(spa, bp);
ddt_key_fill(&dde.dde_key, bp);
for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
for (enum ddt_class class = 0; class < DDT_CLASSES; class++) {
ddt_object_prefetch(ddt, type, class, &dde);
}
}
}
int
ddt_entry_compare(const void *x1, const void *x2)
{
const ddt_entry_t *dde1 = x1;
const ddt_entry_t *dde2 = x2;
const uint64_t *u1 = (const uint64_t *)&dde1->dde_key;
const uint64_t *u2 = (const uint64_t *)&dde2->dde_key;
for (int i = 0; i < DDT_KEY_WORDS; i++) {
if (u1[i] < u2[i])
return (-1);
if (u1[i] > u2[i])
return (1);
}
return (0);
}
static ddt_t *
ddt_table_alloc(spa_t *spa, enum zio_checksum c)
{
ddt_t *ddt;
ddt = kmem_zalloc(sizeof (*ddt), KM_SLEEP);
mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL);
avl_create(&ddt->ddt_tree, ddt_entry_compare,
sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
avl_create(&ddt->ddt_repair_tree, ddt_entry_compare,
sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
ddt->ddt_checksum = c;
ddt->ddt_spa = spa;
ddt->ddt_os = spa->spa_meta_objset;
return (ddt);
}
static void
ddt_table_free(ddt_t *ddt)
{
ASSERT(avl_numnodes(&ddt->ddt_tree) == 0);
ASSERT(avl_numnodes(&ddt->ddt_repair_tree) == 0);
avl_destroy(&ddt->ddt_tree);
avl_destroy(&ddt->ddt_repair_tree);
mutex_destroy(&ddt->ddt_lock);
kmem_free(ddt, sizeof (*ddt));
}
void
ddt_create(spa_t *spa)
{
spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM;
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++)
spa->spa_ddt[c] = ddt_table_alloc(spa, c);
}
int
ddt_load(spa_t *spa)
{
int error;
ddt_create(spa);
error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_DDT_STATS, sizeof (uint64_t), 1,
&spa->spa_ddt_stat_object);
if (error)
return (error == ENOENT ? 0 : error);
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
ddt_t *ddt = spa->spa_ddt[c];
for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
for (enum ddt_class class = 0; class < DDT_CLASSES;
class++) {
error = ddt_object_load(ddt, type, class);
if (error != 0 && error != ENOENT)
return (error);
}
}
/*
* Seed the cached histograms.
*/
bcopy(ddt->ddt_histogram, &ddt->ddt_histogram_cache,
sizeof (ddt->ddt_histogram));
}
return (0);
}
void
ddt_unload(spa_t *spa)
{
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
if (spa->spa_ddt[c]) {
ddt_table_free(spa->spa_ddt[c]);
spa->spa_ddt[c] = NULL;
}
}
}
boolean_t
ddt_class_contains(spa_t *spa, enum ddt_class max_class, const blkptr_t *bp)
{
ddt_t *ddt;
ddt_entry_t dde;
if (!BP_GET_DEDUP(bp))
return (B_FALSE);
if (max_class == DDT_CLASS_UNIQUE)
return (B_TRUE);
ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)];
ddt_key_fill(&dde.dde_key, bp);
for (enum ddt_type type = 0; type < DDT_TYPES; type++)
for (enum ddt_class class = 0; class <= max_class; class++)
if (ddt_object_lookup(ddt, type, class, &dde) == 0)
return (B_TRUE);
return (B_FALSE);
}
ddt_entry_t *
ddt_repair_start(ddt_t *ddt, const blkptr_t *bp)
{
ddt_key_t ddk;
ddt_entry_t *dde;
ddt_key_fill(&ddk, bp);
dde = ddt_alloc(&ddk);
for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
for (enum ddt_class class = 0; class < DDT_CLASSES; class++) {
/*
* We can only do repair if there are multiple copies
* of the block. For anything in the UNIQUE class,
* there's definitely only one copy, so don't even try.
*/
if (class != DDT_CLASS_UNIQUE &&
ddt_object_lookup(ddt, type, class, dde) == 0)
return (dde);
}
}
bzero(dde->dde_phys, sizeof (dde->dde_phys));
return (dde);
}
void
ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde)
{
avl_index_t where;
ddt_enter(ddt);
if (dde->dde_repair_data != NULL && spa_writeable(ddt->ddt_spa) &&
avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL)
avl_insert(&ddt->ddt_repair_tree, dde, where);
else
ddt_free(dde);
ddt_exit(ddt);
}
static void
ddt_repair_entry_done(zio_t *zio)
{
ddt_entry_t *rdde = zio->io_private;
ddt_free(rdde);
}
static void
ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio)
{
ddt_phys_t *ddp = dde->dde_phys;
ddt_phys_t *rddp = rdde->dde_phys;
ddt_key_t *ddk = &dde->dde_key;
ddt_key_t *rddk = &rdde->dde_key;
zio_t *zio;
blkptr_t blk;
zio = zio_null(rio, rio->io_spa, NULL,
ddt_repair_entry_done, rdde, rio->io_flags);
for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++, rddp++) {
if (ddp->ddp_phys_birth == 0 ||
ddp->ddp_phys_birth != rddp->ddp_phys_birth ||
bcmp(ddp->ddp_dva, rddp->ddp_dva, sizeof (ddp->ddp_dva)))
continue;
ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk,
rdde->dde_repair_data, DDK_GET_PSIZE(rddk), NULL, NULL,
ZIO_PRIORITY_SYNC_WRITE, ZIO_DDT_CHILD_FLAGS(zio), NULL));
}
zio_nowait(zio);
}
static void
ddt_repair_table(ddt_t *ddt, zio_t *rio)
{
spa_t *spa = ddt->ddt_spa;
ddt_entry_t *dde, *rdde_next, *rdde;
avl_tree_t *t = &ddt->ddt_repair_tree;
blkptr_t blk;
if (spa_sync_pass(spa) > 1)
return;
ddt_enter(ddt);
for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) {
rdde_next = AVL_NEXT(t, rdde);
avl_remove(&ddt->ddt_repair_tree, rdde);
ddt_exit(ddt);
ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL, &blk);
dde = ddt_repair_start(ddt, &blk);
ddt_repair_entry(ddt, dde, rdde, rio);
ddt_repair_done(ddt, dde);
ddt_enter(ddt);
}
ddt_exit(ddt);
}
static void
ddt_sync_entry(ddt_t *ddt, ddt_entry_t *dde, dmu_tx_t *tx, uint64_t txg)
{
dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool;
ddt_phys_t *ddp = dde->dde_phys;
ddt_key_t *ddk = &dde->dde_key;
enum ddt_type otype = dde->dde_type;
enum ddt_type ntype = DDT_TYPE_CURRENT;
enum ddt_class oclass = dde->dde_class;
enum ddt_class nclass;
uint64_t total_refcnt = 0;
ASSERT(dde->dde_loaded);
ASSERT(!dde->dde_loading);
for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
ASSERT(dde->dde_lead_zio[p] == NULL);
ASSERT((int64_t)ddp->ddp_refcnt >= 0);
if (ddp->ddp_phys_birth == 0) {
ASSERT(ddp->ddp_refcnt == 0);
continue;
}
if (p == DDT_PHYS_DITTO) {
if (ddt_ditto_copies_needed(ddt, dde, NULL) == 0)
ddt_phys_free(ddt, ddk, ddp, txg);
continue;
}
if (ddp->ddp_refcnt == 0)
ddt_phys_free(ddt, ddk, ddp, txg);
total_refcnt += ddp->ddp_refcnt;
}
if (dde->dde_phys[DDT_PHYS_DITTO].ddp_phys_birth != 0)
nclass = DDT_CLASS_DITTO;
else if (total_refcnt > 1)
nclass = DDT_CLASS_DUPLICATE;
else
nclass = DDT_CLASS_UNIQUE;
if (otype != DDT_TYPES &&
(otype != ntype || oclass != nclass || total_refcnt == 0)) {
VERIFY(ddt_object_remove(ddt, otype, oclass, dde, tx) == 0);
ASSERT(ddt_object_lookup(ddt, otype, oclass, dde) == ENOENT);
}
if (total_refcnt != 0) {
dde->dde_type = ntype;
dde->dde_class = nclass;
ddt_stat_update(ddt, dde, 0);
if (!ddt_object_exists(ddt, ntype, nclass))
ddt_object_create(ddt, ntype, nclass, tx);
VERIFY(ddt_object_update(ddt, ntype, nclass, dde, tx) == 0);
/*
* If the class changes, the order that we scan this bp
* changes. If it decreases, we could miss it, so
* scan it right now. (This covers both class changing
* while we are doing ddt_walk(), and when we are
* traversing.)
*/
if (nclass < oclass) {
dsl_scan_ddt_entry(dp->dp_scan,
ddt->ddt_checksum, dde, tx);
}
}
}
static void
ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx, uint64_t txg)
{
spa_t *spa = ddt->ddt_spa;
ddt_entry_t *dde;
void *cookie = NULL;
if (avl_numnodes(&ddt->ddt_tree) == 0)
return;
ASSERT(spa->spa_uberblock.ub_version >= SPA_VERSION_DEDUP);
if (spa->spa_ddt_stat_object == 0) {
spa->spa_ddt_stat_object = zap_create_link(ddt->ddt_os,
DMU_OT_DDT_STATS, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_DDT_STATS, tx);
}
while ((dde = avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) {
ddt_sync_entry(ddt, dde, tx, txg);
ddt_free(dde);
}
for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
uint64_t add, count = 0;
for (enum ddt_class class = 0; class < DDT_CLASSES; class++) {
if (ddt_object_exists(ddt, type, class)) {
ddt_object_sync(ddt, type, class, tx);
VERIFY(ddt_object_count(ddt, type, class,
&add) == 0);
count += add;
}
}
for (enum ddt_class class = 0; class < DDT_CLASSES; class++) {
if (count == 0 && ddt_object_exists(ddt, type, class))
ddt_object_destroy(ddt, type, class, tx);
}
}
bcopy(ddt->ddt_histogram, &ddt->ddt_histogram_cache,
sizeof (ddt->ddt_histogram));
}
void
ddt_sync(spa_t *spa, uint64_t txg)
{
dmu_tx_t *tx;
zio_t *rio = zio_root(spa, NULL, NULL,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
ASSERT(spa_syncing_txg(spa) == txg);
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
ddt_t *ddt = spa->spa_ddt[c];
if (ddt == NULL)
continue;
ddt_sync_table(ddt, tx, txg);
ddt_repair_table(ddt, rio);
}
(void) zio_wait(rio);
dmu_tx_commit(tx);
}
int
ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_entry_t *dde)
{
do {
do {
do {
ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum];
int error = ENOENT;
if (ddt_object_exists(ddt, ddb->ddb_type,
ddb->ddb_class)) {
error = ddt_object_walk(ddt,
ddb->ddb_type, ddb->ddb_class,
&ddb->ddb_cursor, dde);
}
dde->dde_type = ddb->ddb_type;
dde->dde_class = ddb->ddb_class;
if (error == 0)
return (0);
if (error != ENOENT)
return (error);
ddb->ddb_cursor = 0;
} while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS);
ddb->ddb_checksum = 0;
} while (++ddb->ddb_type < DDT_TYPES);
ddb->ddb_type = 0;
} while (++ddb->ddb_class < DDT_CLASSES);
return (SET_ERROR(ENOENT));
}