freebsd-dev/sys/dev/ath/ath_hal/ar5416/ar5416_interrupts.c
2017-12-08 15:57:29 +00:00

381 lines
10 KiB
C

/*-
* SPDX-License-Identifier: ISC
*
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
/*
* Checks to see if an interrupt is pending on our NIC
*
* Returns: TRUE if an interrupt is pending
* FALSE if not
*/
HAL_BOOL
ar5416IsInterruptPending(struct ath_hal *ah)
{
uint32_t isr;
if (AR_SREV_HOWL(ah))
return AH_TRUE;
/*
* Some platforms trigger our ISR before applying power to
* the card, so make sure the INTPEND is really 1, not 0xffffffff.
*/
isr = OS_REG_READ(ah, AR_INTR_ASYNC_CAUSE);
if (isr != AR_INTR_SPURIOUS && (isr & AR_INTR_MAC_IRQ) != 0)
return AH_TRUE;
isr = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
if (isr != AR_INTR_SPURIOUS && (isr & AR_INTR_SYNC_DEFAULT))
return AH_TRUE;
return AH_FALSE;
}
/*
* Reads the Interrupt Status Register value from the NIC, thus deasserting
* the interrupt line, and returns both the masked and unmasked mapped ISR
* values. The value returned is mapped to abstract the hw-specific bit
* locations in the Interrupt Status Register.
*
* (*masked) is cleared on initial call.
*
* Returns: A hardware-abstracted bitmap of all non-masked-out
* interrupts pending, as well as an unmasked value
*/
HAL_BOOL
ar5416GetPendingInterrupts(struct ath_hal *ah, HAL_INT *masked)
{
uint32_t isr, isr0, isr1, sync_cause = 0, o_sync_cause = 0;
HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
#ifdef AH_INTERRUPT_DEBUGGING
/*
* Blank the interrupt debugging area regardless.
*/
bzero(&ah->ah_intrstate, sizeof(ah->ah_intrstate));
ah->ah_syncstate = 0;
#endif
/*
* Verify there's a mac interrupt and the RTC is on.
*/
if (AR_SREV_HOWL(ah)) {
*masked = 0;
isr = OS_REG_READ(ah, AR_ISR);
} else {
if ((OS_REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
(OS_REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
isr = OS_REG_READ(ah, AR_ISR);
else
isr = 0;
#ifdef AH_INTERRUPT_DEBUGGING
ah->ah_syncstate =
#endif
o_sync_cause = sync_cause = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
sync_cause &= AR_INTR_SYNC_DEFAULT;
*masked = 0;
if (isr == 0 && sync_cause == 0)
return AH_FALSE;
}
#ifdef AH_INTERRUPT_DEBUGGING
ah->ah_intrstate[0] = isr;
ah->ah_intrstate[1] = OS_REG_READ(ah, AR_ISR_S0);
ah->ah_intrstate[2] = OS_REG_READ(ah, AR_ISR_S1);
ah->ah_intrstate[3] = OS_REG_READ(ah, AR_ISR_S2);
ah->ah_intrstate[4] = OS_REG_READ(ah, AR_ISR_S3);
ah->ah_intrstate[5] = OS_REG_READ(ah, AR_ISR_S4);
ah->ah_intrstate[6] = OS_REG_READ(ah, AR_ISR_S5);
#endif
if (isr != 0) {
struct ath_hal_5212 *ahp = AH5212(ah);
uint32_t mask2;
mask2 = 0;
if (isr & AR_ISR_BCNMISC) {
uint32_t isr2 = OS_REG_READ(ah, AR_ISR_S2);
if (isr2 & AR_ISR_S2_TIM)
mask2 |= HAL_INT_TIM;
if (isr2 & AR_ISR_S2_DTIM)
mask2 |= HAL_INT_DTIM;
if (isr2 & AR_ISR_S2_DTIMSYNC)
mask2 |= HAL_INT_DTIMSYNC;
if (isr2 & (AR_ISR_S2_CABEND ))
mask2 |= HAL_INT_CABEND;
if (isr2 & AR_ISR_S2_GTT)
mask2 |= HAL_INT_GTT;
if (isr2 & AR_ISR_S2_CST)
mask2 |= HAL_INT_CST;
if (isr2 & AR_ISR_S2_TSFOOR)
mask2 |= HAL_INT_TSFOOR;
/*
* Don't mask out AR_BCNMISC; instead mask
* out what causes it.
*/
OS_REG_WRITE(ah, AR_ISR_S2, isr2);
isr &= ~AR_ISR_BCNMISC;
}
if (isr == 0xffffffff) {
*masked = 0;
return AH_FALSE;
}
*masked = isr & HAL_INT_COMMON;
if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
*masked |= HAL_INT_RX;
if (isr & (AR_ISR_TXMINTR | AR_ISR_TXINTM))
*masked |= HAL_INT_TX;
/*
* When doing RX interrupt mitigation, the RXOK bit is set
* in AR_ISR even if the relevant bit in AR_IMR is clear.
* Since this interrupt may be due to another source, don't
* just automatically set HAL_INT_RX if it's set, otherwise
* we could prematurely service the RX queue.
*
* In some cases, the driver can even handle all the RX
* frames just before the mitigation interrupt fires.
* The subsequent RX processing trip will then end up
* processing 0 frames.
*/
#ifdef AH_AR5416_INTERRUPT_MITIGATION
if (isr & AR_ISR_RXERR)
*masked |= HAL_INT_RX;
#else
if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
*masked |= HAL_INT_RX;
#endif
if (isr & (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
AR_ISR_TXEOL)) {
*masked |= HAL_INT_TX;
isr0 = OS_REG_READ(ah, AR_ISR_S0);
OS_REG_WRITE(ah, AR_ISR_S0, isr0);
isr1 = OS_REG_READ(ah, AR_ISR_S1);
OS_REG_WRITE(ah, AR_ISR_S1, isr1);
/*
* Don't clear the primary ISR TX bits, clear
* what causes them (S0/S1.)
*/
isr &= ~(AR_ISR_TXOK | AR_ISR_TXDESC |
AR_ISR_TXERR | AR_ISR_TXEOL);
ahp->ah_intrTxqs |= MS(isr0, AR_ISR_S0_QCU_TXOK);
ahp->ah_intrTxqs |= MS(isr0, AR_ISR_S0_QCU_TXDESC);
ahp->ah_intrTxqs |= MS(isr1, AR_ISR_S1_QCU_TXERR);
ahp->ah_intrTxqs |= MS(isr1, AR_ISR_S1_QCU_TXEOL);
}
if ((isr & AR_ISR_GENTMR) || (! pCap->halAutoSleepSupport)) {
uint32_t isr5;
isr5 = OS_REG_READ(ah, AR_ISR_S5);
OS_REG_WRITE(ah, AR_ISR_S5, isr5);
isr &= ~AR_ISR_GENTMR;
if (! pCap->halAutoSleepSupport)
if (isr5 & AR_ISR_S5_TIM_TIMER)
*masked |= HAL_INT_TIM_TIMER;
}
*masked |= mask2;
}
/*
* Since we're not using AR_ISR_RAC, clear the status bits
* for handled interrupts here. For bits whose interrupt
* source is a secondary register, those bits should've been
* masked out - instead of those bits being written back,
* their source (ie, the secondary status registers) should
* be cleared. That way there are no race conditions with
* new triggers coming in whilst they've been read/cleared.
*/
OS_REG_WRITE(ah, AR_ISR, isr);
/* Flush previous write */
OS_REG_READ(ah, AR_ISR);
if (AR_SREV_HOWL(ah))
return AH_TRUE;
if (sync_cause != 0) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: sync_cause=0x%x\n",
__func__,
o_sync_cause);
if (sync_cause & (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) {
*masked |= HAL_INT_FATAL;
}
if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RADM CPL timeout\n",
__func__);
OS_REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
OS_REG_WRITE(ah, AR_RC, 0);
*masked |= HAL_INT_FATAL;
}
/*
* On fatal errors collect ISR state for debugging.
*/
if (*masked & HAL_INT_FATAL) {
AH_PRIVATE(ah)->ah_fatalState[0] = isr;
AH_PRIVATE(ah)->ah_fatalState[1] = sync_cause;
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: fatal error, ISR_RAC 0x%x SYNC_CAUSE 0x%x\n",
__func__, isr, sync_cause);
}
OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
/* NB: flush write */
(void) OS_REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
}
return AH_TRUE;
}
/*
* Atomically enables NIC interrupts. Interrupts are passed in
* via the enumerated bitmask in ints.
*/
HAL_INT
ar5416SetInterrupts(struct ath_hal *ah, HAL_INT ints)
{
struct ath_hal_5212 *ahp = AH5212(ah);
uint32_t omask = ahp->ah_maskReg;
uint32_t mask, mask2;
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: 0x%x => 0x%x\n",
__func__, omask, ints);
if (omask & HAL_INT_GLOBAL) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: disable IER\n", __func__);
OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
(void) OS_REG_READ(ah, AR_IER);
if (! AR_SREV_HOWL(ah)) {
OS_REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
(void) OS_REG_READ(ah, AR_INTR_ASYNC_ENABLE);
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
(void) OS_REG_READ(ah, AR_INTR_SYNC_ENABLE);
}
}
mask = ints & HAL_INT_COMMON;
mask2 = 0;
#ifdef AH_AR5416_INTERRUPT_MITIGATION
/*
* Overwrite default mask if Interrupt mitigation
* is specified for AR5416
*/
if (ints & HAL_INT_RX)
mask |= AR_IMR_RXERR | AR_IMR_RXMINTR | AR_IMR_RXINTM;
#else
if (ints & HAL_INT_RX)
mask |= AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXDESC;
#endif
if (ints & HAL_INT_TX) {
if (ahp->ah_txOkInterruptMask)
mask |= AR_IMR_TXOK;
if (ahp->ah_txErrInterruptMask)
mask |= AR_IMR_TXERR;
if (ahp->ah_txDescInterruptMask)
mask |= AR_IMR_TXDESC;
if (ahp->ah_txEolInterruptMask)
mask |= AR_IMR_TXEOL;
if (ahp->ah_txUrnInterruptMask)
mask |= AR_IMR_TXURN;
}
if (ints & (HAL_INT_BMISC)) {
mask |= AR_IMR_BCNMISC;
if (ints & HAL_INT_TIM)
mask2 |= AR_IMR_S2_TIM;
if (ints & HAL_INT_DTIM)
mask2 |= AR_IMR_S2_DTIM;
if (ints & HAL_INT_DTIMSYNC)
mask2 |= AR_IMR_S2_DTIMSYNC;
if (ints & HAL_INT_CABEND)
mask2 |= (AR_IMR_S2_CABEND );
if (ints & HAL_INT_CST)
mask2 |= AR_IMR_S2_CST;
if (ints & HAL_INT_TSFOOR)
mask2 |= AR_IMR_S2_TSFOOR;
}
if (ints & (HAL_INT_GTT | HAL_INT_CST)) {
mask |= AR_IMR_BCNMISC;
if (ints & HAL_INT_GTT)
mask2 |= AR_IMR_S2_GTT;
if (ints & HAL_INT_CST)
mask2 |= AR_IMR_S2_CST;
}
/* Write the new IMR and store off our SW copy. */
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: new IMR 0x%x\n", __func__, mask);
OS_REG_WRITE(ah, AR_IMR, mask);
/* Flush write */
(void) OS_REG_READ(ah, AR_IMR);
mask = OS_REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
AR_IMR_S2_DTIM |
AR_IMR_S2_DTIMSYNC |
AR_IMR_S2_CABEND |
AR_IMR_S2_CABTO |
AR_IMR_S2_TSFOOR |
AR_IMR_S2_GTT |
AR_IMR_S2_CST);
OS_REG_WRITE(ah, AR_IMR_S2, mask | mask2);
ahp->ah_maskReg = ints;
/* Re-enable interrupts if they were enabled before. */
if (ints & HAL_INT_GLOBAL) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: enable IER\n", __func__);
OS_REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
if (! AR_SREV_HOWL(ah)) {
mask = AR_INTR_MAC_IRQ;
if (ints & HAL_INT_GPIO)
mask |= SM(AH5416(ah)->ah_gpioMask,
AR_INTR_ASYNC_MASK_GPIO);
OS_REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, mask);
OS_REG_WRITE(ah, AR_INTR_ASYNC_MASK, mask);
mask = AR_INTR_SYNC_DEFAULT;
if (ints & HAL_INT_GPIO)
mask |= SM(AH5416(ah)->ah_gpioMask,
AR_INTR_SYNC_MASK_GPIO);
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, mask);
OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, mask);
}
}
return omask;
}