freebsd-dev/crypto/openssl/apps/speed.c
Simon L. B. Nielsen 8978d9e7ef Prevent cross-site forgery attacks on lukemftpd(8) due to splitting
long commands into multiple requests. [09:01]

Fix incorrect OpenSSL checks for malformed signatures due to invalid
check of return value from EVP_VerifyFinal(), DSA_verify, and
DSA_do_verify. [09:02]

Security:	FreeBSD-SA-09:01.lukemftpd
Security:	FreeBSD-SA-09:02.openssl
Obtained from:	NetBSD [SA-09:01]
Obtained from:	OpenSSL Project [SA-09:02]
Approved by:	so (simon)
2009-01-07 20:17:55 +00:00

2835 lines
68 KiB
C

/* apps/speed.c -*- mode:C; c-file-style: "eay" -*- */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The ECDH and ECDSA speed test software is originally written by
* Sumit Gupta of Sun Microsystems Laboratories.
*
*/
/* most of this code has been pilfered from my libdes speed.c program */
#ifndef OPENSSL_NO_SPEED
#undef SECONDS
#define SECONDS 3
#define RSA_SECONDS 10
#define DSA_SECONDS 10
#define ECDSA_SECONDS 10
#define ECDH_SECONDS 10
/* 11-Sep-92 Andrew Daviel Support for Silicon Graphics IRIX added */
/* 06-Apr-92 Luke Brennan Support for VMS and add extra signal calls */
#undef PROG
#define PROG speed_main
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "apps.h"
#ifdef OPENSSL_NO_STDIO
#define APPS_WIN16
#endif
#include <openssl/crypto.h>
#include <openssl/rand.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
#if !defined(OPENSSL_SYS_MSDOS)
#include OPENSSL_UNISTD
#endif
#ifndef OPENSSL_SYS_NETWARE
#include <signal.h>
#endif
#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(OPENSSL_SYS_MACOSX)
# define USE_TOD
#elif !defined(OPENSSL_SYS_MSDOS) && !defined(OPENSSL_SYS_VXWORKS) && (!defined(OPENSSL_SYS_VMS) || defined(__DECC))
# define TIMES
#endif
#if !defined(_UNICOS) && !defined(__OpenBSD__) && !defined(sgi) && !defined(__FreeBSD__) && !(defined(__bsdi) || defined(__bsdi__)) && !defined(_AIX) && !defined(OPENSSL_SYS_MPE) && !defined(__NetBSD__) && !defined(OPENSSL_SYS_VXWORKS) /* FIXME */
# define TIMEB
#endif
#if defined(OPENSSL_SYS_NETWARE)
#undef TIMES
#undef TIMEB
#include <time.h>
#endif
#ifndef _IRIX
# include <time.h>
#endif
#ifdef TIMES
# include <sys/types.h>
# include <sys/times.h>
#endif
#ifdef USE_TOD
# include <sys/time.h>
# include <sys/resource.h>
#endif
/* Depending on the VMS version, the tms structure is perhaps defined.
The __TMS macro will show if it was. If it wasn't defined, we should
undefine TIMES, since that tells the rest of the program how things
should be handled. -- Richard Levitte */
#if defined(OPENSSL_SYS_VMS_DECC) && !defined(__TMS)
#undef TIMES
#endif
#ifdef TIMEB
#include <sys/timeb.h>
#endif
#if !defined(TIMES) && !defined(TIMEB) && !defined(USE_TOD) && !defined(OPENSSL_SYS_VXWORKS) && !defined(OPENSSL_SYS_NETWARE)
#error "It seems neither struct tms nor struct timeb is supported in this platform!"
#endif
#if defined(sun) || defined(__ultrix)
#define _POSIX_SOURCE
#include <limits.h>
#include <sys/param.h>
#endif
#include <openssl/bn.h>
#ifndef OPENSSL_NO_DES
#include <openssl/des.h>
#endif
#ifndef OPENSSL_NO_AES
#include <openssl/aes.h>
#endif
#ifndef OPENSSL_NO_CAMELLIA
#include <openssl/camellia.h>
#endif
#ifndef OPENSSL_NO_MD2
#include <openssl/md2.h>
#endif
#ifndef OPENSSL_NO_MDC2
#include <openssl/mdc2.h>
#endif
#ifndef OPENSSL_NO_MD4
#include <openssl/md4.h>
#endif
#ifndef OPENSSL_NO_MD5
#include <openssl/md5.h>
#endif
#ifndef OPENSSL_NO_HMAC
#include <openssl/hmac.h>
#endif
#include <openssl/evp.h>
#ifndef OPENSSL_NO_SHA
#include <openssl/sha.h>
#endif
#ifndef OPENSSL_NO_RIPEMD
#include <openssl/ripemd.h>
#endif
#ifndef OPENSSL_NO_RC4
#include <openssl/rc4.h>
#endif
#ifndef OPENSSL_NO_RC5
#include <openssl/rc5.h>
#endif
#ifndef OPENSSL_NO_RC2
#include <openssl/rc2.h>
#endif
#ifndef OPENSSL_NO_IDEA
#include <openssl/idea.h>
#endif
#ifndef OPENSSL_NO_BF
#include <openssl/blowfish.h>
#endif
#ifndef OPENSSL_NO_CAST
#include <openssl/cast.h>
#endif
#ifndef OPENSSL_NO_RSA
#include <openssl/rsa.h>
#include "./testrsa.h"
#endif
#include <openssl/x509.h>
#ifndef OPENSSL_NO_DSA
#include <openssl/dsa.h>
#include "./testdsa.h"
#endif
#ifndef OPENSSL_NO_ECDSA
#include <openssl/ecdsa.h>
#endif
#ifndef OPENSSL_NO_ECDH
#include <openssl/ecdh.h>
#endif
/*
* The following "HZ" timing stuff should be sync'd up with the code in
* crypto/tmdiff.[ch]. That appears to try to do the same job, though I think
* this code is more up to date than libcrypto's so there may be features to
* migrate over first. This is used in two places further down AFAICS.
* The point is that nothing in openssl actually *uses* that tmdiff stuff, so
* either speed.c should be using it or it should go because it's obviously not
* useful enough. Anyone want to do a janitorial job on this?
*/
/* The following if from times(3) man page. It may need to be changed */
#ifndef HZ
# if defined(_SC_CLK_TCK) \
&& (!defined(OPENSSL_SYS_VMS) || __CTRL_VER >= 70000000)
# define HZ sysconf(_SC_CLK_TCK)
# else
# ifndef CLK_TCK
# ifndef _BSD_CLK_TCK_ /* FreeBSD hack */
# define HZ 100.0
# else /* _BSD_CLK_TCK_ */
# define HZ ((double)_BSD_CLK_TCK_)
# endif
# else /* CLK_TCK */
# define HZ ((double)CLK_TCK)
# endif
# endif
#endif
#if !defined(OPENSSL_SYS_VMS) && !defined(OPENSSL_SYS_WINDOWS) && !defined(OPENSSL_SYS_MACINTOSH_CLASSIC) && !defined(OPENSSL_SYS_OS2) && !defined(OPENSSL_SYS_NETWARE)
# define HAVE_FORK 1
#endif
#undef BUFSIZE
#define BUFSIZE ((long)1024*8+1)
int run=0;
static char ftime_used = 0, times_used = 0, gettimeofday_used = 0, getrusage_used = 0;
static int mr=0;
static int usertime=1;
static double Time_F(int s);
static void print_message(const char *s,long num,int length);
static void pkey_print_message(const char *str, const char *str2,
long num, int bits, int sec);
static void print_result(int alg,int run_no,int count,double time_used);
#ifdef HAVE_FORK
static int do_multi(int multi);
#endif
#define ALGOR_NUM 24
#define SIZE_NUM 5
#define RSA_NUM 4
#define DSA_NUM 3
#define EC_NUM 16
#define MAX_ECDH_SIZE 256
static const char *names[ALGOR_NUM]={
"md2","mdc2","md4","md5","hmac(md5)","sha1","rmd160","rc4",
"des cbc","des ede3","idea cbc",
"rc2 cbc","rc5-32/12 cbc","blowfish cbc","cast cbc",
"aes-128 cbc","aes-192 cbc","aes-256 cbc",
"camellia-128 cbc","camellia-192 cbc","camellia-256 cbc",
"evp","sha256","sha512"};
static double results[ALGOR_NUM][SIZE_NUM];
static int lengths[SIZE_NUM]={16,64,256,1024,8*1024};
static double rsa_results[RSA_NUM][2];
static double dsa_results[DSA_NUM][2];
#ifndef OPENSSL_NO_ECDSA
static double ecdsa_results[EC_NUM][2];
#endif
#ifndef OPENSSL_NO_ECDH
static double ecdh_results[EC_NUM][1];
#endif
#if defined(OPENSSL_NO_DSA) && !(defined(OPENSSL_NO_ECDSA) && defined(OPENSSL_NO_ECDH))
static const char rnd_seed[] = "string to make the random number generator think it has entropy";
static int rnd_fake = 0;
#endif
#ifdef SIGALRM
#if defined(__STDC__) || defined(sgi) || defined(_AIX)
#define SIGRETTYPE void
#else
#define SIGRETTYPE int
#endif
static SIGRETTYPE sig_done(int sig);
static SIGRETTYPE sig_done(int sig)
{
signal(SIGALRM,sig_done);
run=0;
#ifdef LINT
sig=sig;
#endif
}
#endif
#define START 0
#define STOP 1
#if defined(OPENSSL_SYS_NETWARE)
/* for NetWare the best we can do is use clock() which returns the
* time, in hundredths of a second, since the NLM began executing
*/
static double Time_F(int s)
{
double ret;
static clock_t tstart,tend;
if (s == START)
{
tstart=clock();
return(0);
}
else
{
tend=clock();
ret=(double)((double)(tend)-(double)(tstart));
return((ret < 0.001)?0.001:ret);
}
}
#else
static double Time_F(int s)
{
double ret;
#ifdef USE_TOD
if(usertime)
{
static struct rusage tstart,tend;
getrusage_used = 1;
if (s == START)
{
getrusage(RUSAGE_SELF,&tstart);
return(0);
}
else
{
long i;
getrusage(RUSAGE_SELF,&tend);
i=(long)tend.ru_utime.tv_usec-(long)tstart.ru_utime.tv_usec;
ret=((double)(tend.ru_utime.tv_sec-tstart.ru_utime.tv_sec))
+((double)i)/1000000.0;
return((ret < 0.001)?0.001:ret);
}
}
else
{
static struct timeval tstart,tend;
long i;
gettimeofday_used = 1;
if (s == START)
{
gettimeofday(&tstart,NULL);
return(0);
}
else
{
gettimeofday(&tend,NULL);
i=(long)tend.tv_usec-(long)tstart.tv_usec;
ret=((double)(tend.tv_sec-tstart.tv_sec))+((double)i)/1000000.0;
return((ret < 0.001)?0.001:ret);
}
}
#else /* ndef USE_TOD */
# ifdef TIMES
if (usertime)
{
static struct tms tstart,tend;
times_used = 1;
if (s == START)
{
times(&tstart);
return(0);
}
else
{
times(&tend);
ret = HZ;
ret=(double)(tend.tms_utime-tstart.tms_utime) / ret;
return((ret < 1e-3)?1e-3:ret);
}
}
# endif /* times() */
# if defined(TIMES) && defined(TIMEB)
else
# endif
# ifdef OPENSSL_SYS_VXWORKS
{
static unsigned long tick_start, tick_end;
if( s == START )
{
tick_start = tickGet();
return 0;
}
else
{
tick_end = tickGet();
ret = (double)(tick_end - tick_start) / (double)sysClkRateGet();
return((ret < 0.001)?0.001:ret);
}
}
# elif defined(TIMEB)
{
static struct timeb tstart,tend;
long i;
ftime_used = 1;
if (s == START)
{
ftime(&tstart);
return(0);
}
else
{
ftime(&tend);
i=(long)tend.millitm-(long)tstart.millitm;
ret=((double)(tend.time-tstart.time))+((double)i)/1000.0;
return((ret < 0.001)?0.001:ret);
}
}
# endif
#endif
}
#endif /* if defined(OPENSSL_SYS_NETWARE) */
#ifndef OPENSSL_NO_ECDH
static const int KDF1_SHA1_len = 20;
static void *KDF1_SHA1(const void *in, size_t inlen, void *out, size_t *outlen)
{
#ifndef OPENSSL_NO_SHA
if (*outlen < SHA_DIGEST_LENGTH)
return NULL;
else
*outlen = SHA_DIGEST_LENGTH;
return SHA1(in, inlen, out);
#else
return NULL;
#endif /* OPENSSL_NO_SHA */
}
#endif /* OPENSSL_NO_ECDH */
int MAIN(int, char **);
int MAIN(int argc, char **argv)
{
#ifndef OPENSSL_NO_ENGINE
ENGINE *e = NULL;
#endif
unsigned char *buf=NULL,*buf2=NULL;
int mret=1;
long count=0,save_count=0;
int i,j,k;
#if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA)
long rsa_count;
#endif
#ifndef OPENSSL_NO_RSA
unsigned rsa_num;
#endif
unsigned char md[EVP_MAX_MD_SIZE];
#ifndef OPENSSL_NO_MD2
unsigned char md2[MD2_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_MDC2
unsigned char mdc2[MDC2_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_MD4
unsigned char md4[MD4_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_MD5
unsigned char md5[MD5_DIGEST_LENGTH];
unsigned char hmac[MD5_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_SHA
unsigned char sha[SHA_DIGEST_LENGTH];
#ifndef OPENSSL_NO_SHA256
unsigned char sha256[SHA256_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_SHA512
unsigned char sha512[SHA512_DIGEST_LENGTH];
#endif
#endif
#ifndef OPENSSL_NO_RIPEMD
unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_RC4
RC4_KEY rc4_ks;
#endif
#ifndef OPENSSL_NO_RC5
RC5_32_KEY rc5_ks;
#endif
#ifndef OPENSSL_NO_RC2
RC2_KEY rc2_ks;
#endif
#ifndef OPENSSL_NO_IDEA
IDEA_KEY_SCHEDULE idea_ks;
#endif
#ifndef OPENSSL_NO_BF
BF_KEY bf_ks;
#endif
#ifndef OPENSSL_NO_CAST
CAST_KEY cast_ks;
#endif
static const unsigned char key16[16]=
{0x12,0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,
0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,0x12};
#ifndef OPENSSL_NO_AES
static const unsigned char key24[24]=
{0x12,0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,
0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,0x12,
0x56,0x78,0x9a,0xbc,0xde,0xf0,0x12,0x34};
static const unsigned char key32[32]=
{0x12,0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,
0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,0x12,
0x56,0x78,0x9a,0xbc,0xde,0xf0,0x12,0x34,
0x78,0x9a,0xbc,0xde,0xf0,0x12,0x34,0x56};
#endif
#ifndef OPENSSL_NO_CAMELLIA
static const unsigned char ckey24[24]=
{0x12,0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,
0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,0x12,
0x56,0x78,0x9a,0xbc,0xde,0xf0,0x12,0x34};
static const unsigned char ckey32[32]=
{0x12,0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,
0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,0x12,
0x56,0x78,0x9a,0xbc,0xde,0xf0,0x12,0x34,
0x78,0x9a,0xbc,0xde,0xf0,0x12,0x34,0x56};
#endif
#ifndef OPENSSL_NO_AES
#define MAX_BLOCK_SIZE 128
#else
#define MAX_BLOCK_SIZE 64
#endif
unsigned char DES_iv[8];
unsigned char iv[MAX_BLOCK_SIZE/8];
#ifndef OPENSSL_NO_DES
DES_cblock *buf_as_des_cblock = NULL;
static DES_cblock key ={0x12,0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0};
static DES_cblock key2={0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,0x12};
static DES_cblock key3={0x56,0x78,0x9a,0xbc,0xde,0xf0,0x12,0x34};
DES_key_schedule sch;
DES_key_schedule sch2;
DES_key_schedule sch3;
#endif
#ifndef OPENSSL_NO_AES
AES_KEY aes_ks1, aes_ks2, aes_ks3;
#endif
#ifndef OPENSSL_NO_CAMELLIA
CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
#endif
#define D_MD2 0
#define D_MDC2 1
#define D_MD4 2
#define D_MD5 3
#define D_HMAC 4
#define D_SHA1 5
#define D_RMD160 6
#define D_RC4 7
#define D_CBC_DES 8
#define D_EDE3_DES 9
#define D_CBC_IDEA 10
#define D_CBC_RC2 11
#define D_CBC_RC5 12
#define D_CBC_BF 13
#define D_CBC_CAST 14
#define D_CBC_128_AES 15
#define D_CBC_192_AES 16
#define D_CBC_256_AES 17
#define D_CBC_128_CML 18
#define D_CBC_192_CML 19
#define D_CBC_256_CML 20
#define D_EVP 21
#define D_SHA256 22
#define D_SHA512 23
double d=0.0;
long c[ALGOR_NUM][SIZE_NUM];
#define R_DSA_512 0
#define R_DSA_1024 1
#define R_DSA_2048 2
#define R_RSA_512 0
#define R_RSA_1024 1
#define R_RSA_2048 2
#define R_RSA_4096 3
#define R_EC_P160 0
#define R_EC_P192 1
#define R_EC_P224 2
#define R_EC_P256 3
#define R_EC_P384 4
#define R_EC_P521 5
#define R_EC_K163 6
#define R_EC_K233 7
#define R_EC_K283 8
#define R_EC_K409 9
#define R_EC_K571 10
#define R_EC_B163 11
#define R_EC_B233 12
#define R_EC_B283 13
#define R_EC_B409 14
#define R_EC_B571 15
#ifndef OPENSSL_NO_RSA
RSA *rsa_key[RSA_NUM];
long rsa_c[RSA_NUM][2];
static unsigned int rsa_bits[RSA_NUM]={512,1024,2048,4096};
static unsigned char *rsa_data[RSA_NUM]=
{test512,test1024,test2048,test4096};
static int rsa_data_length[RSA_NUM]={
sizeof(test512),sizeof(test1024),
sizeof(test2048),sizeof(test4096)};
#endif
#ifndef OPENSSL_NO_DSA
DSA *dsa_key[DSA_NUM];
long dsa_c[DSA_NUM][2];
static unsigned int dsa_bits[DSA_NUM]={512,1024,2048};
#endif
#ifndef OPENSSL_NO_EC
/* We only test over the following curves as they are representative,
* To add tests over more curves, simply add the curve NID
* and curve name to the following arrays and increase the
* EC_NUM value accordingly.
*/
static unsigned int test_curves[EC_NUM] =
{
/* Prime Curves */
NID_secp160r1,
NID_X9_62_prime192v1,
NID_secp224r1,
NID_X9_62_prime256v1,
NID_secp384r1,
NID_secp521r1,
/* Binary Curves */
NID_sect163k1,
NID_sect233k1,
NID_sect283k1,
NID_sect409k1,
NID_sect571k1,
NID_sect163r2,
NID_sect233r1,
NID_sect283r1,
NID_sect409r1,
NID_sect571r1
};
static const char * test_curves_names[EC_NUM] =
{
/* Prime Curves */
"secp160r1",
"nistp192",
"nistp224",
"nistp256",
"nistp384",
"nistp521",
/* Binary Curves */
"nistk163",
"nistk233",
"nistk283",
"nistk409",
"nistk571",
"nistb163",
"nistb233",
"nistb283",
"nistb409",
"nistb571"
};
static int test_curves_bits[EC_NUM] =
{
160, 192, 224, 256, 384, 521,
163, 233, 283, 409, 571,
163, 233, 283, 409, 571
};
#endif
#ifndef OPENSSL_NO_ECDSA
unsigned char ecdsasig[256];
unsigned int ecdsasiglen;
EC_KEY *ecdsa[EC_NUM];
long ecdsa_c[EC_NUM][2];
#endif
#ifndef OPENSSL_NO_ECDH
EC_KEY *ecdh_a[EC_NUM], *ecdh_b[EC_NUM];
unsigned char secret_a[MAX_ECDH_SIZE], secret_b[MAX_ECDH_SIZE];
int secret_size_a, secret_size_b;
int ecdh_checks = 0;
int secret_idx = 0;
long ecdh_c[EC_NUM][2];
#endif
int rsa_doit[RSA_NUM];
int dsa_doit[DSA_NUM];
#ifndef OPENSSL_NO_ECDSA
int ecdsa_doit[EC_NUM];
#endif
#ifndef OPENSSL_NO_ECDH
int ecdh_doit[EC_NUM];
#endif
int doit[ALGOR_NUM];
int pr_header=0;
const EVP_CIPHER *evp_cipher=NULL;
const EVP_MD *evp_md=NULL;
int decrypt=0;
#ifdef HAVE_FORK
int multi=0;
#endif
#ifndef TIMES
usertime=-1;
#endif
apps_startup();
memset(results, 0, sizeof(results));
#ifndef OPENSSL_NO_DSA
memset(dsa_key,0,sizeof(dsa_key));
#endif
#ifndef OPENSSL_NO_ECDSA
for (i=0; i<EC_NUM; i++) ecdsa[i] = NULL;
#endif
#ifndef OPENSSL_NO_ECDH
for (i=0; i<EC_NUM; i++)
{
ecdh_a[i] = NULL;
ecdh_b[i] = NULL;
}
#endif
if (bio_err == NULL)
if ((bio_err=BIO_new(BIO_s_file())) != NULL)
BIO_set_fp(bio_err,stderr,BIO_NOCLOSE|BIO_FP_TEXT);
if (!load_config(bio_err, NULL))
goto end;
#ifndef OPENSSL_NO_RSA
memset(rsa_key,0,sizeof(rsa_key));
for (i=0; i<RSA_NUM; i++)
rsa_key[i]=NULL;
#endif
if ((buf=(unsigned char *)OPENSSL_malloc((int)BUFSIZE)) == NULL)
{
BIO_printf(bio_err,"out of memory\n");
goto end;
}
#ifndef OPENSSL_NO_DES
buf_as_des_cblock = (DES_cblock *)buf;
#endif
if ((buf2=(unsigned char *)OPENSSL_malloc((int)BUFSIZE)) == NULL)
{
BIO_printf(bio_err,"out of memory\n");
goto end;
}
memset(c,0,sizeof(c));
memset(DES_iv,0,sizeof(DES_iv));
memset(iv,0,sizeof(iv));
for (i=0; i<ALGOR_NUM; i++)
doit[i]=0;
for (i=0; i<RSA_NUM; i++)
rsa_doit[i]=0;
for (i=0; i<DSA_NUM; i++)
dsa_doit[i]=0;
#ifndef OPENSSL_NO_ECDSA
for (i=0; i<EC_NUM; i++)
ecdsa_doit[i]=0;
#endif
#ifndef OPENSSL_NO_ECDH
for (i=0; i<EC_NUM; i++)
ecdh_doit[i]=0;
#endif
j=0;
argc--;
argv++;
while (argc)
{
if ((argc > 0) && (strcmp(*argv,"-elapsed") == 0))
{
usertime = 0;
j--; /* Otherwise, -elapsed gets confused with
an algorithm. */
}
else if ((argc > 0) && (strcmp(*argv,"-evp") == 0))
{
argc--;
argv++;
if(argc == 0)
{
BIO_printf(bio_err,"no EVP given\n");
goto end;
}
evp_cipher=EVP_get_cipherbyname(*argv);
if(!evp_cipher)
{
evp_md=EVP_get_digestbyname(*argv);
}
if(!evp_cipher && !evp_md)
{
BIO_printf(bio_err,"%s is an unknown cipher or digest\n",*argv);
goto end;
}
doit[D_EVP]=1;
}
else if (argc > 0 && !strcmp(*argv,"-decrypt"))
{
decrypt=1;
j--; /* Otherwise, -elapsed gets confused with
an algorithm. */
}
#ifndef OPENSSL_NO_ENGINE
else if ((argc > 0) && (strcmp(*argv,"-engine") == 0))
{
argc--;
argv++;
if(argc == 0)
{
BIO_printf(bio_err,"no engine given\n");
goto end;
}
e = setup_engine(bio_err, *argv, 0);
/* j will be increased again further down. We just
don't want speed to confuse an engine with an
algorithm, especially when none is given (which
means all of them should be run) */
j--;
}
#endif
#ifdef HAVE_FORK
else if ((argc > 0) && (strcmp(*argv,"-multi") == 0))
{
argc--;
argv++;
if(argc == 0)
{
BIO_printf(bio_err,"no multi count given\n");
goto end;
}
multi=atoi(argv[0]);
if(multi <= 0)
{
BIO_printf(bio_err,"bad multi count\n");
goto end;
}
j--; /* Otherwise, -mr gets confused with
an algorithm. */
}
#endif
else if (argc > 0 && !strcmp(*argv,"-mr"))
{
mr=1;
j--; /* Otherwise, -mr gets confused with
an algorithm. */
}
else
#ifndef OPENSSL_NO_MD2
if (strcmp(*argv,"md2") == 0) doit[D_MD2]=1;
else
#endif
#ifndef OPENSSL_NO_MDC2
if (strcmp(*argv,"mdc2") == 0) doit[D_MDC2]=1;
else
#endif
#ifndef OPENSSL_NO_MD4
if (strcmp(*argv,"md4") == 0) doit[D_MD4]=1;
else
#endif
#ifndef OPENSSL_NO_MD5
if (strcmp(*argv,"md5") == 0) doit[D_MD5]=1;
else
#endif
#ifndef OPENSSL_NO_MD5
if (strcmp(*argv,"hmac") == 0) doit[D_HMAC]=1;
else
#endif
#ifndef OPENSSL_NO_SHA
if (strcmp(*argv,"sha1") == 0) doit[D_SHA1]=1;
else
if (strcmp(*argv,"sha") == 0) doit[D_SHA1]=1,
doit[D_SHA256]=1,
doit[D_SHA512]=1;
else
#ifndef OPENSSL_NO_SHA256
if (strcmp(*argv,"sha256") == 0) doit[D_SHA256]=1;
else
#endif
#ifndef OPENSSL_NO_SHA512
if (strcmp(*argv,"sha512") == 0) doit[D_SHA512]=1;
else
#endif
#endif
#ifndef OPENSSL_NO_RIPEMD
if (strcmp(*argv,"ripemd") == 0) doit[D_RMD160]=1;
else
if (strcmp(*argv,"rmd160") == 0) doit[D_RMD160]=1;
else
if (strcmp(*argv,"ripemd160") == 0) doit[D_RMD160]=1;
else
#endif
#ifndef OPENSSL_NO_RC4
if (strcmp(*argv,"rc4") == 0) doit[D_RC4]=1;
else
#endif
#ifndef OPENSSL_NO_DES
if (strcmp(*argv,"des-cbc") == 0) doit[D_CBC_DES]=1;
else if (strcmp(*argv,"des-ede3") == 0) doit[D_EDE3_DES]=1;
else
#endif
#ifndef OPENSSL_NO_AES
if (strcmp(*argv,"aes-128-cbc") == 0) doit[D_CBC_128_AES]=1;
else if (strcmp(*argv,"aes-192-cbc") == 0) doit[D_CBC_192_AES]=1;
else if (strcmp(*argv,"aes-256-cbc") == 0) doit[D_CBC_256_AES]=1;
else
#endif
#ifndef OPENSSL_NO_CAMELLIA
if (strcmp(*argv,"camellia-128-cbc") == 0) doit[D_CBC_128_CML]=1;
else if (strcmp(*argv,"camellia-192-cbc") == 0) doit[D_CBC_192_CML]=1;
else if (strcmp(*argv,"camellia-256-cbc") == 0) doit[D_CBC_256_CML]=1;
else
#endif
#ifndef OPENSSL_NO_RSA
#if 0 /* was: #ifdef RSAref */
if (strcmp(*argv,"rsaref") == 0)
{
RSA_set_default_openssl_method(RSA_PKCS1_RSAref());
j--;
}
else
#endif
#ifndef RSA_NULL
if (strcmp(*argv,"openssl") == 0)
{
RSA_set_default_method(RSA_PKCS1_SSLeay());
j--;
}
else
#endif
#endif /* !OPENSSL_NO_RSA */
if (strcmp(*argv,"dsa512") == 0) dsa_doit[R_DSA_512]=2;
else if (strcmp(*argv,"dsa1024") == 0) dsa_doit[R_DSA_1024]=2;
else if (strcmp(*argv,"dsa2048") == 0) dsa_doit[R_DSA_2048]=2;
else if (strcmp(*argv,"rsa512") == 0) rsa_doit[R_RSA_512]=2;
else if (strcmp(*argv,"rsa1024") == 0) rsa_doit[R_RSA_1024]=2;
else if (strcmp(*argv,"rsa2048") == 0) rsa_doit[R_RSA_2048]=2;
else if (strcmp(*argv,"rsa4096") == 0) rsa_doit[R_RSA_4096]=2;
else
#ifndef OPENSSL_NO_RC2
if (strcmp(*argv,"rc2-cbc") == 0) doit[D_CBC_RC2]=1;
else if (strcmp(*argv,"rc2") == 0) doit[D_CBC_RC2]=1;
else
#endif
#ifndef OPENSSL_NO_RC5
if (strcmp(*argv,"rc5-cbc") == 0) doit[D_CBC_RC5]=1;
else if (strcmp(*argv,"rc5") == 0) doit[D_CBC_RC5]=1;
else
#endif
#ifndef OPENSSL_NO_IDEA
if (strcmp(*argv,"idea-cbc") == 0) doit[D_CBC_IDEA]=1;
else if (strcmp(*argv,"idea") == 0) doit[D_CBC_IDEA]=1;
else
#endif
#ifndef OPENSSL_NO_BF
if (strcmp(*argv,"bf-cbc") == 0) doit[D_CBC_BF]=1;
else if (strcmp(*argv,"blowfish") == 0) doit[D_CBC_BF]=1;
else if (strcmp(*argv,"bf") == 0) doit[D_CBC_BF]=1;
else
#endif
#ifndef OPENSSL_NO_CAST
if (strcmp(*argv,"cast-cbc") == 0) doit[D_CBC_CAST]=1;
else if (strcmp(*argv,"cast") == 0) doit[D_CBC_CAST]=1;
else if (strcmp(*argv,"cast5") == 0) doit[D_CBC_CAST]=1;
else
#endif
#ifndef OPENSSL_NO_DES
if (strcmp(*argv,"des") == 0)
{
doit[D_CBC_DES]=1;
doit[D_EDE3_DES]=1;
}
else
#endif
#ifndef OPENSSL_NO_AES
if (strcmp(*argv,"aes") == 0)
{
doit[D_CBC_128_AES]=1;
doit[D_CBC_192_AES]=1;
doit[D_CBC_256_AES]=1;
}
else
#endif
#ifndef OPENSSL_NO_CAMELLIA
if (strcmp(*argv,"camellia") == 0)
{
doit[D_CBC_128_CML]=1;
doit[D_CBC_192_CML]=1;
doit[D_CBC_256_CML]=1;
}
else
#endif
#ifndef OPENSSL_NO_RSA
if (strcmp(*argv,"rsa") == 0)
{
rsa_doit[R_RSA_512]=1;
rsa_doit[R_RSA_1024]=1;
rsa_doit[R_RSA_2048]=1;
rsa_doit[R_RSA_4096]=1;
}
else
#endif
#ifndef OPENSSL_NO_DSA
if (strcmp(*argv,"dsa") == 0)
{
dsa_doit[R_DSA_512]=1;
dsa_doit[R_DSA_1024]=1;
dsa_doit[R_DSA_2048]=1;
}
else
#endif
#ifndef OPENSSL_NO_ECDSA
if (strcmp(*argv,"ecdsap160") == 0) ecdsa_doit[R_EC_P160]=2;
else if (strcmp(*argv,"ecdsap192") == 0) ecdsa_doit[R_EC_P192]=2;
else if (strcmp(*argv,"ecdsap224") == 0) ecdsa_doit[R_EC_P224]=2;
else if (strcmp(*argv,"ecdsap256") == 0) ecdsa_doit[R_EC_P256]=2;
else if (strcmp(*argv,"ecdsap384") == 0) ecdsa_doit[R_EC_P384]=2;
else if (strcmp(*argv,"ecdsap521") == 0) ecdsa_doit[R_EC_P521]=2;
else if (strcmp(*argv,"ecdsak163") == 0) ecdsa_doit[R_EC_K163]=2;
else if (strcmp(*argv,"ecdsak233") == 0) ecdsa_doit[R_EC_K233]=2;
else if (strcmp(*argv,"ecdsak283") == 0) ecdsa_doit[R_EC_K283]=2;
else if (strcmp(*argv,"ecdsak409") == 0) ecdsa_doit[R_EC_K409]=2;
else if (strcmp(*argv,"ecdsak571") == 0) ecdsa_doit[R_EC_K571]=2;
else if (strcmp(*argv,"ecdsab163") == 0) ecdsa_doit[R_EC_B163]=2;
else if (strcmp(*argv,"ecdsab233") == 0) ecdsa_doit[R_EC_B233]=2;
else if (strcmp(*argv,"ecdsab283") == 0) ecdsa_doit[R_EC_B283]=2;
else if (strcmp(*argv,"ecdsab409") == 0) ecdsa_doit[R_EC_B409]=2;
else if (strcmp(*argv,"ecdsab571") == 0) ecdsa_doit[R_EC_B571]=2;
else if (strcmp(*argv,"ecdsa") == 0)
{
for (i=0; i < EC_NUM; i++)
ecdsa_doit[i]=1;
}
else
#endif
#ifndef OPENSSL_NO_ECDH
if (strcmp(*argv,"ecdhp160") == 0) ecdh_doit[R_EC_P160]=2;
else if (strcmp(*argv,"ecdhp192") == 0) ecdh_doit[R_EC_P192]=2;
else if (strcmp(*argv,"ecdhp224") == 0) ecdh_doit[R_EC_P224]=2;
else if (strcmp(*argv,"ecdhp256") == 0) ecdh_doit[R_EC_P256]=2;
else if (strcmp(*argv,"ecdhp384") == 0) ecdh_doit[R_EC_P384]=2;
else if (strcmp(*argv,"ecdhp521") == 0) ecdh_doit[R_EC_P521]=2;
else if (strcmp(*argv,"ecdhk163") == 0) ecdh_doit[R_EC_K163]=2;
else if (strcmp(*argv,"ecdhk233") == 0) ecdh_doit[R_EC_K233]=2;
else if (strcmp(*argv,"ecdhk283") == 0) ecdh_doit[R_EC_K283]=2;
else if (strcmp(*argv,"ecdhk409") == 0) ecdh_doit[R_EC_K409]=2;
else if (strcmp(*argv,"ecdhk571") == 0) ecdh_doit[R_EC_K571]=2;
else if (strcmp(*argv,"ecdhb163") == 0) ecdh_doit[R_EC_B163]=2;
else if (strcmp(*argv,"ecdhb233") == 0) ecdh_doit[R_EC_B233]=2;
else if (strcmp(*argv,"ecdhb283") == 0) ecdh_doit[R_EC_B283]=2;
else if (strcmp(*argv,"ecdhb409") == 0) ecdh_doit[R_EC_B409]=2;
else if (strcmp(*argv,"ecdhb571") == 0) ecdh_doit[R_EC_B571]=2;
else if (strcmp(*argv,"ecdh") == 0)
{
for (i=0; i < EC_NUM; i++)
ecdh_doit[i]=1;
}
else
#endif
{
BIO_printf(bio_err,"Error: bad option or value\n");
BIO_printf(bio_err,"\n");
BIO_printf(bio_err,"Available values:\n");
#ifndef OPENSSL_NO_MD2
BIO_printf(bio_err,"md2 ");
#endif
#ifndef OPENSSL_NO_MDC2
BIO_printf(bio_err,"mdc2 ");
#endif
#ifndef OPENSSL_NO_MD4
BIO_printf(bio_err,"md4 ");
#endif
#ifndef OPENSSL_NO_MD5
BIO_printf(bio_err,"md5 ");
#ifndef OPENSSL_NO_HMAC
BIO_printf(bio_err,"hmac ");
#endif
#endif
#ifndef OPENSSL_NO_SHA1
BIO_printf(bio_err,"sha1 ");
#endif
#ifndef OPENSSL_NO_SHA256
BIO_printf(bio_err,"sha256 ");
#endif
#ifndef OPENSSL_NO_SHA512
BIO_printf(bio_err,"sha512 ");
#endif
#ifndef OPENSSL_NO_RIPEMD160
BIO_printf(bio_err,"rmd160");
#endif
#if !defined(OPENSSL_NO_MD2) || !defined(OPENSSL_NO_MDC2) || \
!defined(OPENSSL_NO_MD4) || !defined(OPENSSL_NO_MD5) || \
!defined(OPENSSL_NO_SHA1) || !defined(OPENSSL_NO_RIPEMD160)
BIO_printf(bio_err,"\n");
#endif
#ifndef OPENSSL_NO_IDEA
BIO_printf(bio_err,"idea-cbc ");
#endif
#ifndef OPENSSL_NO_RC2
BIO_printf(bio_err,"rc2-cbc ");
#endif
#ifndef OPENSSL_NO_RC5
BIO_printf(bio_err,"rc5-cbc ");
#endif
#ifndef OPENSSL_NO_BF
BIO_printf(bio_err,"bf-cbc");
#endif
#if !defined(OPENSSL_NO_IDEA) || !defined(OPENSSL_NO_RC2) || \
!defined(OPENSSL_NO_BF) || !defined(OPENSSL_NO_RC5)
BIO_printf(bio_err,"\n");
#endif
#ifndef OPENSSL_NO_DES
BIO_printf(bio_err,"des-cbc des-ede3 ");
#endif
#ifndef OPENSSL_NO_AES
BIO_printf(bio_err,"aes-128-cbc aes-192-cbc aes-256-cbc ");
#endif
#ifndef OPENSSL_NO_CAMELLIA
BIO_printf(bio_err,"\n");
BIO_printf(bio_err,"camellia-128-cbc camellia-192-cbc camellia-256-cbc ");
#endif
#ifndef OPENSSL_NO_RC4
BIO_printf(bio_err,"rc4");
#endif
BIO_printf(bio_err,"\n");
#ifndef OPENSSL_NO_RSA
BIO_printf(bio_err,"rsa512 rsa1024 rsa2048 rsa4096\n");
#endif
#ifndef OPENSSL_NO_DSA
BIO_printf(bio_err,"dsa512 dsa1024 dsa2048\n");
#endif
#ifndef OPENSSL_NO_ECDSA
BIO_printf(bio_err,"ecdsap160 ecdsap192 ecdsap224 ecdsap256 ecdsap384 ecdsap521\n");
BIO_printf(bio_err,"ecdsak163 ecdsak233 ecdsak283 ecdsak409 ecdsak571\n");
BIO_printf(bio_err,"ecdsab163 ecdsab233 ecdsab283 ecdsab409 ecdsab571\n");
BIO_printf(bio_err,"ecdsa\n");
#endif
#ifndef OPENSSL_NO_ECDH
BIO_printf(bio_err,"ecdhp160 ecdhp192 ecdhp224 ecdhp256 ecdhp384 ecdhp521\n");
BIO_printf(bio_err,"ecdhk163 ecdhk233 ecdhk283 ecdhk409 ecdhk571\n");
BIO_printf(bio_err,"ecdhb163 ecdhb233 ecdhb283 ecdhb409 ecdhb571\n");
BIO_printf(bio_err,"ecdh\n");
#endif
#ifndef OPENSSL_NO_IDEA
BIO_printf(bio_err,"idea ");
#endif
#ifndef OPENSSL_NO_RC2
BIO_printf(bio_err,"rc2 ");
#endif
#ifndef OPENSSL_NO_DES
BIO_printf(bio_err,"des ");
#endif
#ifndef OPENSSL_NO_AES
BIO_printf(bio_err,"aes ");
#endif
#ifndef OPENSSL_NO_CAMELLIA
BIO_printf(bio_err,"camellia ");
#endif
#ifndef OPENSSL_NO_RSA
BIO_printf(bio_err,"rsa ");
#endif
#ifndef OPENSSL_NO_BF
BIO_printf(bio_err,"blowfish");
#endif
#if !defined(OPENSSL_NO_IDEA) || !defined(OPENSSL_NO_RC2) || \
!defined(OPENSSL_NO_DES) || !defined(OPENSSL_NO_RSA) || \
!defined(OPENSSL_NO_BF) || !defined(OPENSSL_NO_AES) || \
!defined(OPENSSL_NO_CAMELLIA)
BIO_printf(bio_err,"\n");
#endif
BIO_printf(bio_err,"\n");
BIO_printf(bio_err,"Available options:\n");
#if defined(TIMES) || defined(USE_TOD)
BIO_printf(bio_err,"-elapsed measure time in real time instead of CPU user time.\n");
#endif
#ifndef OPENSSL_NO_ENGINE
BIO_printf(bio_err,"-engine e use engine e, possibly a hardware device.\n");
#endif
BIO_printf(bio_err,"-evp e use EVP e.\n");
BIO_printf(bio_err,"-decrypt time decryption instead of encryption (only EVP).\n");
BIO_printf(bio_err,"-mr produce machine readable output.\n");
#ifdef HAVE_FORK
BIO_printf(bio_err,"-multi n run n benchmarks in parallel.\n");
#endif
goto end;
}
argc--;
argv++;
j++;
}
#ifdef HAVE_FORK
if(multi && do_multi(multi))
goto show_res;
#endif
if (j == 0)
{
for (i=0; i<ALGOR_NUM; i++)
{
if (i != D_EVP)
doit[i]=1;
}
for (i=0; i<RSA_NUM; i++)
rsa_doit[i]=1;
for (i=0; i<DSA_NUM; i++)
dsa_doit[i]=1;
}
for (i=0; i<ALGOR_NUM; i++)
if (doit[i]) pr_header++;
if (usertime == 0 && !mr)
BIO_printf(bio_err,"You have chosen to measure elapsed time instead of user CPU time.\n");
if (usertime <= 0 && !mr)
{
BIO_printf(bio_err,"To get the most accurate results, try to run this\n");
BIO_printf(bio_err,"program when this computer is idle.\n");
}
#ifndef OPENSSL_NO_RSA
for (i=0; i<RSA_NUM; i++)
{
const unsigned char *p;
p=rsa_data[i];
rsa_key[i]=d2i_RSAPrivateKey(NULL,&p,rsa_data_length[i]);
if (rsa_key[i] == NULL)
{
BIO_printf(bio_err,"internal error loading RSA key number %d\n",i);
goto end;
}
#if 0
else
{
BIO_printf(bio_err,mr ? "+RK:%d:"
: "Loaded RSA key, %d bit modulus and e= 0x",
BN_num_bits(rsa_key[i]->n));
BN_print(bio_err,rsa_key[i]->e);
BIO_printf(bio_err,"\n");
}
#endif
}
#endif
#ifndef OPENSSL_NO_DSA
dsa_key[0]=get_dsa512();
dsa_key[1]=get_dsa1024();
dsa_key[2]=get_dsa2048();
#endif
#ifndef OPENSSL_NO_DES
DES_set_key_unchecked(&key,&sch);
DES_set_key_unchecked(&key2,&sch2);
DES_set_key_unchecked(&key3,&sch3);
#endif
#ifndef OPENSSL_NO_AES
AES_set_encrypt_key(key16,128,&aes_ks1);
AES_set_encrypt_key(key24,192,&aes_ks2);
AES_set_encrypt_key(key32,256,&aes_ks3);
#endif
#ifndef OPENSSL_NO_CAMELLIA
Camellia_set_key(key16,128,&camellia_ks1);
Camellia_set_key(ckey24,192,&camellia_ks2);
Camellia_set_key(ckey32,256,&camellia_ks3);
#endif
#ifndef OPENSSL_NO_IDEA
idea_set_encrypt_key(key16,&idea_ks);
#endif
#ifndef OPENSSL_NO_RC4
RC4_set_key(&rc4_ks,16,key16);
#endif
#ifndef OPENSSL_NO_RC2
RC2_set_key(&rc2_ks,16,key16,128);
#endif
#ifndef OPENSSL_NO_RC5
RC5_32_set_key(&rc5_ks,16,key16,12);
#endif
#ifndef OPENSSL_NO_BF
BF_set_key(&bf_ks,16,key16);
#endif
#ifndef OPENSSL_NO_CAST
CAST_set_key(&cast_ks,16,key16);
#endif
#ifndef OPENSSL_NO_RSA
memset(rsa_c,0,sizeof(rsa_c));
#endif
#ifndef SIGALRM
#ifndef OPENSSL_NO_DES
BIO_printf(bio_err,"First we calculate the approximate speed ...\n");
count=10;
do {
long it;
count*=2;
Time_F(START);
for (it=count; it; it--)
DES_ecb_encrypt(buf_as_des_cblock,buf_as_des_cblock,
&sch,DES_ENCRYPT);
d=Time_F(STOP);
} while (d <3);
save_count=count;
c[D_MD2][0]=count/10;
c[D_MDC2][0]=count/10;
c[D_MD4][0]=count;
c[D_MD5][0]=count;
c[D_HMAC][0]=count;
c[D_SHA1][0]=count;
c[D_RMD160][0]=count;
c[D_RC4][0]=count*5;
c[D_CBC_DES][0]=count;
c[D_EDE3_DES][0]=count/3;
c[D_CBC_IDEA][0]=count;
c[D_CBC_RC2][0]=count;
c[D_CBC_RC5][0]=count;
c[D_CBC_BF][0]=count;
c[D_CBC_CAST][0]=count;
c[D_CBC_128_AES][0]=count;
c[D_CBC_192_AES][0]=count;
c[D_CBC_256_AES][0]=count;
c[D_CBC_128_CML][0]=count;
c[D_CBC_192_CML][0]=count;
c[D_CBC_256_CML][0]=count;
c[D_SHA256][0]=count;
c[D_SHA512][0]=count;
for (i=1; i<SIZE_NUM; i++)
{
c[D_MD2][i]=c[D_MD2][0]*4*lengths[0]/lengths[i];
c[D_MDC2][i]=c[D_MDC2][0]*4*lengths[0]/lengths[i];
c[D_MD4][i]=c[D_MD4][0]*4*lengths[0]/lengths[i];
c[D_MD5][i]=c[D_MD5][0]*4*lengths[0]/lengths[i];
c[D_HMAC][i]=c[D_HMAC][0]*4*lengths[0]/lengths[i];
c[D_SHA1][i]=c[D_SHA1][0]*4*lengths[0]/lengths[i];
c[D_RMD160][i]=c[D_RMD160][0]*4*lengths[0]/lengths[i];
c[D_SHA256][i]=c[D_SHA256][0]*4*lengths[0]/lengths[i];
c[D_SHA512][i]=c[D_SHA512][0]*4*lengths[0]/lengths[i];
}
for (i=1; i<SIZE_NUM; i++)
{
long l0,l1;
l0=(long)lengths[i-1];
l1=(long)lengths[i];
c[D_RC4][i]=c[D_RC4][i-1]*l0/l1;
c[D_CBC_DES][i]=c[D_CBC_DES][i-1]*l0/l1;
c[D_EDE3_DES][i]=c[D_EDE3_DES][i-1]*l0/l1;
c[D_CBC_IDEA][i]=c[D_CBC_IDEA][i-1]*l0/l1;
c[D_CBC_RC2][i]=c[D_CBC_RC2][i-1]*l0/l1;
c[D_CBC_RC5][i]=c[D_CBC_RC5][i-1]*l0/l1;
c[D_CBC_BF][i]=c[D_CBC_BF][i-1]*l0/l1;
c[D_CBC_CAST][i]=c[D_CBC_CAST][i-1]*l0/l1;
c[D_CBC_128_AES][i]=c[D_CBC_128_AES][i-1]*l0/l1;
c[D_CBC_192_AES][i]=c[D_CBC_192_AES][i-1]*l0/l1;
c[D_CBC_256_AES][i]=c[D_CBC_256_AES][i-1]*l0/l1;
c[D_CBC_128_CML][i]=c[D_CBC_128_CML][i-1]*l0/l1;
c[D_CBC_192_CML][i]=c[D_CBC_192_CML][i-1]*l0/l1;
c[D_CBC_256_CML][i]=c[D_CBC_256_CML][i-1]*l0/l1;
}
#ifndef OPENSSL_NO_RSA
rsa_c[R_RSA_512][0]=count/2000;
rsa_c[R_RSA_512][1]=count/400;
for (i=1; i<RSA_NUM; i++)
{
rsa_c[i][0]=rsa_c[i-1][0]/8;
rsa_c[i][1]=rsa_c[i-1][1]/4;
if ((rsa_doit[i] <= 1) && (rsa_c[i][0] == 0))
rsa_doit[i]=0;
else
{
if (rsa_c[i][0] == 0)
{
rsa_c[i][0]=1;
rsa_c[i][1]=20;
}
}
}
#endif
#ifndef OPENSSL_NO_DSA
dsa_c[R_DSA_512][0]=count/1000;
dsa_c[R_DSA_512][1]=count/1000/2;
for (i=1; i<DSA_NUM; i++)
{
dsa_c[i][0]=dsa_c[i-1][0]/4;
dsa_c[i][1]=dsa_c[i-1][1]/4;
if ((dsa_doit[i] <= 1) && (dsa_c[i][0] == 0))
dsa_doit[i]=0;
else
{
if (dsa_c[i] == 0)
{
dsa_c[i][0]=1;
dsa_c[i][1]=1;
}
}
}
#endif
#ifndef OPENSSL_NO_ECDSA
ecdsa_c[R_EC_P160][0]=count/1000;
ecdsa_c[R_EC_P160][1]=count/1000/2;
for (i=R_EC_P192; i<=R_EC_P521; i++)
{
ecdsa_c[i][0]=ecdsa_c[i-1][0]/2;
ecdsa_c[i][1]=ecdsa_c[i-1][1]/2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i]=0;
else
{
if (ecdsa_c[i] == 0)
{
ecdsa_c[i][0]=1;
ecdsa_c[i][1]=1;
}
}
}
ecdsa_c[R_EC_K163][0]=count/1000;
ecdsa_c[R_EC_K163][1]=count/1000/2;
for (i=R_EC_K233; i<=R_EC_K571; i++)
{
ecdsa_c[i][0]=ecdsa_c[i-1][0]/2;
ecdsa_c[i][1]=ecdsa_c[i-1][1]/2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i]=0;
else
{
if (ecdsa_c[i] == 0)
{
ecdsa_c[i][0]=1;
ecdsa_c[i][1]=1;
}
}
}
ecdsa_c[R_EC_B163][0]=count/1000;
ecdsa_c[R_EC_B163][1]=count/1000/2;
for (i=R_EC_B233; i<=R_EC_B571; i++)
{
ecdsa_c[i][0]=ecdsa_c[i-1][0]/2;
ecdsa_c[i][1]=ecdsa_c[i-1][1]/2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i]=0;
else
{
if (ecdsa_c[i] == 0)
{
ecdsa_c[i][0]=1;
ecdsa_c[i][1]=1;
}
}
}
#endif
#ifndef OPENSSL_NO_ECDH
ecdh_c[R_EC_P160][0]=count/1000;
ecdh_c[R_EC_P160][1]=count/1000;
for (i=R_EC_P192; i<=R_EC_P521; i++)
{
ecdh_c[i][0]=ecdh_c[i-1][0]/2;
ecdh_c[i][1]=ecdh_c[i-1][1]/2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i]=0;
else
{
if (ecdh_c[i] == 0)
{
ecdh_c[i][0]=1;
ecdh_c[i][1]=1;
}
}
}
ecdh_c[R_EC_K163][0]=count/1000;
ecdh_c[R_EC_K163][1]=count/1000;
for (i=R_EC_K233; i<=R_EC_K571; i++)
{
ecdh_c[i][0]=ecdh_c[i-1][0]/2;
ecdh_c[i][1]=ecdh_c[i-1][1]/2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i]=0;
else
{
if (ecdh_c[i] == 0)
{
ecdh_c[i][0]=1;
ecdh_c[i][1]=1;
}
}
}
ecdh_c[R_EC_B163][0]=count/1000;
ecdh_c[R_EC_B163][1]=count/1000;
for (i=R_EC_B233; i<=R_EC_B571; i++)
{
ecdh_c[i][0]=ecdh_c[i-1][0]/2;
ecdh_c[i][1]=ecdh_c[i-1][1]/2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i]=0;
else
{
if (ecdh_c[i] == 0)
{
ecdh_c[i][0]=1;
ecdh_c[i][1]=1;
}
}
}
#endif
#define COND(d) (count < (d))
#define COUNT(d) (d)
#else
/* not worth fixing */
# error "You cannot disable DES on systems without SIGALRM."
#endif /* OPENSSL_NO_DES */
#else
#define COND(c) (run)
#define COUNT(d) (count)
signal(SIGALRM,sig_done);
#endif /* SIGALRM */
#ifndef OPENSSL_NO_MD2
if (doit[D_MD2])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_MD2],c[D_MD2][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_MD2][j]); count++)
EVP_Digest(buf,(unsigned long)lengths[j],&(md2[0]),NULL,EVP_md2(),NULL);
d=Time_F(STOP);
print_result(D_MD2,j,count,d);
}
}
#endif
#ifndef OPENSSL_NO_MDC2
if (doit[D_MDC2])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_MDC2],c[D_MDC2][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_MDC2][j]); count++)
EVP_Digest(buf,(unsigned long)lengths[j],&(mdc2[0]),NULL,EVP_mdc2(),NULL);
d=Time_F(STOP);
print_result(D_MDC2,j,count,d);
}
}
#endif
#ifndef OPENSSL_NO_MD4
if (doit[D_MD4])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_MD4],c[D_MD4][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_MD4][j]); count++)
EVP_Digest(&(buf[0]),(unsigned long)lengths[j],&(md4[0]),NULL,EVP_md4(),NULL);
d=Time_F(STOP);
print_result(D_MD4,j,count,d);
}
}
#endif
#ifndef OPENSSL_NO_MD5
if (doit[D_MD5])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_MD5],c[D_MD5][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_MD5][j]); count++)
EVP_Digest(&(buf[0]),(unsigned long)lengths[j],&(md5[0]),NULL,EVP_get_digestbyname("md5"),NULL);
d=Time_F(STOP);
print_result(D_MD5,j,count,d);
}
}
#endif
#if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_HMAC)
if (doit[D_HMAC])
{
HMAC_CTX hctx;
HMAC_CTX_init(&hctx);
HMAC_Init_ex(&hctx,(unsigned char *)"This is a key...",
16,EVP_md5(), NULL);
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_HMAC],c[D_HMAC][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_HMAC][j]); count++)
{
HMAC_Init_ex(&hctx,NULL,0,NULL,NULL);
HMAC_Update(&hctx,buf,lengths[j]);
HMAC_Final(&hctx,&(hmac[0]),NULL);
}
d=Time_F(STOP);
print_result(D_HMAC,j,count,d);
}
HMAC_CTX_cleanup(&hctx);
}
#endif
#ifndef OPENSSL_NO_SHA
if (doit[D_SHA1])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_SHA1],c[D_SHA1][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_SHA1][j]); count++)
EVP_Digest(buf,(unsigned long)lengths[j],&(sha[0]),NULL,EVP_sha1(),NULL);
d=Time_F(STOP);
print_result(D_SHA1,j,count,d);
}
}
#ifndef OPENSSL_NO_SHA256
if (doit[D_SHA256])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_SHA256],c[D_SHA256][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_SHA256][j]); count++)
SHA256(buf,lengths[j],sha256);
d=Time_F(STOP);
print_result(D_SHA256,j,count,d);
}
}
#endif
#ifndef OPENSSL_NO_SHA512
if (doit[D_SHA512])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_SHA512],c[D_SHA512][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_SHA512][j]); count++)
SHA512(buf,lengths[j],sha512);
d=Time_F(STOP);
print_result(D_SHA512,j,count,d);
}
}
#endif
#endif
#ifndef OPENSSL_NO_RIPEMD
if (doit[D_RMD160])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_RMD160],c[D_RMD160][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_RMD160][j]); count++)
EVP_Digest(buf,(unsigned long)lengths[j],&(rmd160[0]),NULL,EVP_ripemd160(),NULL);
d=Time_F(STOP);
print_result(D_RMD160,j,count,d);
}
}
#endif
#ifndef OPENSSL_NO_RC4
if (doit[D_RC4])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_RC4],c[D_RC4][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_RC4][j]); count++)
RC4(&rc4_ks,(unsigned int)lengths[j],
buf,buf);
d=Time_F(STOP);
print_result(D_RC4,j,count,d);
}
}
#endif
#ifndef OPENSSL_NO_DES
if (doit[D_CBC_DES])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_CBC_DES],c[D_CBC_DES][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_CBC_DES][j]); count++)
DES_ncbc_encrypt(buf,buf,lengths[j],&sch,
&DES_iv,DES_ENCRYPT);
d=Time_F(STOP);
print_result(D_CBC_DES,j,count,d);
}
}
if (doit[D_EDE3_DES])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_EDE3_DES],c[D_EDE3_DES][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_EDE3_DES][j]); count++)
DES_ede3_cbc_encrypt(buf,buf,lengths[j],
&sch,&sch2,&sch3,
&DES_iv,DES_ENCRYPT);
d=Time_F(STOP);
print_result(D_EDE3_DES,j,count,d);
}
}
#endif
#ifndef OPENSSL_NO_AES
if (doit[D_CBC_128_AES])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_CBC_128_AES],c[D_CBC_128_AES][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_CBC_128_AES][j]); count++)
AES_cbc_encrypt(buf,buf,
(unsigned long)lengths[j],&aes_ks1,
iv,AES_ENCRYPT);
d=Time_F(STOP);
print_result(D_CBC_128_AES,j,count,d);
}
}
if (doit[D_CBC_192_AES])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_CBC_192_AES],c[D_CBC_192_AES][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_CBC_192_AES][j]); count++)
AES_cbc_encrypt(buf,buf,
(unsigned long)lengths[j],&aes_ks2,
iv,AES_ENCRYPT);
d=Time_F(STOP);
print_result(D_CBC_192_AES,j,count,d);
}
}
if (doit[D_CBC_256_AES])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_CBC_256_AES],c[D_CBC_256_AES][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_CBC_256_AES][j]); count++)
AES_cbc_encrypt(buf,buf,
(unsigned long)lengths[j],&aes_ks3,
iv,AES_ENCRYPT);
d=Time_F(STOP);
print_result(D_CBC_256_AES,j,count,d);
}
}
#endif
#ifndef OPENSSL_NO_CAMELLIA
if (doit[D_CBC_128_CML])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_CBC_128_CML],c[D_CBC_128_CML][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_CBC_128_CML][j]); count++)
Camellia_cbc_encrypt(buf,buf,
(unsigned long)lengths[j],&camellia_ks1,
iv,CAMELLIA_ENCRYPT);
d=Time_F(STOP);
print_result(D_CBC_128_CML,j,count,d);
}
}
if (doit[D_CBC_192_CML])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_CBC_192_CML],c[D_CBC_192_CML][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_CBC_192_CML][j]); count++)
Camellia_cbc_encrypt(buf,buf,
(unsigned long)lengths[j],&camellia_ks2,
iv,CAMELLIA_ENCRYPT);
d=Time_F(STOP);
print_result(D_CBC_192_CML,j,count,d);
}
}
if (doit[D_CBC_256_CML])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_CBC_256_CML],c[D_CBC_256_CML][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_CBC_256_CML][j]); count++)
Camellia_cbc_encrypt(buf,buf,
(unsigned long)lengths[j],&camellia_ks3,
iv,CAMELLIA_ENCRYPT);
d=Time_F(STOP);
print_result(D_CBC_256_CML,j,count,d);
}
}
#endif
#ifndef OPENSSL_NO_IDEA
if (doit[D_CBC_IDEA])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_CBC_IDEA],c[D_CBC_IDEA][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_CBC_IDEA][j]); count++)
idea_cbc_encrypt(buf,buf,
(unsigned long)lengths[j],&idea_ks,
iv,IDEA_ENCRYPT);
d=Time_F(STOP);
print_result(D_CBC_IDEA,j,count,d);
}
}
#endif
#ifndef OPENSSL_NO_RC2
if (doit[D_CBC_RC2])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_CBC_RC2],c[D_CBC_RC2][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_CBC_RC2][j]); count++)
RC2_cbc_encrypt(buf,buf,
(unsigned long)lengths[j],&rc2_ks,
iv,RC2_ENCRYPT);
d=Time_F(STOP);
print_result(D_CBC_RC2,j,count,d);
}
}
#endif
#ifndef OPENSSL_NO_RC5
if (doit[D_CBC_RC5])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_CBC_RC5],c[D_CBC_RC5][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_CBC_RC5][j]); count++)
RC5_32_cbc_encrypt(buf,buf,
(unsigned long)lengths[j],&rc5_ks,
iv,RC5_ENCRYPT);
d=Time_F(STOP);
print_result(D_CBC_RC5,j,count,d);
}
}
#endif
#ifndef OPENSSL_NO_BF
if (doit[D_CBC_BF])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_CBC_BF],c[D_CBC_BF][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_CBC_BF][j]); count++)
BF_cbc_encrypt(buf,buf,
(unsigned long)lengths[j],&bf_ks,
iv,BF_ENCRYPT);
d=Time_F(STOP);
print_result(D_CBC_BF,j,count,d);
}
}
#endif
#ifndef OPENSSL_NO_CAST
if (doit[D_CBC_CAST])
{
for (j=0; j<SIZE_NUM; j++)
{
print_message(names[D_CBC_CAST],c[D_CBC_CAST][j],lengths[j]);
Time_F(START);
for (count=0,run=1; COND(c[D_CBC_CAST][j]); count++)
CAST_cbc_encrypt(buf,buf,
(unsigned long)lengths[j],&cast_ks,
iv,CAST_ENCRYPT);
d=Time_F(STOP);
print_result(D_CBC_CAST,j,count,d);
}
}
#endif
if (doit[D_EVP])
{
for (j=0; j<SIZE_NUM; j++)
{
if (evp_cipher)
{
EVP_CIPHER_CTX ctx;
int outl;
names[D_EVP]=OBJ_nid2ln(evp_cipher->nid);
/* -O3 -fschedule-insns messes up an
* optimization here! names[D_EVP]
* somehow becomes NULL */
print_message(names[D_EVP],save_count,
lengths[j]);
EVP_CIPHER_CTX_init(&ctx);
if(decrypt)
EVP_DecryptInit_ex(&ctx,evp_cipher,NULL,key16,iv);
else
EVP_EncryptInit_ex(&ctx,evp_cipher,NULL,key16,iv);
EVP_CIPHER_CTX_set_padding(&ctx, 0);
Time_F(START);
if(decrypt)
for (count=0,run=1; COND(save_count*4*lengths[0]/lengths[j]); count++)
EVP_DecryptUpdate(&ctx,buf,&outl,buf,lengths[j]);
else
for (count=0,run=1; COND(save_count*4*lengths[0]/lengths[j]); count++)
EVP_EncryptUpdate(&ctx,buf,&outl,buf,lengths[j]);
if(decrypt)
EVP_DecryptFinal_ex(&ctx,buf,&outl);
else
EVP_EncryptFinal_ex(&ctx,buf,&outl);
d=Time_F(STOP);
EVP_CIPHER_CTX_cleanup(&ctx);
}
if (evp_md)
{
names[D_EVP]=OBJ_nid2ln(evp_md->type);
print_message(names[D_EVP],save_count,
lengths[j]);
Time_F(START);
for (count=0,run=1; COND(save_count*4*lengths[0]/lengths[j]); count++)
EVP_Digest(buf,lengths[j],&(md[0]),NULL,evp_md,NULL);
d=Time_F(STOP);
}
print_result(D_EVP,j,count,d);
}
}
RAND_pseudo_bytes(buf,36);
#ifndef OPENSSL_NO_RSA
for (j=0; j<RSA_NUM; j++)
{
int ret;
if (!rsa_doit[j]) continue;
ret=RSA_sign(NID_md5_sha1, buf,36, buf2, &rsa_num, rsa_key[j]);
if (ret == 0)
{
BIO_printf(bio_err,"RSA sign failure. No RSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count=1;
}
else
{
pkey_print_message("private","rsa",
rsa_c[j][0],rsa_bits[j],
RSA_SECONDS);
/* RSA_blinding_on(rsa_key[j],NULL); */
Time_F(START);
for (count=0,run=1; COND(rsa_c[j][0]); count++)
{
ret=RSA_sign(NID_md5_sha1, buf,36, buf2,
&rsa_num, rsa_key[j]);
if (ret == 0)
{
BIO_printf(bio_err,
"RSA sign failure\n");
ERR_print_errors(bio_err);
count=1;
break;
}
}
d=Time_F(STOP);
BIO_printf(bio_err,mr ? "+R1:%ld:%d:%.2f\n"
: "%ld %d bit private RSA's in %.2fs\n",
count,rsa_bits[j],d);
rsa_results[j][0]=d/(double)count;
rsa_count=count;
}
#if 1
ret=RSA_verify(NID_md5_sha1, buf,36, buf2, rsa_num, rsa_key[j]);
if (ret <= 0)
{
BIO_printf(bio_err,"RSA verify failure. No RSA verify will be done.\n");
ERR_print_errors(bio_err);
rsa_doit[j] = 0;
}
else
{
pkey_print_message("public","rsa",
rsa_c[j][1],rsa_bits[j],
RSA_SECONDS);
Time_F(START);
for (count=0,run=1; COND(rsa_c[j][1]); count++)
{
ret=RSA_verify(NID_md5_sha1, buf,36, buf2,
rsa_num, rsa_key[j]);
if (ret <= 0)
{
BIO_printf(bio_err,
"RSA verify failure\n");
ERR_print_errors(bio_err);
count=1;
break;
}
}
d=Time_F(STOP);
BIO_printf(bio_err,mr ? "+R2:%ld:%d:%.2f\n"
: "%ld %d bit public RSA's in %.2fs\n",
count,rsa_bits[j],d);
rsa_results[j][1]=d/(double)count;
}
#endif
if (rsa_count <= 1)
{
/* if longer than 10s, don't do any more */
for (j++; j<RSA_NUM; j++)
rsa_doit[j]=0;
}
}
#endif
RAND_pseudo_bytes(buf,20);
#ifndef OPENSSL_NO_DSA
if (RAND_status() != 1)
{
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (j=0; j<DSA_NUM; j++)
{
unsigned int kk;
int ret;
if (!dsa_doit[j]) continue;
/* DSA_generate_key(dsa_key[j]); */
/* DSA_sign_setup(dsa_key[j],NULL); */
ret=DSA_sign(EVP_PKEY_DSA,buf,20,buf2,
&kk,dsa_key[j]);
if (ret == 0)
{
BIO_printf(bio_err,"DSA sign failure. No DSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count=1;
}
else
{
pkey_print_message("sign","dsa",
dsa_c[j][0],dsa_bits[j],
DSA_SECONDS);
Time_F(START);
for (count=0,run=1; COND(dsa_c[j][0]); count++)
{
ret=DSA_sign(EVP_PKEY_DSA,buf,20,buf2,
&kk,dsa_key[j]);
if (ret == 0)
{
BIO_printf(bio_err,
"DSA sign failure\n");
ERR_print_errors(bio_err);
count=1;
break;
}
}
d=Time_F(STOP);
BIO_printf(bio_err,mr ? "+R3:%ld:%d:%.2f\n"
: "%ld %d bit DSA signs in %.2fs\n",
count,dsa_bits[j],d);
dsa_results[j][0]=d/(double)count;
rsa_count=count;
}
ret=DSA_verify(EVP_PKEY_DSA,buf,20,buf2,
kk,dsa_key[j]);
if (ret <= 0)
{
BIO_printf(bio_err,"DSA verify failure. No DSA verify will be done.\n");
ERR_print_errors(bio_err);
dsa_doit[j] = 0;
}
else
{
pkey_print_message("verify","dsa",
dsa_c[j][1],dsa_bits[j],
DSA_SECONDS);
Time_F(START);
for (count=0,run=1; COND(dsa_c[j][1]); count++)
{
ret=DSA_verify(EVP_PKEY_DSA,buf,20,buf2,
kk,dsa_key[j]);
if (ret <= 0)
{
BIO_printf(bio_err,
"DSA verify failure\n");
ERR_print_errors(bio_err);
count=1;
break;
}
}
d=Time_F(STOP);
BIO_printf(bio_err,mr ? "+R4:%ld:%d:%.2f\n"
: "%ld %d bit DSA verify in %.2fs\n",
count,dsa_bits[j],d);
dsa_results[j][1]=d/(double)count;
}
if (rsa_count <= 1)
{
/* if longer than 10s, don't do any more */
for (j++; j<DSA_NUM; j++)
dsa_doit[j]=0;
}
}
if (rnd_fake) RAND_cleanup();
#endif
#ifndef OPENSSL_NO_ECDSA
if (RAND_status() != 1)
{
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (j=0; j<EC_NUM; j++)
{
int ret;
if (!ecdsa_doit[j]) continue; /* Ignore Curve */
ecdsa[j] = EC_KEY_new_by_curve_name(test_curves[j]);
if (ecdsa[j] == NULL)
{
BIO_printf(bio_err,"ECDSA failure.\n");
ERR_print_errors(bio_err);
rsa_count=1;
}
else
{
#if 1
EC_KEY_precompute_mult(ecdsa[j], NULL);
#endif
/* Perform ECDSA signature test */
EC_KEY_generate_key(ecdsa[j]);
ret = ECDSA_sign(0, buf, 20, ecdsasig,
&ecdsasiglen, ecdsa[j]);
if (ret == 0)
{
BIO_printf(bio_err,"ECDSA sign failure. No ECDSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count=1;
}
else
{
pkey_print_message("sign","ecdsa",
ecdsa_c[j][0],
test_curves_bits[j],
ECDSA_SECONDS);
Time_F(START);
for (count=0,run=1; COND(ecdsa_c[j][0]);
count++)
{
ret=ECDSA_sign(0, buf, 20,
ecdsasig, &ecdsasiglen,
ecdsa[j]);
if (ret == 0)
{
BIO_printf(bio_err, "ECDSA sign failure\n");
ERR_print_errors(bio_err);
count=1;
break;
}
}
d=Time_F(STOP);
BIO_printf(bio_err, mr ? "+R5:%ld:%d:%.2f\n" :
"%ld %d bit ECDSA signs in %.2fs \n",
count, test_curves_bits[j], d);
ecdsa_results[j][0]=d/(double)count;
rsa_count=count;
}
/* Perform ECDSA verification test */
ret=ECDSA_verify(0, buf, 20, ecdsasig,
ecdsasiglen, ecdsa[j]);
if (ret != 1)
{
BIO_printf(bio_err,"ECDSA verify failure. No ECDSA verify will be done.\n");
ERR_print_errors(bio_err);
ecdsa_doit[j] = 0;
}
else
{
pkey_print_message("verify","ecdsa",
ecdsa_c[j][1],
test_curves_bits[j],
ECDSA_SECONDS);
Time_F(START);
for (count=0,run=1; COND(ecdsa_c[j][1]); count++)
{
ret=ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[j]);
if (ret != 1)
{
BIO_printf(bio_err, "ECDSA verify failure\n");
ERR_print_errors(bio_err);
count=1;
break;
}
}
d=Time_F(STOP);
BIO_printf(bio_err, mr? "+R6:%ld:%d:%.2f\n"
: "%ld %d bit ECDSA verify in %.2fs\n",
count, test_curves_bits[j], d);
ecdsa_results[j][1]=d/(double)count;
}
if (rsa_count <= 1)
{
/* if longer than 10s, don't do any more */
for (j++; j<EC_NUM; j++)
ecdsa_doit[j]=0;
}
}
}
if (rnd_fake) RAND_cleanup();
#endif
#ifndef OPENSSL_NO_ECDH
if (RAND_status() != 1)
{
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (j=0; j<EC_NUM; j++)
{
if (!ecdh_doit[j]) continue;
ecdh_a[j] = EC_KEY_new_by_curve_name(test_curves[j]);
ecdh_b[j] = EC_KEY_new_by_curve_name(test_curves[j]);
if ((ecdh_a[j] == NULL) || (ecdh_b[j] == NULL))
{
BIO_printf(bio_err,"ECDH failure.\n");
ERR_print_errors(bio_err);
rsa_count=1;
}
else
{
/* generate two ECDH key pairs */
if (!EC_KEY_generate_key(ecdh_a[j]) ||
!EC_KEY_generate_key(ecdh_b[j]))
{
BIO_printf(bio_err,"ECDH key generation failure.\n");
ERR_print_errors(bio_err);
rsa_count=1;
}
else
{
/* If field size is not more than 24 octets, then use SHA-1 hash of result;
* otherwise, use result (see section 4.8 of draft-ietf-tls-ecc-03.txt).
*/
int field_size, outlen;
void *(*kdf)(const void *in, size_t inlen, void *out, size_t *xoutlen);
field_size = EC_GROUP_get_degree(EC_KEY_get0_group(ecdh_a[j]));
if (field_size <= 24 * 8)
{
outlen = KDF1_SHA1_len;
kdf = KDF1_SHA1;
}
else
{
outlen = (field_size+7)/8;
kdf = NULL;
}
secret_size_a = ECDH_compute_key(secret_a, outlen,
EC_KEY_get0_public_key(ecdh_b[j]),
ecdh_a[j], kdf);
secret_size_b = ECDH_compute_key(secret_b, outlen,
EC_KEY_get0_public_key(ecdh_a[j]),
ecdh_b[j], kdf);
if (secret_size_a != secret_size_b)
ecdh_checks = 0;
else
ecdh_checks = 1;
for (secret_idx = 0;
(secret_idx < secret_size_a)
&& (ecdh_checks == 1);
secret_idx++)
{
if (secret_a[secret_idx] != secret_b[secret_idx])
ecdh_checks = 0;
}
if (ecdh_checks == 0)
{
BIO_printf(bio_err,"ECDH computations don't match.\n");
ERR_print_errors(bio_err);
rsa_count=1;
}
pkey_print_message("","ecdh",
ecdh_c[j][0],
test_curves_bits[j],
ECDH_SECONDS);
Time_F(START);
for (count=0,run=1; COND(ecdh_c[j][0]); count++)
{
ECDH_compute_key(secret_a, outlen,
EC_KEY_get0_public_key(ecdh_b[j]),
ecdh_a[j], kdf);
}
d=Time_F(STOP);
BIO_printf(bio_err, mr ? "+R7:%ld:%d:%.2f\n" :"%ld %d-bit ECDH ops in %.2fs\n",
count, test_curves_bits[j], d);
ecdh_results[j][0]=d/(double)count;
rsa_count=count;
}
}
if (rsa_count <= 1)
{
/* if longer than 10s, don't do any more */
for (j++; j<EC_NUM; j++)
ecdh_doit[j]=0;
}
}
if (rnd_fake) RAND_cleanup();
#endif
#ifdef HAVE_FORK
show_res:
#endif
if(!mr)
{
fprintf(stdout,"%s\n",SSLeay_version(SSLEAY_VERSION));
fprintf(stdout,"%s\n",SSLeay_version(SSLEAY_BUILT_ON));
printf("options:");
printf("%s ",BN_options());
#ifndef OPENSSL_NO_MD2
printf("%s ",MD2_options());
#endif
#ifndef OPENSSL_NO_RC4
printf("%s ",RC4_options());
#endif
#ifndef OPENSSL_NO_DES
printf("%s ",DES_options());
#endif
#ifndef OPENSSL_NO_AES
printf("%s ",AES_options());
#endif
#ifndef OPENSSL_NO_IDEA
printf("%s ",idea_options());
#endif
#ifndef OPENSSL_NO_BF
printf("%s ",BF_options());
#endif
fprintf(stdout,"\n%s\n",SSLeay_version(SSLEAY_CFLAGS));
printf("available timing options: ");
#ifdef TIMES
printf("TIMES ");
#endif
#ifdef TIMEB
printf("TIMEB ");
#endif
#ifdef USE_TOD
printf("USE_TOD ");
#endif
#ifdef HZ
#define as_string(s) (#s)
{
double dbl = HZ;
printf("HZ=%g", dbl);
}
# ifdef _SC_CLK_TCK
printf(" [sysconf value]");
# endif
#endif
printf("\n");
printf("timing function used: %s%s%s%s%s%s%s\n",
(ftime_used ? "ftime" : ""),
(ftime_used + times_used > 1 ? "," : ""),
(times_used ? "times" : ""),
(ftime_used + times_used + gettimeofday_used > 1 ? "," : ""),
(gettimeofday_used ? "gettimeofday" : ""),
(ftime_used + times_used + gettimeofday_used + getrusage_used > 1 ? "," : ""),
(getrusage_used ? "getrusage" : ""));
}
if (pr_header)
{
if(mr)
fprintf(stdout,"+H");
else
{
fprintf(stdout,"The 'numbers' are in 1000s of bytes per second processed.\n");
fprintf(stdout,"type ");
}
for (j=0; j<SIZE_NUM; j++)
fprintf(stdout,mr ? ":%d" : "%7d bytes",lengths[j]);
fprintf(stdout,"\n");
}
for (k=0; k<ALGOR_NUM; k++)
{
if (!doit[k]) continue;
if(mr)
fprintf(stdout,"+F:%d:%s",k,names[k]);
else
fprintf(stdout,"%-13s",names[k]);
for (j=0; j<SIZE_NUM; j++)
{
if (results[k][j] > 10000 && !mr)
fprintf(stdout," %11.2fk",results[k][j]/1e3);
else
fprintf(stdout,mr ? ":%.2f" : " %11.2f ",results[k][j]);
}
fprintf(stdout,"\n");
}
#ifndef OPENSSL_NO_RSA
j=1;
for (k=0; k<RSA_NUM; k++)
{
if (!rsa_doit[k]) continue;
if (j && !mr)
{
printf("%18ssign verify sign/s verify/s\n"," ");
j=0;
}
if(mr)
fprintf(stdout,"+F2:%u:%u:%f:%f\n",
k,rsa_bits[k],rsa_results[k][0],
rsa_results[k][1]);
else
fprintf(stdout,"rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
rsa_bits[k],rsa_results[k][0],rsa_results[k][1],
1.0/rsa_results[k][0],1.0/rsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_DSA
j=1;
for (k=0; k<DSA_NUM; k++)
{
if (!dsa_doit[k]) continue;
if (j && !mr)
{
printf("%18ssign verify sign/s verify/s\n"," ");
j=0;
}
if(mr)
fprintf(stdout,"+F3:%u:%u:%f:%f\n",
k,dsa_bits[k],dsa_results[k][0],dsa_results[k][1]);
else
fprintf(stdout,"dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
dsa_bits[k],dsa_results[k][0],dsa_results[k][1],
1.0/dsa_results[k][0],1.0/dsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_ECDSA
j=1;
for (k=0; k<EC_NUM; k++)
{
if (!ecdsa_doit[k]) continue;
if (j && !mr)
{
printf("%30ssign verify sign/s verify/s\n"," ");
j=0;
}
if (mr)
fprintf(stdout,"+F4:%u:%u:%f:%f\n",
k, test_curves_bits[k],
ecdsa_results[k][0],ecdsa_results[k][1]);
else
fprintf(stdout,
"%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
test_curves_bits[k],
test_curves_names[k],
ecdsa_results[k][0],ecdsa_results[k][1],
1.0/ecdsa_results[k][0],1.0/ecdsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_ECDH
j=1;
for (k=0; k<EC_NUM; k++)
{
if (!ecdh_doit[k]) continue;
if (j && !mr)
{
printf("%30sop op/s\n"," ");
j=0;
}
if (mr)
fprintf(stdout,"+F5:%u:%u:%f:%f\n",
k, test_curves_bits[k],
ecdh_results[k][0], 1.0/ecdh_results[k][0]);
else
fprintf(stdout,"%4u bit ecdh (%s) %8.4fs %8.1f\n",
test_curves_bits[k],
test_curves_names[k],
ecdh_results[k][0], 1.0/ecdh_results[k][0]);
}
#endif
mret=0;
end:
ERR_print_errors(bio_err);
if (buf != NULL) OPENSSL_free(buf);
if (buf2 != NULL) OPENSSL_free(buf2);
#ifndef OPENSSL_NO_RSA
for (i=0; i<RSA_NUM; i++)
if (rsa_key[i] != NULL)
RSA_free(rsa_key[i]);
#endif
#ifndef OPENSSL_NO_DSA
for (i=0; i<DSA_NUM; i++)
if (dsa_key[i] != NULL)
DSA_free(dsa_key[i]);
#endif
#ifndef OPENSSL_NO_ECDSA
for (i=0; i<EC_NUM; i++)
if (ecdsa[i] != NULL)
EC_KEY_free(ecdsa[i]);
#endif
#ifndef OPENSSL_NO_ECDH
for (i=0; i<EC_NUM; i++)
{
if (ecdh_a[i] != NULL)
EC_KEY_free(ecdh_a[i]);
if (ecdh_b[i] != NULL)
EC_KEY_free(ecdh_b[i]);
}
#endif
apps_shutdown();
OPENSSL_EXIT(mret);
}
static void print_message(const char *s, long num, int length)
{
#ifdef SIGALRM
BIO_printf(bio_err,mr ? "+DT:%s:%d:%d\n"
: "Doing %s for %ds on %d size blocks: ",s,SECONDS,length);
(void)BIO_flush(bio_err);
alarm(SECONDS);
#else
BIO_printf(bio_err,mr ? "+DN:%s:%ld:%d\n"
: "Doing %s %ld times on %d size blocks: ",s,num,length);
(void)BIO_flush(bio_err);
#endif
#ifdef LINT
num=num;
#endif
}
static void pkey_print_message(const char *str, const char *str2, long num,
int bits, int tm)
{
#ifdef SIGALRM
BIO_printf(bio_err,mr ? "+DTP:%d:%s:%s:%d\n"
: "Doing %d bit %s %s's for %ds: ",bits,str,str2,tm);
(void)BIO_flush(bio_err);
alarm(RSA_SECONDS);
#else
BIO_printf(bio_err,mr ? "+DNP:%ld:%d:%s:%s\n"
: "Doing %ld %d bit %s %s's: ",num,bits,str,str2);
(void)BIO_flush(bio_err);
#endif
#ifdef LINT
num=num;
#endif
}
static void print_result(int alg,int run_no,int count,double time_used)
{
BIO_printf(bio_err,mr ? "+R:%d:%s:%f\n"
: "%d %s's in %.2fs\n",count,names[alg],time_used);
results[alg][run_no]=((double)count)/time_used*lengths[run_no];
}
#ifdef HAVE_FORK
static char *sstrsep(char **string, const char *delim)
{
char isdelim[256];
char *token = *string;
if (**string == 0)
return NULL;
memset(isdelim, 0, sizeof isdelim);
isdelim[0] = 1;
while (*delim)
{
isdelim[(unsigned char)(*delim)] = 1;
delim++;
}
while (!isdelim[(unsigned char)(**string)])
{
(*string)++;
}
if (**string)
{
**string = 0;
(*string)++;
}
return token;
}
static int do_multi(int multi)
{
int n;
int fd[2];
int *fds;
static char sep[]=":";
fds=malloc(multi*sizeof *fds);
for(n=0 ; n < multi ; ++n)
{
pipe(fd);
if(fork())
{
close(fd[1]);
fds[n]=fd[0];
}
else
{
close(fd[0]);
close(1);
dup(fd[1]);
close(fd[1]);
mr=1;
usertime=0;
return 0;
}
printf("Forked child %d\n",n);
}
/* for now, assume the pipe is long enough to take all the output */
for(n=0 ; n < multi ; ++n)
{
FILE *f;
char buf[1024];
char *p;
f=fdopen(fds[n],"r");
while(fgets(buf,sizeof buf,f))
{
p=strchr(buf,'\n');
if(p)
*p='\0';
if(buf[0] != '+')
{
fprintf(stderr,"Don't understand line '%s' from child %d\n",
buf,n);
continue;
}
printf("Got: %s from %d\n",buf,n);
if(!strncmp(buf,"+F:",3))
{
int alg;
int j;
p=buf+3;
alg=atoi(sstrsep(&p,sep));
sstrsep(&p,sep);
for(j=0 ; j < SIZE_NUM ; ++j)
results[alg][j]+=atof(sstrsep(&p,sep));
}
else if(!strncmp(buf,"+F2:",4))
{
int k;
double d;
p=buf+4;
k=atoi(sstrsep(&p,sep));
sstrsep(&p,sep);
d=atof(sstrsep(&p,sep));
if(n)
rsa_results[k][0]=1/(1/rsa_results[k][0]+1/d);
else
rsa_results[k][0]=d;
d=atof(sstrsep(&p,sep));
if(n)
rsa_results[k][1]=1/(1/rsa_results[k][1]+1/d);
else
rsa_results[k][1]=d;
}
else if(!strncmp(buf,"+F2:",4))
{
int k;
double d;
p=buf+4;
k=atoi(sstrsep(&p,sep));
sstrsep(&p,sep);
d=atof(sstrsep(&p,sep));
if(n)
rsa_results[k][0]=1/(1/rsa_results[k][0]+1/d);
else
rsa_results[k][0]=d;
d=atof(sstrsep(&p,sep));
if(n)
rsa_results[k][1]=1/(1/rsa_results[k][1]+1/d);
else
rsa_results[k][1]=d;
}
else if(!strncmp(buf,"+F3:",4))
{
int k;
double d;
p=buf+4;
k=atoi(sstrsep(&p,sep));
sstrsep(&p,sep);
d=atof(sstrsep(&p,sep));
if(n)
dsa_results[k][0]=1/(1/dsa_results[k][0]+1/d);
else
dsa_results[k][0]=d;
d=atof(sstrsep(&p,sep));
if(n)
dsa_results[k][1]=1/(1/dsa_results[k][1]+1/d);
else
dsa_results[k][1]=d;
}
#ifndef OPENSSL_NO_ECDSA
else if(!strncmp(buf,"+F4:",4))
{
int k;
double d;
p=buf+4;
k=atoi(sstrsep(&p,sep));
sstrsep(&p,sep);
d=atof(sstrsep(&p,sep));
if(n)
ecdsa_results[k][0]=1/(1/ecdsa_results[k][0]+1/d);
else
ecdsa_results[k][0]=d;
d=atof(sstrsep(&p,sep));
if(n)
ecdsa_results[k][1]=1/(1/ecdsa_results[k][1]+1/d);
else
ecdsa_results[k][1]=d;
}
#endif
#ifndef OPENSSL_NO_ECDH
else if(!strncmp(buf,"+F5:",4))
{
int k;
double d;
p=buf+4;
k=atoi(sstrsep(&p,sep));
sstrsep(&p,sep);
d=atof(sstrsep(&p,sep));
if(n)
ecdh_results[k][0]=1/(1/ecdh_results[k][0]+1/d);
else
ecdh_results[k][0]=d;
}
#endif
else if(!strncmp(buf,"+H:",3))
{
}
else
fprintf(stderr,"Unknown type '%s' from child %d\n",buf,n);
}
}
return 1;
}
#endif
#endif