freebsd-dev/sys/dev/usb/if_kue.c
Nick Hibma cdb51d12a6 OpenBSD has a broken debugger that does not grok static. Use a
#define Static  static

that the OpenBSD folks can define it to be empty if they like.
2000-04-03 20:58:30 +00:00

1128 lines
27 KiB
C

/*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Kawasaki LSI KL5KUSB101B USB to ethernet adapter driver.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The KLSI USB to ethernet adapter chip contains an USB serial interface,
* ethernet MAC and embedded microcontroller (called the QT Engine).
* The chip must have firmware loaded into it before it will operate.
* Packets are passed between the chip and host via bulk transfers.
* There is an interrupt endpoint mentioned in the software spec, however
* it's currently unused. This device is 10Mbps half-duplex only, hence
* there is no media selection logic. The MAC supports a 128 entry
* multicast filter, though the exact size of the filter can depend
* on the firmware. Curiously, while the software spec describes various
* ethernet statistics counters, my sample adapter and firmware combination
* claims not to support any statistics counters at all.
*
* Note that once we load the firmware in the device, we have to be
* careful not to load it again: if you restart your computer but
* leave the adapter attached to the USB controller, it may remain
* powered on and retain its firmware. In this case, we don't need
* to load the firmware a second time.
*
* Special thanks to Rob Furr for providing an ADS Technologies
* adapter for development and testing. No monkeys were harmed during
* the development of this driver.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <machine/clock.h> /* for DELAY */
#include <sys/bus.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/usb_ethersubr.h>
#include <dev/usb/if_kuereg.h>
#include <dev/usb/kue_fw.h>
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/products.
*/
Static struct kue_type kue_devs[] = {
{ USB_VENDOR_AOX, USB_PRODUCT_AOX_USB101 },
{ USB_VENDOR_KLSI, USB_PRODUCT_AOX_USB101 },
{ USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BT },
{ USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC10T },
{ USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101 },
{ USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET },
{ USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET2 },
{ USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_E45 },
{ USB_VENDOR_3COM, USB_PRODUCT_3COM_3C19250 },
{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_ETHER_USB_T },
{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650C },
{ USB_VENDOR_SMC, USB_PRODUCT_SMC_2102USB },
{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T },
{ USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BT },
{ USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET3 },
{ 0, 0 }
};
Static struct usb_qdat kue_qdat;
Static int kue_match __P((device_t));
Static int kue_attach __P((device_t));
Static int kue_detach __P((device_t));
Static void kue_shutdown __P((device_t));
Static int kue_tx_list_init __P((struct kue_softc *));
Static int kue_rx_list_init __P((struct kue_softc *));
Static int kue_newbuf __P((struct kue_softc *, struct kue_chain *,
struct mbuf *));
Static int kue_encap __P((struct kue_softc *, struct mbuf *, int));
Static void kue_rxeof __P((usbd_xfer_handle,
usbd_private_handle, usbd_status));
Static void kue_txeof __P((usbd_xfer_handle,
usbd_private_handle, usbd_status));
Static void kue_start __P((struct ifnet *));
Static void kue_rxstart __P((struct ifnet *));
Static int kue_ioctl __P((struct ifnet *, u_long, caddr_t));
Static void kue_init __P((void *));
Static void kue_stop __P((struct kue_softc *));
Static void kue_watchdog __P((struct ifnet *));
Static void kue_setmulti __P((struct kue_softc *));
Static void kue_reset __P((struct kue_softc *));
Static usbd_status kue_do_request
__P((usbd_device_handle,
usb_device_request_t *, void *));
Static usbd_status kue_ctl __P((struct kue_softc *, int, u_int8_t,
u_int16_t, char *, int));
Static usbd_status kue_setword __P((struct kue_softc *, u_int8_t, u_int16_t));
Static int kue_load_fw __P((struct kue_softc *));
Static device_method_t kue_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, kue_match),
DEVMETHOD(device_attach, kue_attach),
DEVMETHOD(device_detach, kue_detach),
DEVMETHOD(device_shutdown, kue_shutdown),
{ 0, 0 }
};
Static driver_t kue_driver = {
"kue",
kue_methods,
sizeof(struct kue_softc)
};
Static devclass_t kue_devclass;
DRIVER_MODULE(if_kue, uhub, kue_driver, kue_devclass, usbd_driver_load, 0);
/*
* We have a custom do_request function which is almost like the
* regular do_request function, except it has a much longer timeout.
* Why? Because we need to make requests over the control endpoint
* to download the firmware to the device, which can take longer
* than the default timeout.
*/
Static usbd_status kue_do_request(dev, req, data)
usbd_device_handle dev;
usb_device_request_t *req;
void *data;
{
usbd_xfer_handle xfer;
usbd_status err;
xfer = usbd_alloc_xfer(dev);
usbd_setup_default_xfer(xfer, dev, 0, 500000, req,
data, UGETW(req->wLength), USBD_SHORT_XFER_OK|USBD_NO_TSLEEP, 0);
err = usbd_sync_transfer(xfer);
usbd_free_xfer(xfer);
return(err);
}
Static usbd_status kue_setword(sc, breq, word)
struct kue_softc *sc;
u_int8_t breq;
u_int16_t word;
{
usbd_device_handle dev;
usb_device_request_t req;
usbd_status err;
int s;
if (sc->kue_gone)
return(USBD_NORMAL_COMPLETION);
dev = sc->kue_udev;
s = splusb();
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = breq;
USETW(req.wValue, word);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
err = kue_do_request(dev, &req, NULL);
splx(s);
return(err);
}
Static usbd_status kue_ctl(sc, rw, breq, val, data, len)
struct kue_softc *sc;
int rw;
u_int8_t breq;
u_int16_t val;
char *data;
int len;
{
usbd_device_handle dev;
usb_device_request_t req;
usbd_status err;
int s;
dev = sc->kue_udev;
if (sc->kue_gone)
return(USBD_NORMAL_COMPLETION);
s = splusb();
if (rw == KUE_CTL_WRITE)
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
else
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = breq;
USETW(req.wValue, val);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
err = kue_do_request(dev, &req, data);
splx(s);
return(err);
}
Static int kue_load_fw(sc)
struct kue_softc *sc;
{
usbd_status err;
usb_device_descriptor_t *dd;
int hwrev;
dd = &sc->kue_udev->ddesc;
hwrev = UGETW(dd->bcdDevice);
/*
* First, check if we even need to load the firmware.
* If the device was still attached when the system was
* rebooted, it may already have firmware loaded in it.
* If this is the case, we don't need to do it again.
* And in fact, if we try to load it again, we'll hang,
* so we have to avoid this condition if we don't want
* to look stupid.
*
* We can test this quickly by checking the bcdRevision
* code. The NIC will return a different revision code if
* it's probed while the firmware is still loaded and
* running.
*/
if (hwrev == 0x0202)
return(0);
/* Load code segment */
err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN,
0, kue_code_seg, sizeof(kue_code_seg));
if (err) {
printf("kue%d: failed to load code segment: %s\n",
sc->kue_unit, usbd_errstr(err));
return(ENXIO);
}
/* Load fixup segment */
err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN,
0, kue_fix_seg, sizeof(kue_fix_seg));
if (err) {
printf("kue%d: failed to load fixup segment: %s\n",
sc->kue_unit, usbd_errstr(err));
return(ENXIO);
}
/* Send trigger command. */
err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN,
0, kue_trig_seg, sizeof(kue_trig_seg));
if (err) {
printf("kue%d: failed to load trigger segment: %s\n",
sc->kue_unit, usbd_errstr(err));
return(ENXIO);
}
return(0);
}
Static void kue_setmulti(sc)
struct kue_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
int i = 0;
ifp = &sc->arpcom.ac_if;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
sc->kue_rxfilt |= KUE_RXFILT_ALLMULTI;
sc->kue_rxfilt &= ~KUE_RXFILT_MULTICAST;
kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt);
return;
}
sc->kue_rxfilt &= ~KUE_RXFILT_ALLMULTI;
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
/*
* If there are too many addresses for the
* internal filter, switch over to allmulti mode.
*/
if (i == KUE_MCFILTCNT(sc))
break;
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
KUE_MCFILT(sc, i), ETHER_ADDR_LEN);
i++;
}
if (i == KUE_MCFILTCNT(sc))
sc->kue_rxfilt |= KUE_RXFILT_ALLMULTI;
else {
sc->kue_rxfilt |= KUE_RXFILT_MULTICAST;
kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MCAST_FILTERS,
i, sc->kue_mcfilters, i * ETHER_ADDR_LEN);
}
kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt);
return;
}
/*
* Issue a SET_CONFIGURATION command to reset the MAC. This should be
* done after the firmware is loaded into the adapter in order to
* bring it into proper operation.
*/
Static void kue_reset(sc)
struct kue_softc *sc;
{
if (usbd_set_config_no(sc->kue_udev, KUE_CONFIG_NO, 0)) {
printf("kue%d: getting interface handle failed\n",
sc->kue_unit);
}
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
return;
}
/*
* Probe for a KLSI chip.
*/
USB_MATCH(kue)
{
USB_MATCH_START(kue, uaa);
struct kue_type *t;
if (!uaa->iface)
return(UMATCH_NONE);
t = kue_devs;
while(t->kue_vid) {
if (uaa->vendor == t->kue_vid &&
uaa->product == t->kue_did) {
return(UMATCH_VENDOR_PRODUCT);
}
t++;
}
return(UMATCH_NONE);
}
/*
* Attach the interface. Allocate softc structures, do
* setup and ethernet/BPF attach.
*/
USB_ATTACH(kue)
{
USB_ATTACH_START(kue, sc, uaa);
char devinfo[1024];
int s;
struct ifnet *ifp;
usbd_status err;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
int i;
s = splimp();
bzero(sc, sizeof(struct kue_softc));
sc->kue_iface = uaa->iface;
sc->kue_udev = uaa->device;
sc->kue_unit = device_get_unit(self);
id = usbd_get_interface_descriptor(uaa->iface);
usbd_devinfo(uaa->device, 0, devinfo);
device_set_desc_copy(self, devinfo);
printf("%s: %s\n", USBDEVNAME(self), devinfo);
/* Find endpoints. */
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(uaa->iface, i);
if (!ed) {
printf("kue%d: couldn't get ep %d\n",
sc->kue_unit, i);
splx(s);
USB_ATTACH_ERROR_RETURN;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
(ed->bmAttributes & UE_XFERTYPE) == UE_BULK) {
sc->kue_ed[KUE_ENDPT_RX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
(ed->bmAttributes & UE_XFERTYPE) == UE_BULK) {
sc->kue_ed[KUE_ENDPT_TX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
(ed->bmAttributes & UE_XFERTYPE) == UE_INTERRUPT) {
sc->kue_ed[KUE_ENDPT_INTR] = ed->bEndpointAddress;
}
}
/* Load the firmware into the NIC. */
if (kue_load_fw(sc)) {
splx(s);
USB_ATTACH_ERROR_RETURN;
}
/* Reset the adapter. */
kue_reset(sc);
/* Read ethernet descriptor */
err = kue_ctl(sc, KUE_CTL_READ, KUE_CMD_GET_ETHER_DESCRIPTOR,
0, (char *)&sc->kue_desc, sizeof(sc->kue_desc));
sc->kue_mcfilters = malloc(KUE_MCFILTCNT(sc) * ETHER_ADDR_LEN,
M_USBDEV, M_NOWAIT);
/*
* A KLSI chip was detected. Inform the world.
*/
printf("kue%d: Ethernet address: %6D\n", sc->kue_unit,
sc->kue_desc.kue_macaddr, ":");
bcopy(sc->kue_desc.kue_macaddr,
(char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = sc->kue_unit;
ifp->if_name = "kue";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = kue_ioctl;
ifp->if_output = ether_output;
ifp->if_start = kue_start;
ifp->if_watchdog = kue_watchdog;
ifp->if_init = kue_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
kue_qdat.ifp = ifp;
kue_qdat.if_rxstart = kue_rxstart;
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
usb_register_netisr();
sc->kue_gone = 0;
splx(s);
USB_ATTACH_SUCCESS_RETURN;
}
Static int kue_detach(dev)
device_t dev;
{
struct kue_softc *sc;
struct ifnet *ifp;
int s;
s = splusb();
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
sc->kue_gone = 1;
if (ifp != NULL) {
bpfdetach(ifp);
if_detach(ifp);
}
if (sc->kue_ep[KUE_ENDPT_TX] != NULL)
usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_TX]);
if (sc->kue_ep[KUE_ENDPT_RX] != NULL)
usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_RX]);
if (sc->kue_ep[KUE_ENDPT_INTR] != NULL)
usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_INTR]);
if (sc->kue_mcfilters != NULL)
free(sc->kue_mcfilters, M_USBDEV);
splx(s);
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
Static int kue_newbuf(sc, c, m)
struct kue_softc *sc;
struct kue_chain *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("kue%d: no memory for rx list "
"-- packet dropped!\n", sc->kue_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("kue%d: no memory for rx list "
"-- packet dropped!\n", sc->kue_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
c->kue_mbuf = m_new;
return(0);
}
Static int kue_rx_list_init(sc)
struct kue_softc *sc;
{
struct kue_cdata *cd;
struct kue_chain *c;
int i;
cd = &sc->kue_cdata;
for (i = 0; i < KUE_RX_LIST_CNT; i++) {
c = &cd->kue_rx_chain[i];
c->kue_sc = sc;
c->kue_idx = i;
if (kue_newbuf(sc, c, NULL) == ENOBUFS)
return(ENOBUFS);
if (c->kue_xfer == NULL) {
c->kue_xfer = usbd_alloc_xfer(sc->kue_udev);
if (c->kue_xfer == NULL)
return(ENOBUFS);
}
}
return(0);
}
Static int kue_tx_list_init(sc)
struct kue_softc *sc;
{
struct kue_cdata *cd;
struct kue_chain *c;
int i;
cd = &sc->kue_cdata;
for (i = 0; i < KUE_TX_LIST_CNT; i++) {
c = &cd->kue_tx_chain[i];
c->kue_sc = sc;
c->kue_idx = i;
c->kue_mbuf = NULL;
if (c->kue_xfer == NULL) {
c->kue_xfer = usbd_alloc_xfer(sc->kue_udev);
if (c->kue_xfer == NULL)
return(ENOBUFS);
}
c->kue_buf = malloc(KUE_BUFSZ, M_USBDEV, M_NOWAIT);
if (c->kue_buf == NULL)
return(ENOBUFS);
}
return(0);
}
Static void kue_rxstart(ifp)
struct ifnet *ifp;
{
struct kue_softc *sc;
struct kue_chain *c;
sc = ifp->if_softc;
c = &sc->kue_cdata.kue_rx_chain[sc->kue_cdata.kue_rx_prod];
if (kue_newbuf(sc, c, NULL) == ENOBUFS) {
ifp->if_ierrors++;
return;
}
/* Setup new transfer. */
usbd_setup_xfer(c->kue_xfer, sc->kue_ep[KUE_ENDPT_RX],
c, mtod(c->kue_mbuf, char *), KUE_BUFSZ, USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, kue_rxeof);
usbd_transfer(c->kue_xfer);
return;
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
Static void kue_rxeof(xfer, priv, status)
usbd_xfer_handle xfer;
usbd_private_handle priv;
usbd_status status;
{
struct kue_softc *sc;
struct kue_chain *c;
struct mbuf *m;
struct ifnet *ifp;
int total_len = 0;
u_int16_t len;
c = priv;
sc = c->kue_sc;
ifp = &sc->arpcom.ac_if;
if (!(ifp->if_flags & IFF_RUNNING))
return;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
printf("kue%d: usb error on rx: %s\n", sc->kue_unit,
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->kue_ep[KUE_ENDPT_RX]);
goto done;
}
usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
m = c->kue_mbuf;
if (total_len <= 1)
goto done;
len = *mtod(m, u_int16_t *);
m_adj(m, sizeof(u_int16_t));
/* No errors; receive the packet. */
total_len = len;
if (len < sizeof(struct ether_header)) {
ifp->if_ierrors++;
goto done;
}
ifp->if_ipackets++;
m->m_pkthdr.rcvif = (struct ifnet *)&kue_qdat;
m->m_pkthdr.len = m->m_len = total_len;
/* Put the packet on the special USB input queue. */
usb_ether_input(m);
return;
done:
/* Setup new transfer. */
usbd_setup_xfer(c->kue_xfer, sc->kue_ep[KUE_ENDPT_RX],
c, mtod(c->kue_mbuf, char *), KUE_BUFSZ, USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, kue_rxeof);
usbd_transfer(c->kue_xfer);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
Static void kue_txeof(xfer, priv, status)
usbd_xfer_handle xfer;
usbd_private_handle priv;
usbd_status status;
{
struct kue_softc *sc;
struct kue_chain *c;
struct ifnet *ifp;
usbd_status err;
int s;
s = splimp();
c = priv;
sc = c->kue_sc;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
splx(s);
return;
}
printf("kue%d: usb error on tx: %s\n", sc->kue_unit,
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->kue_ep[KUE_ENDPT_TX]);
splx(s);
return;
}
usbd_get_xfer_status(c->kue_xfer, NULL, NULL, NULL, &err);
c->kue_mbuf->m_pkthdr.rcvif = ifp;
usb_tx_done(c->kue_mbuf);
c->kue_mbuf = NULL;
if (err)
ifp->if_oerrors++;
else
ifp->if_opackets++;
splx(s);
return;
}
Static int kue_encap(sc, m, idx)
struct kue_softc *sc;
struct mbuf *m;
int idx;
{
int total_len;
struct kue_chain *c;
usbd_status err;
c = &sc->kue_cdata.kue_tx_chain[idx];
/*
* Copy the mbuf data into a contiguous buffer, leaving two
* bytes at the beginning to hold the frame length.
*/
m_copydata(m, 0, m->m_pkthdr.len, c->kue_buf + 2);
c->kue_mbuf = m;
total_len = m->m_pkthdr.len + 2;
total_len += 64 - (total_len % 64);
/* Frame length is specified in the first 2 bytes of the buffer. */
c->kue_buf[0] = (u_int8_t)m->m_pkthdr.len;
c->kue_buf[1] = (u_int8_t)(m->m_pkthdr.len >> 8);
usbd_setup_xfer(c->kue_xfer, sc->kue_ep[KUE_ENDPT_TX],
c, c->kue_buf, total_len, 0, 10000, kue_txeof);
/* Transmit */
err = usbd_transfer(c->kue_xfer);
if (err != USBD_IN_PROGRESS) {
kue_stop(sc);
return(EIO);
}
sc->kue_cdata.kue_tx_cnt++;
return(0);
}
Static void kue_start(ifp)
struct ifnet *ifp;
{
struct kue_softc *sc;
struct mbuf *m_head = NULL;
sc = ifp->if_softc;
if (ifp->if_flags & IFF_OACTIVE)
return;
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
return;
if (kue_encap(sc, m_head, 0)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
return;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, m_head);
ifp->if_flags |= IFF_OACTIVE;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
Static void kue_init(xsc)
void *xsc;
{
struct kue_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct kue_chain *c;
usbd_status err;
int i, s;
if (ifp->if_flags & IFF_RUNNING)
return;
s = splimp();
/* Set MAC address */
kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MAC,
0, sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->kue_rxfilt = KUE_RXFILT_UNICAST|KUE_RXFILT_BROADCAST;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
sc->kue_rxfilt |= KUE_RXFILT_PROMISC;
kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt);
/* I'm not sure how to tune these. */
#ifdef notdef
/*
* Leave this one alone for now; setting it
* wrong causes lockups on some machines/controllers.
*/
kue_setword(sc, KUE_CMD_SET_SOFS, 1);
#endif
kue_setword(sc, KUE_CMD_SET_URB_SIZE, 64);
/* Init TX ring. */
if (kue_tx_list_init(sc) == ENOBUFS) {
printf("kue%d: tx list init failed\n", sc->kue_unit);
splx(s);
return;
}
/* Init RX ring. */
if (kue_rx_list_init(sc) == ENOBUFS) {
printf("kue%d: rx list init failed\n", sc->kue_unit);
splx(s);
return;
}
/* Load the multicast filter. */
kue_setmulti(sc);
/* Open RX and TX pipes. */
err = usbd_open_pipe(sc->kue_iface, sc->kue_ed[KUE_ENDPT_RX],
USBD_EXCLUSIVE_USE, &sc->kue_ep[KUE_ENDPT_RX]);
if (err) {
printf("kue%d: open rx pipe failed: %s\n",
sc->kue_unit, usbd_errstr(err));
splx(s);
return;
}
err = usbd_open_pipe(sc->kue_iface, sc->kue_ed[KUE_ENDPT_TX],
USBD_EXCLUSIVE_USE, &sc->kue_ep[KUE_ENDPT_TX]);
if (err) {
printf("kue%d: open tx pipe failed: %s\n",
sc->kue_unit, usbd_errstr(err));
splx(s);
return;
}
/* Start up the receive pipe. */
for (i = 0; i < KUE_RX_LIST_CNT; i++) {
c = &sc->kue_cdata.kue_rx_chain[i];
usbd_setup_xfer(c->kue_xfer, sc->kue_ep[KUE_ENDPT_RX],
c, mtod(c->kue_mbuf, char *), KUE_BUFSZ,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, kue_rxeof);
usbd_transfer(c->kue_xfer);
}
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
return;
}
Static int kue_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct kue_softc *sc = ifp->if_softc;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->kue_if_flags & IFF_PROMISC)) {
sc->kue_rxfilt |= KUE_RXFILT_PROMISC;
kue_setword(sc, KUE_CMD_SET_PKT_FILTER,
sc->kue_rxfilt);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->kue_if_flags & IFF_PROMISC) {
sc->kue_rxfilt &= ~KUE_RXFILT_PROMISC;
kue_setword(sc, KUE_CMD_SET_PKT_FILTER,
sc->kue_rxfilt);
} else if (!(ifp->if_flags & IFF_RUNNING))
kue_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
kue_stop(sc);
}
sc->kue_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
kue_setmulti(sc);
error = 0;
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
Static void kue_watchdog(ifp)
struct ifnet *ifp;
{
struct kue_softc *sc;
sc = ifp->if_softc;
ifp->if_oerrors++;
printf("kue%d: watchdog timeout\n", sc->kue_unit);
kue_init(sc);
if (ifp->if_snd.ifq_head != NULL)
kue_start(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
Static void kue_stop(sc)
struct kue_softc *sc;
{
usbd_status err;
struct ifnet *ifp;
int i;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
/* Stop transfers. */
if (sc->kue_ep[KUE_ENDPT_RX] != NULL) {
err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_RX]);
if (err) {
printf("kue%d: abort rx pipe failed: %s\n",
sc->kue_unit, usbd_errstr(err));
}
err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_RX]);
if (err) {
printf("kue%d: close rx pipe failed: %s\n",
sc->kue_unit, usbd_errstr(err));
}
sc->kue_ep[KUE_ENDPT_RX] = NULL;
}
if (sc->kue_ep[KUE_ENDPT_TX] != NULL) {
err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_TX]);
if (err) {
printf("kue%d: abort tx pipe failed: %s\n",
sc->kue_unit, usbd_errstr(err));
}
err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_TX]);
if (err) {
printf("kue%d: close tx pipe failed: %s\n",
sc->kue_unit, usbd_errstr(err));
}
sc->kue_ep[KUE_ENDPT_TX] = NULL;
}
if (sc->kue_ep[KUE_ENDPT_INTR] != NULL) {
err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_INTR]);
if (err) {
printf("kue%d: abort intr pipe failed: %s\n",
sc->kue_unit, usbd_errstr(err));
}
err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_INTR]);
if (err) {
printf("kue%d: close intr pipe failed: %s\n",
sc->kue_unit, usbd_errstr(err));
}
sc->kue_ep[KUE_ENDPT_INTR] = NULL;
}
/* Free RX resources. */
for (i = 0; i < KUE_RX_LIST_CNT; i++) {
if (sc->kue_cdata.kue_rx_chain[i].kue_buf != NULL) {
free(sc->kue_cdata.kue_rx_chain[i].kue_buf, M_USBDEV);
sc->kue_cdata.kue_rx_chain[i].kue_buf = NULL;
}
if (sc->kue_cdata.kue_rx_chain[i].kue_mbuf != NULL) {
m_freem(sc->kue_cdata.kue_rx_chain[i].kue_mbuf);
sc->kue_cdata.kue_rx_chain[i].kue_mbuf = NULL;
}
if (sc->kue_cdata.kue_rx_chain[i].kue_xfer != NULL) {
usbd_free_xfer(sc->kue_cdata.kue_rx_chain[i].kue_xfer);
sc->kue_cdata.kue_rx_chain[i].kue_xfer = NULL;
}
}
/* Free TX resources. */
for (i = 0; i < KUE_TX_LIST_CNT; i++) {
if (sc->kue_cdata.kue_tx_chain[i].kue_buf != NULL) {
free(sc->kue_cdata.kue_tx_chain[i].kue_buf, M_USBDEV);
sc->kue_cdata.kue_tx_chain[i].kue_buf = NULL;
}
if (sc->kue_cdata.kue_tx_chain[i].kue_mbuf != NULL) {
m_freem(sc->kue_cdata.kue_tx_chain[i].kue_mbuf);
sc->kue_cdata.kue_tx_chain[i].kue_mbuf = NULL;
}
if (sc->kue_cdata.kue_tx_chain[i].kue_xfer != NULL) {
usbd_free_xfer(sc->kue_cdata.kue_tx_chain[i].kue_xfer);
sc->kue_cdata.kue_tx_chain[i].kue_xfer = NULL;
}
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
Static void kue_shutdown(dev)
device_t dev;
{
struct kue_softc *sc;
sc = device_get_softc(dev);
kue_stop(sc);
return;
}