freebsd-dev/sys/dev/altera/msgdma/msgdma.c
Ruslan Bukin 951e058411 o Add support for BERI IOMMU device
o Add an experimental IOMMU support to xDMA framework

The BERI IOMMU device is the part of CHERI device-model project [1]. It
translates memory addresses for various BERI peripherals modelled in
software. It accepts FreeBSD/mips64 page directories format and manages
BERI TLB.

1. https://github.com/CTSRD-CHERI/device-model

Sponsored by:	DARPA, AFRL
2019-07-22 16:01:20 +00:00

648 lines
15 KiB
C

/*-
* Copyright (c) 2016-2018 Ruslan Bukin <br@bsdpad.com>
* All rights reserved.
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237
* ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Altera mSGDMA driver. */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/sglist.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <machine/bus.h>
#include <machine/fdt.h>
#include <machine/cache.h>
#ifdef FDT
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#endif
#include <dev/xdma/xdma.h>
#include "xdma_if.h"
#include "opt_altera_msgdma.h"
#include <dev/altera/msgdma/msgdma.h>
#define MSGDMA_DEBUG
#undef MSGDMA_DEBUG
#ifdef MSGDMA_DEBUG
#define dprintf(fmt, ...) printf(fmt, ##__VA_ARGS__)
#else
#define dprintf(fmt, ...)
#endif
#define MSGDMA_NCHANNELS 1
struct msgdma_channel {
struct msgdma_softc *sc;
struct mtx mtx;
xdma_channel_t *xchan;
struct proc *p;
int used;
int index;
int idx_head;
int idx_tail;
struct msgdma_desc **descs;
bus_dma_segment_t *descs_phys;
uint32_t descs_num;
bus_dma_tag_t dma_tag;
bus_dmamap_t *dma_map;
uint32_t map_descr;
uint8_t map_err;
uint32_t descs_used_count;
};
struct msgdma_softc {
device_t dev;
struct resource *res[3];
bus_space_tag_t bst;
bus_space_handle_t bsh;
bus_space_tag_t bst_d;
bus_space_handle_t bsh_d;
void *ih;
struct msgdma_desc desc;
struct msgdma_channel channels[MSGDMA_NCHANNELS];
};
static struct resource_spec msgdma_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_MEMORY, 1, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
#define HWTYPE_NONE 0
#define HWTYPE_STD 1
static struct ofw_compat_data compat_data[] = {
{ "altr,msgdma-16.0", HWTYPE_STD },
{ "altr,msgdma-1.0", HWTYPE_STD },
{ NULL, HWTYPE_NONE },
};
static int msgdma_probe(device_t dev);
static int msgdma_attach(device_t dev);
static int msgdma_detach(device_t dev);
static inline uint32_t
msgdma_next_desc(struct msgdma_channel *chan, uint32_t curidx)
{
return ((curidx + 1) % chan->descs_num);
}
static void
msgdma_intr(void *arg)
{
xdma_transfer_status_t status;
struct xdma_transfer_status st;
struct msgdma_desc *desc;
struct msgdma_channel *chan;
struct xdma_channel *xchan;
struct msgdma_softc *sc;
uint32_t tot_copied;
sc = arg;
chan = &sc->channels[0];
xchan = chan->xchan;
dprintf("%s(%d): status 0x%08x next_descr 0x%08x, control 0x%08x\n",
__func__, device_get_unit(sc->dev),
READ4_DESC(sc, PF_STATUS),
READ4_DESC(sc, PF_NEXT_LO),
READ4_DESC(sc, PF_CONTROL));
tot_copied = 0;
while (chan->idx_tail != chan->idx_head) {
dprintf("%s: idx_tail %d idx_head %d\n", __func__,
chan->idx_tail, chan->idx_head);
bus_dmamap_sync(chan->dma_tag, chan->dma_map[chan->idx_tail],
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
desc = chan->descs[chan->idx_tail];
if ((le32toh(desc->control) & CONTROL_OWN) != 0) {
break;
}
tot_copied += le32toh(desc->transferred);
st.error = 0;
st.transferred = le32toh(desc->transferred);
xchan_seg_done(xchan, &st);
chan->idx_tail = msgdma_next_desc(chan, chan->idx_tail);
atomic_subtract_int(&chan->descs_used_count, 1);
}
WRITE4_DESC(sc, PF_STATUS, PF_STATUS_IRQ);
/* Finish operation */
status.error = 0;
status.transferred = tot_copied;
xdma_callback(chan->xchan, &status);
}
static int
msgdma_reset(struct msgdma_softc *sc)
{
int timeout;
dprintf("%s: read status: %x\n", __func__, READ4(sc, 0x00));
dprintf("%s: read control: %x\n", __func__, READ4(sc, 0x04));
dprintf("%s: read 1: %x\n", __func__, READ4(sc, 0x08));
dprintf("%s: read 2: %x\n", __func__, READ4(sc, 0x0C));
WRITE4(sc, DMA_CONTROL, CONTROL_RESET);
timeout = 100;
do {
if ((READ4(sc, DMA_STATUS) & STATUS_RESETTING) == 0)
break;
} while (timeout--);
dprintf("timeout %d\n", timeout);
if (timeout == 0)
return (-1);
dprintf("%s: read control after reset: %x\n",
__func__, READ4(sc, DMA_CONTROL));
return (0);
}
static int
msgdma_probe(device_t dev)
{
int hwtype;
if (!ofw_bus_status_okay(dev))
return (ENXIO);
hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
if (hwtype == HWTYPE_NONE)
return (ENXIO);
device_set_desc(dev, "Altera mSGDMA");
return (BUS_PROBE_DEFAULT);
}
static int
msgdma_attach(device_t dev)
{
struct msgdma_softc *sc;
phandle_t xref, node;
int err;
sc = device_get_softc(dev);
sc->dev = dev;
if (bus_alloc_resources(dev, msgdma_spec, sc->res)) {
device_printf(dev, "could not allocate resources for device\n");
return (ENXIO);
}
/* CSR memory interface */
sc->bst = rman_get_bustag(sc->res[0]);
sc->bsh = rman_get_bushandle(sc->res[0]);
/* Descriptor memory interface */
sc->bst_d = rman_get_bustag(sc->res[1]);
sc->bsh_d = rman_get_bushandle(sc->res[1]);
/* Setup interrupt handler */
err = bus_setup_intr(dev, sc->res[2], INTR_TYPE_MISC | INTR_MPSAFE,
NULL, msgdma_intr, sc, &sc->ih);
if (err) {
device_printf(dev, "Unable to alloc interrupt resource.\n");
return (ENXIO);
}
node = ofw_bus_get_node(dev);
xref = OF_xref_from_node(node);
OF_device_register_xref(xref, dev);
if (msgdma_reset(sc) != 0)
return (-1);
WRITE4(sc, DMA_CONTROL, CONTROL_GIEM);
return (0);
}
static int
msgdma_detach(device_t dev)
{
struct msgdma_softc *sc;
sc = device_get_softc(dev);
return (0);
}
static void
msgdma_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
{
struct msgdma_channel *chan;
chan = (struct msgdma_channel *)arg;
KASSERT(chan != NULL, ("xchan is NULL"));
if (err) {
chan->map_err = 1;
return;
}
chan->descs_phys[chan->map_descr].ds_addr = segs[0].ds_addr;
chan->descs_phys[chan->map_descr].ds_len = segs[0].ds_len;
dprintf("map desc %d: descs phys %lx len %ld\n",
chan->map_descr, segs[0].ds_addr, segs[0].ds_len);
}
static int
msgdma_desc_free(struct msgdma_softc *sc, struct msgdma_channel *chan)
{
struct msgdma_desc *desc;
int nsegments;
int i;
nsegments = chan->descs_num;
for (i = 0; i < nsegments; i++) {
desc = chan->descs[i];
bus_dmamap_unload(chan->dma_tag, chan->dma_map[i]);
bus_dmamem_free(chan->dma_tag, desc, chan->dma_map[i]);
}
bus_dma_tag_destroy(chan->dma_tag);
free(chan->descs, M_DEVBUF);
free(chan->dma_map, M_DEVBUF);
free(chan->descs_phys, M_DEVBUF);
return (0);
}
static int
msgdma_desc_alloc(struct msgdma_softc *sc, struct msgdma_channel *chan,
uint32_t desc_size, uint32_t align)
{
int nsegments;
int err;
int i;
nsegments = chan->descs_num;
dprintf("%s: nseg %d\n", __func__, nsegments);
err = bus_dma_tag_create(
bus_get_dma_tag(sc->dev),
align, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
desc_size, 1, /* maxsize, nsegments*/
desc_size, 0, /* maxsegsize, flags */
NULL, NULL, /* lockfunc, lockarg */
&chan->dma_tag);
if (err) {
device_printf(sc->dev,
"%s: Can't create bus_dma tag.\n", __func__);
return (-1);
}
/* Descriptors. */
chan->descs = malloc(nsegments * sizeof(struct msgdma_desc *),
M_DEVBUF, (M_WAITOK | M_ZERO));
if (chan->descs == NULL) {
device_printf(sc->dev,
"%s: Can't allocate memory.\n", __func__);
return (-1);
}
chan->dma_map = malloc(nsegments * sizeof(bus_dmamap_t),
M_DEVBUF, (M_WAITOK | M_ZERO));
chan->descs_phys = malloc(nsegments * sizeof(bus_dma_segment_t),
M_DEVBUF, (M_WAITOK | M_ZERO));
/* Allocate bus_dma memory for each descriptor. */
for (i = 0; i < nsegments; i++) {
err = bus_dmamem_alloc(chan->dma_tag, (void **)&chan->descs[i],
BUS_DMA_WAITOK | BUS_DMA_ZERO, &chan->dma_map[i]);
if (err) {
device_printf(sc->dev,
"%s: Can't allocate memory for descriptors.\n",
__func__);
return (-1);
}
chan->map_err = 0;
chan->map_descr = i;
err = bus_dmamap_load(chan->dma_tag, chan->dma_map[i], chan->descs[i],
desc_size, msgdma_dmamap_cb, chan, BUS_DMA_WAITOK);
if (err) {
device_printf(sc->dev,
"%s: Can't load DMA map.\n", __func__);
return (-1);
}
if (chan->map_err != 0) {
device_printf(sc->dev,
"%s: Can't load DMA map.\n", __func__);
return (-1);
}
}
return (0);
}
static int
msgdma_channel_alloc(device_t dev, struct xdma_channel *xchan)
{
struct msgdma_channel *chan;
struct msgdma_softc *sc;
int i;
sc = device_get_softc(dev);
for (i = 0; i < MSGDMA_NCHANNELS; i++) {
chan = &sc->channels[i];
if (chan->used == 0) {
chan->xchan = xchan;
xchan->chan = (void *)chan;
if ((xchan->caps & XCHAN_CAP_IOMMU) == 0)
xchan->caps |= XCHAN_CAP_BUSDMA;
chan->index = i;
chan->sc = sc;
chan->used = 1;
chan->idx_head = 0;
chan->idx_tail = 0;
chan->descs_used_count = 0;
chan->descs_num = 1024;
return (0);
}
}
return (-1);
}
static int
msgdma_channel_free(device_t dev, struct xdma_channel *xchan)
{
struct msgdma_channel *chan;
struct msgdma_softc *sc;
sc = device_get_softc(dev);
chan = (struct msgdma_channel *)xchan->chan;
msgdma_desc_free(sc, chan);
chan->used = 0;
return (0);
}
static int
msgdma_channel_capacity(device_t dev, xdma_channel_t *xchan,
uint32_t *capacity)
{
struct msgdma_channel *chan;
uint32_t c;
chan = (struct msgdma_channel *)xchan->chan;
/* At least one descriptor must be left empty. */
c = (chan->descs_num - chan->descs_used_count - 1);
*capacity = c;
return (0);
}
static int
msgdma_channel_submit_sg(device_t dev, struct xdma_channel *xchan,
struct xdma_sglist *sg, uint32_t sg_n)
{
struct msgdma_channel *chan;
struct msgdma_desc *desc;
struct msgdma_softc *sc;
bus_addr_t src_addr_lo;
bus_addr_t dst_addr_lo;
uint32_t len;
uint32_t tmp;
int i;
sc = device_get_softc(dev);
chan = (struct msgdma_channel *)xchan->chan;
for (i = 0; i < sg_n; i++) {
src_addr_lo = sg[i].src_addr;
dst_addr_lo = sg[i].dst_addr;
len = (uint32_t)sg[i].len;
dprintf("%s: src %x dst %x len %d\n", __func__,
src_addr_lo, dst_addr_lo, len);
desc = chan->descs[chan->idx_head];
#if defined(ALTERA_MSGDMA_DESC_EXT) || defined(ALTERA_MSGDMA_DESC_PF_EXT)
desc->read_hi = htole32(src_addr_lo >> 32);
desc->write_hi = htole32(dst_addr_lo >> 32);
#endif
desc->read_lo = htole32(src_addr_lo);
desc->write_lo = htole32(dst_addr_lo);
desc->length = htole32(len);
desc->transferred = 0;
desc->status = 0;
desc->reserved = 0;
desc->control = 0;
if (sg[i].direction == XDMA_MEM_TO_DEV) {
if (sg[i].first == 1) {
desc->control |= htole32(CONTROL_GEN_SOP);
}
if (sg[i].last == 1) {
desc->control |= htole32(CONTROL_GEN_EOP);
desc->control |= htole32(CONTROL_TC_IRQ_EN |
CONTROL_ET_IRQ_EN | CONTROL_ERR_M);
}
} else {
desc->control |= htole32(CONTROL_END_ON_EOP | (1 << 13));
desc->control |= htole32(CONTROL_TC_IRQ_EN |
CONTROL_ET_IRQ_EN | CONTROL_ERR_M);
}
tmp = chan->idx_head;
atomic_add_int(&chan->descs_used_count, 1);
chan->idx_head = msgdma_next_desc(chan, chan->idx_head);
desc->control |= htole32(CONTROL_OWN | CONTROL_GO);
bus_dmamap_sync(chan->dma_tag, chan->dma_map[tmp],
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
return (0);
}
static int
msgdma_channel_prep_sg(device_t dev, struct xdma_channel *xchan)
{
struct msgdma_channel *chan;
struct msgdma_desc *desc;
struct msgdma_softc *sc;
uint32_t addr;
uint32_t reg;
int ret;
int i;
sc = device_get_softc(dev);
dprintf("%s(%d)\n", __func__, device_get_unit(dev));
chan = (struct msgdma_channel *)xchan->chan;
ret = msgdma_desc_alloc(sc, chan, sizeof(struct msgdma_desc), 16);
if (ret != 0) {
device_printf(sc->dev,
"%s: Can't allocate descriptors.\n", __func__);
return (-1);
}
for (i = 0; i < chan->descs_num; i++) {
desc = chan->descs[i];
if (i == (chan->descs_num - 1)) {
desc->next = htole32(chan->descs_phys[0].ds_addr);
} else {
desc->next = htole32(chan->descs_phys[i+1].ds_addr);
}
dprintf("%s(%d): desc %d vaddr %lx next paddr %x\n", __func__,
device_get_unit(dev), i, (uint64_t)desc, le32toh(desc->next));
}
addr = chan->descs_phys[0].ds_addr;
WRITE4_DESC(sc, PF_NEXT_LO, addr);
WRITE4_DESC(sc, PF_NEXT_HI, 0);
WRITE4_DESC(sc, PF_POLL_FREQ, 1000);
reg = (PF_CONTROL_GIEM | PF_CONTROL_DESC_POLL_EN);
reg |= PF_CONTROL_RUN;
WRITE4_DESC(sc, PF_CONTROL, reg);
return (0);
}
static int
msgdma_channel_control(device_t dev, xdma_channel_t *xchan, int cmd)
{
struct msgdma_channel *chan;
struct msgdma_softc *sc;
sc = device_get_softc(dev);
chan = (struct msgdma_channel *)xchan->chan;
switch (cmd) {
case XDMA_CMD_BEGIN:
case XDMA_CMD_TERMINATE:
case XDMA_CMD_PAUSE:
/* TODO: implement me */
return (-1);
}
return (0);
}
#ifdef FDT
static int
msgdma_ofw_md_data(device_t dev, pcell_t *cells, int ncells, void **ptr)
{
return (0);
}
#endif
static device_method_t msgdma_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, msgdma_probe),
DEVMETHOD(device_attach, msgdma_attach),
DEVMETHOD(device_detach, msgdma_detach),
/* xDMA Interface */
DEVMETHOD(xdma_channel_alloc, msgdma_channel_alloc),
DEVMETHOD(xdma_channel_free, msgdma_channel_free),
DEVMETHOD(xdma_channel_control, msgdma_channel_control),
/* xDMA SG Interface */
DEVMETHOD(xdma_channel_capacity, msgdma_channel_capacity),
DEVMETHOD(xdma_channel_prep_sg, msgdma_channel_prep_sg),
DEVMETHOD(xdma_channel_submit_sg, msgdma_channel_submit_sg),
#ifdef FDT
DEVMETHOD(xdma_ofw_md_data, msgdma_ofw_md_data),
#endif
DEVMETHOD_END
};
static driver_t msgdma_driver = {
"msgdma",
msgdma_methods,
sizeof(struct msgdma_softc),
};
static devclass_t msgdma_devclass;
EARLY_DRIVER_MODULE(msgdma, simplebus, msgdma_driver, msgdma_devclass, 0, 0,
BUS_PASS_INTERRUPT + BUS_PASS_ORDER_LATE);