6098e7acff
softclock_call_cc(). While there, move some common code to callout_cc_del(). Requested by: avg, jhb Reviewed by: jhb MFC after: 1 week
1135 lines
30 KiB
C
1135 lines
30 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* From: @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_kdtrace.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/sleepqueue.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/smp.h>
|
|
|
|
#ifdef SMP
|
|
#include <machine/cpu.h>
|
|
#endif
|
|
|
|
SDT_PROVIDER_DEFINE(callout_execute);
|
|
SDT_PROBE_DEFINE(callout_execute, kernel, , callout_start, callout-start);
|
|
SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_start, 0,
|
|
"struct callout *");
|
|
SDT_PROBE_DEFINE(callout_execute, kernel, , callout_end, callout-end);
|
|
SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_end, 0,
|
|
"struct callout *");
|
|
|
|
static int avg_depth;
|
|
SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
|
|
"Average number of items examined per softclock call. Units = 1/1000");
|
|
static int avg_gcalls;
|
|
SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
|
|
"Average number of Giant callouts made per softclock call. Units = 1/1000");
|
|
static int avg_lockcalls;
|
|
SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
|
|
"Average number of lock callouts made per softclock call. Units = 1/1000");
|
|
static int avg_mpcalls;
|
|
SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
|
|
"Average number of MP callouts made per softclock call. Units = 1/1000");
|
|
/*
|
|
* TODO:
|
|
* allocate more timeout table slots when table overflows.
|
|
*/
|
|
int callwheelsize, callwheelbits, callwheelmask;
|
|
|
|
/*
|
|
* The callout cpu migration entity represents informations necessary for
|
|
* describing the migrating callout to the new callout cpu.
|
|
* The cached informations are very important for deferring migration when
|
|
* the migrating callout is already running.
|
|
*/
|
|
struct cc_mig_ent {
|
|
#ifdef SMP
|
|
void (*ce_migration_func)(void *);
|
|
void *ce_migration_arg;
|
|
int ce_migration_cpu;
|
|
int ce_migration_ticks;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* There is one struct callout_cpu per cpu, holding all relevant
|
|
* state for the callout processing thread on the individual CPU.
|
|
* In particular:
|
|
* cc_ticks is incremented once per tick in callout_cpu().
|
|
* It tracks the global 'ticks' but in a way that the individual
|
|
* threads should not worry about races in the order in which
|
|
* hardclock() and hardclock_cpu() run on the various CPUs.
|
|
* cc_softclock is advanced in callout_cpu() to point to the
|
|
* first entry in cc_callwheel that may need handling. In turn,
|
|
* a softclock() is scheduled so it can serve the various entries i
|
|
* such that cc_softclock <= i <= cc_ticks .
|
|
* XXX maybe cc_softclock and cc_ticks should be volatile ?
|
|
*
|
|
* cc_ticks is also used in callout_reset_cpu() to determine
|
|
* when the callout should be served.
|
|
*/
|
|
struct callout_cpu {
|
|
struct cc_mig_ent cc_migrating_entity;
|
|
struct mtx cc_lock;
|
|
struct callout *cc_callout;
|
|
struct callout_tailq *cc_callwheel;
|
|
struct callout_list cc_callfree;
|
|
struct callout *cc_next;
|
|
struct callout *cc_curr;
|
|
void *cc_cookie;
|
|
int cc_ticks;
|
|
int cc_softticks;
|
|
int cc_cancel;
|
|
int cc_waiting;
|
|
int cc_firsttick;
|
|
};
|
|
|
|
#ifdef SMP
|
|
#define cc_migration_func cc_migrating_entity.ce_migration_func
|
|
#define cc_migration_arg cc_migrating_entity.ce_migration_arg
|
|
#define cc_migration_cpu cc_migrating_entity.ce_migration_cpu
|
|
#define cc_migration_ticks cc_migrating_entity.ce_migration_ticks
|
|
|
|
struct callout_cpu cc_cpu[MAXCPU];
|
|
#define CPUBLOCK MAXCPU
|
|
#define CC_CPU(cpu) (&cc_cpu[(cpu)])
|
|
#define CC_SELF() CC_CPU(PCPU_GET(cpuid))
|
|
#else
|
|
struct callout_cpu cc_cpu;
|
|
#define CC_CPU(cpu) &cc_cpu
|
|
#define CC_SELF() &cc_cpu
|
|
#endif
|
|
#define CC_LOCK(cc) mtx_lock_spin(&(cc)->cc_lock)
|
|
#define CC_UNLOCK(cc) mtx_unlock_spin(&(cc)->cc_lock)
|
|
#define CC_LOCK_ASSERT(cc) mtx_assert(&(cc)->cc_lock, MA_OWNED)
|
|
|
|
static int timeout_cpu;
|
|
void (*callout_new_inserted)(int cpu, int ticks) = NULL;
|
|
|
|
static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
|
|
|
|
/**
|
|
* Locked by cc_lock:
|
|
* cc_curr - If a callout is in progress, it is curr_callout.
|
|
* If curr_callout is non-NULL, threads waiting in
|
|
* callout_drain() will be woken up as soon as the
|
|
* relevant callout completes.
|
|
* cc_cancel - Changing to 1 with both callout_lock and c_lock held
|
|
* guarantees that the current callout will not run.
|
|
* The softclock() function sets this to 0 before it
|
|
* drops callout_lock to acquire c_lock, and it calls
|
|
* the handler only if curr_cancelled is still 0 after
|
|
* c_lock is successfully acquired.
|
|
* cc_waiting - If a thread is waiting in callout_drain(), then
|
|
* callout_wait is nonzero. Set only when
|
|
* curr_callout is non-NULL.
|
|
*/
|
|
|
|
/*
|
|
* Resets the migration entity tied to a specific callout cpu.
|
|
*/
|
|
static void
|
|
cc_cme_cleanup(struct callout_cpu *cc)
|
|
{
|
|
|
|
#ifdef SMP
|
|
cc->cc_migration_cpu = CPUBLOCK;
|
|
cc->cc_migration_ticks = 0;
|
|
cc->cc_migration_func = NULL;
|
|
cc->cc_migration_arg = NULL;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Checks if migration is requested by a specific callout cpu.
|
|
*/
|
|
static int
|
|
cc_cme_migrating(struct callout_cpu *cc)
|
|
{
|
|
|
|
#ifdef SMP
|
|
return (cc->cc_migration_cpu != CPUBLOCK);
|
|
#else
|
|
return (0);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* kern_timeout_callwheel_alloc() - kernel low level callwheel initialization
|
|
*
|
|
* This code is called very early in the kernel initialization sequence,
|
|
* and may be called more then once.
|
|
*/
|
|
caddr_t
|
|
kern_timeout_callwheel_alloc(caddr_t v)
|
|
{
|
|
struct callout_cpu *cc;
|
|
|
|
timeout_cpu = PCPU_GET(cpuid);
|
|
cc = CC_CPU(timeout_cpu);
|
|
/*
|
|
* Calculate callout wheel size
|
|
*/
|
|
for (callwheelsize = 1, callwheelbits = 0;
|
|
callwheelsize < ncallout;
|
|
callwheelsize <<= 1, ++callwheelbits)
|
|
;
|
|
callwheelmask = callwheelsize - 1;
|
|
|
|
cc->cc_callout = (struct callout *)v;
|
|
v = (caddr_t)(cc->cc_callout + ncallout);
|
|
cc->cc_callwheel = (struct callout_tailq *)v;
|
|
v = (caddr_t)(cc->cc_callwheel + callwheelsize);
|
|
return(v);
|
|
}
|
|
|
|
static void
|
|
callout_cpu_init(struct callout_cpu *cc)
|
|
{
|
|
struct callout *c;
|
|
int i;
|
|
|
|
mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
|
|
SLIST_INIT(&cc->cc_callfree);
|
|
for (i = 0; i < callwheelsize; i++) {
|
|
TAILQ_INIT(&cc->cc_callwheel[i]);
|
|
}
|
|
cc_cme_cleanup(cc);
|
|
if (cc->cc_callout == NULL)
|
|
return;
|
|
for (i = 0; i < ncallout; i++) {
|
|
c = &cc->cc_callout[i];
|
|
callout_init(c, 0);
|
|
c->c_flags = CALLOUT_LOCAL_ALLOC;
|
|
SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
|
|
}
|
|
}
|
|
|
|
#ifdef SMP
|
|
/*
|
|
* Switches the cpu tied to a specific callout.
|
|
* The function expects a locked incoming callout cpu and returns with
|
|
* locked outcoming callout cpu.
|
|
*/
|
|
static struct callout_cpu *
|
|
callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
|
|
{
|
|
struct callout_cpu *new_cc;
|
|
|
|
MPASS(c != NULL && cc != NULL);
|
|
CC_LOCK_ASSERT(cc);
|
|
|
|
/*
|
|
* Avoid interrupts and preemption firing after the callout cpu
|
|
* is blocked in order to avoid deadlocks as the new thread
|
|
* may be willing to acquire the callout cpu lock.
|
|
*/
|
|
c->c_cpu = CPUBLOCK;
|
|
spinlock_enter();
|
|
CC_UNLOCK(cc);
|
|
new_cc = CC_CPU(new_cpu);
|
|
CC_LOCK(new_cc);
|
|
spinlock_exit();
|
|
c->c_cpu = new_cpu;
|
|
return (new_cc);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* kern_timeout_callwheel_init() - initialize previously reserved callwheel
|
|
* space.
|
|
*
|
|
* This code is called just once, after the space reserved for the
|
|
* callout wheel has been finalized.
|
|
*/
|
|
void
|
|
kern_timeout_callwheel_init(void)
|
|
{
|
|
callout_cpu_init(CC_CPU(timeout_cpu));
|
|
}
|
|
|
|
/*
|
|
* Start standard softclock thread.
|
|
*/
|
|
static void
|
|
start_softclock(void *dummy)
|
|
{
|
|
struct callout_cpu *cc;
|
|
#ifdef SMP
|
|
int cpu;
|
|
#endif
|
|
|
|
cc = CC_CPU(timeout_cpu);
|
|
if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK,
|
|
INTR_MPSAFE, &cc->cc_cookie))
|
|
panic("died while creating standard software ithreads");
|
|
#ifdef SMP
|
|
CPU_FOREACH(cpu) {
|
|
if (cpu == timeout_cpu)
|
|
continue;
|
|
cc = CC_CPU(cpu);
|
|
if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK,
|
|
INTR_MPSAFE, &cc->cc_cookie))
|
|
panic("died while creating standard software ithreads");
|
|
cc->cc_callout = NULL; /* Only cpu0 handles timeout(). */
|
|
cc->cc_callwheel = malloc(
|
|
sizeof(struct callout_tailq) * callwheelsize, M_CALLOUT,
|
|
M_WAITOK);
|
|
callout_cpu_init(cc);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
|
|
|
|
void
|
|
callout_tick(void)
|
|
{
|
|
struct callout_cpu *cc;
|
|
int need_softclock;
|
|
int bucket;
|
|
|
|
/*
|
|
* Process callouts at a very low cpu priority, so we don't keep the
|
|
* relatively high clock interrupt priority any longer than necessary.
|
|
*/
|
|
need_softclock = 0;
|
|
cc = CC_SELF();
|
|
mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
|
|
cc->cc_firsttick = cc->cc_ticks = ticks;
|
|
for (; (cc->cc_softticks - cc->cc_ticks) <= 0; cc->cc_softticks++) {
|
|
bucket = cc->cc_softticks & callwheelmask;
|
|
if (!TAILQ_EMPTY(&cc->cc_callwheel[bucket])) {
|
|
need_softclock = 1;
|
|
break;
|
|
}
|
|
}
|
|
mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
|
|
/*
|
|
* swi_sched acquires the thread lock, so we don't want to call it
|
|
* with cc_lock held; incorrect locking order.
|
|
*/
|
|
if (need_softclock)
|
|
swi_sched(cc->cc_cookie, 0);
|
|
}
|
|
|
|
int
|
|
callout_tickstofirst(int limit)
|
|
{
|
|
struct callout_cpu *cc;
|
|
struct callout *c;
|
|
struct callout_tailq *sc;
|
|
int curticks;
|
|
int skip = 1;
|
|
|
|
cc = CC_SELF();
|
|
mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
|
|
curticks = cc->cc_ticks;
|
|
while( skip < ncallout && skip < limit ) {
|
|
sc = &cc->cc_callwheel[ (curticks+skip) & callwheelmask ];
|
|
/* search scanning ticks */
|
|
TAILQ_FOREACH( c, sc, c_links.tqe ){
|
|
if (c->c_time - curticks <= ncallout)
|
|
goto out;
|
|
}
|
|
skip++;
|
|
}
|
|
out:
|
|
cc->cc_firsttick = curticks + skip;
|
|
mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
|
|
return (skip);
|
|
}
|
|
|
|
static struct callout_cpu *
|
|
callout_lock(struct callout *c)
|
|
{
|
|
struct callout_cpu *cc;
|
|
int cpu;
|
|
|
|
for (;;) {
|
|
cpu = c->c_cpu;
|
|
#ifdef SMP
|
|
if (cpu == CPUBLOCK) {
|
|
while (c->c_cpu == CPUBLOCK)
|
|
cpu_spinwait();
|
|
continue;
|
|
}
|
|
#endif
|
|
cc = CC_CPU(cpu);
|
|
CC_LOCK(cc);
|
|
if (cpu == c->c_cpu)
|
|
break;
|
|
CC_UNLOCK(cc);
|
|
}
|
|
return (cc);
|
|
}
|
|
|
|
static void
|
|
callout_cc_add(struct callout *c, struct callout_cpu *cc, int to_ticks,
|
|
void (*func)(void *), void *arg, int cpu)
|
|
{
|
|
|
|
CC_LOCK_ASSERT(cc);
|
|
|
|
if (to_ticks <= 0)
|
|
to_ticks = 1;
|
|
c->c_arg = arg;
|
|
c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
|
|
c->c_func = func;
|
|
c->c_time = ticks + to_ticks;
|
|
TAILQ_INSERT_TAIL(&cc->cc_callwheel[c->c_time & callwheelmask],
|
|
c, c_links.tqe);
|
|
if ((c->c_time - cc->cc_firsttick) < 0 &&
|
|
callout_new_inserted != NULL) {
|
|
cc->cc_firsttick = c->c_time;
|
|
(*callout_new_inserted)(cpu,
|
|
to_ticks + (ticks - cc->cc_ticks));
|
|
}
|
|
}
|
|
|
|
static void
|
|
callout_cc_del(struct callout *c, struct callout_cpu *cc)
|
|
{
|
|
|
|
if (cc->cc_next == c)
|
|
cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
|
|
if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
|
|
c->c_func = NULL;
|
|
SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
|
|
}
|
|
}
|
|
|
|
static struct callout *
|
|
softclock_call_cc(struct callout *c, struct callout_cpu *cc, int *mpcalls,
|
|
int *lockcalls, int *gcalls)
|
|
{
|
|
void (*c_func)(void *);
|
|
void *c_arg;
|
|
struct lock_class *class;
|
|
struct lock_object *c_lock;
|
|
int c_flags, sharedlock;
|
|
#ifdef SMP
|
|
struct callout_cpu *new_cc;
|
|
void (*new_func)(void *);
|
|
void *new_arg;
|
|
int new_cpu, new_ticks;
|
|
#endif
|
|
#ifdef DIAGNOSTIC
|
|
struct bintime bt1, bt2;
|
|
struct timespec ts2;
|
|
static uint64_t maxdt = 36893488147419102LL; /* 2 msec */
|
|
static timeout_t *lastfunc;
|
|
#endif
|
|
|
|
cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
|
|
class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
|
|
sharedlock = (c->c_flags & CALLOUT_SHAREDLOCK) ? 0 : 1;
|
|
c_lock = c->c_lock;
|
|
c_func = c->c_func;
|
|
c_arg = c->c_arg;
|
|
c_flags = c->c_flags;
|
|
if (c->c_flags & CALLOUT_LOCAL_ALLOC)
|
|
c->c_flags = CALLOUT_LOCAL_ALLOC;
|
|
else
|
|
c->c_flags &= ~CALLOUT_PENDING;
|
|
cc->cc_curr = c;
|
|
cc->cc_cancel = 0;
|
|
CC_UNLOCK(cc);
|
|
if (c_lock != NULL) {
|
|
class->lc_lock(c_lock, sharedlock);
|
|
/*
|
|
* The callout may have been cancelled
|
|
* while we switched locks.
|
|
*/
|
|
if (cc->cc_cancel) {
|
|
class->lc_unlock(c_lock);
|
|
goto skip;
|
|
}
|
|
/* The callout cannot be stopped now. */
|
|
cc->cc_cancel = 1;
|
|
|
|
if (c_lock == &Giant.lock_object) {
|
|
(*gcalls)++;
|
|
CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
|
|
c, c_func, c_arg);
|
|
} else {
|
|
(*lockcalls)++;
|
|
CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
|
|
c, c_func, c_arg);
|
|
}
|
|
} else {
|
|
(*mpcalls)++;
|
|
CTR3(KTR_CALLOUT, "callout mpsafe %p func %p arg %p",
|
|
c, c_func, c_arg);
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
binuptime(&bt1);
|
|
#endif
|
|
THREAD_NO_SLEEPING();
|
|
SDT_PROBE(callout_execute, kernel, , callout_start, c, 0, 0, 0, 0);
|
|
c_func(c_arg);
|
|
SDT_PROBE(callout_execute, kernel, , callout_end, c, 0, 0, 0, 0);
|
|
THREAD_SLEEPING_OK();
|
|
#ifdef DIAGNOSTIC
|
|
binuptime(&bt2);
|
|
bintime_sub(&bt2, &bt1);
|
|
if (bt2.frac > maxdt) {
|
|
if (lastfunc != c_func || bt2.frac > maxdt * 2) {
|
|
bintime2timespec(&bt2, &ts2);
|
|
printf(
|
|
"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
|
|
c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
|
|
}
|
|
maxdt = bt2.frac;
|
|
lastfunc = c_func;
|
|
}
|
|
#endif
|
|
CTR1(KTR_CALLOUT, "callout %p finished", c);
|
|
if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0)
|
|
class->lc_unlock(c_lock);
|
|
skip:
|
|
CC_LOCK(cc);
|
|
/*
|
|
* If the current callout is locally allocated (from
|
|
* timeout(9)) then put it on the freelist.
|
|
*
|
|
* Note: we need to check the cached copy of c_flags because
|
|
* if it was not local, then it's not safe to deref the
|
|
* callout pointer.
|
|
*/
|
|
if (c_flags & CALLOUT_LOCAL_ALLOC) {
|
|
KASSERT(c->c_flags == CALLOUT_LOCAL_ALLOC,
|
|
("corrupted callout"));
|
|
c->c_func = NULL;
|
|
SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
|
|
}
|
|
cc->cc_curr = NULL;
|
|
if (cc->cc_waiting) {
|
|
/*
|
|
* There is someone waiting for the
|
|
* callout to complete.
|
|
* If the callout was scheduled for
|
|
* migration just cancel it.
|
|
*/
|
|
if (cc_cme_migrating(cc))
|
|
cc_cme_cleanup(cc);
|
|
cc->cc_waiting = 0;
|
|
CC_UNLOCK(cc);
|
|
wakeup(&cc->cc_waiting);
|
|
CC_LOCK(cc);
|
|
} else if (cc_cme_migrating(cc)) {
|
|
#ifdef SMP
|
|
/*
|
|
* If the callout was scheduled for
|
|
* migration just perform it now.
|
|
*/
|
|
new_cpu = cc->cc_migration_cpu;
|
|
new_ticks = cc->cc_migration_ticks;
|
|
new_func = cc->cc_migration_func;
|
|
new_arg = cc->cc_migration_arg;
|
|
cc_cme_cleanup(cc);
|
|
|
|
/*
|
|
* Handle deferred callout stops
|
|
*/
|
|
if ((c->c_flags & CALLOUT_DFRMIGRATION) == 0) {
|
|
CTR3(KTR_CALLOUT,
|
|
"deferred cancelled %p func %p arg %p",
|
|
c, new_func, new_arg);
|
|
callout_cc_del(c, cc);
|
|
goto nextc;
|
|
}
|
|
|
|
c->c_flags &= ~CALLOUT_DFRMIGRATION;
|
|
|
|
/*
|
|
* It should be assert here that the
|
|
* callout is not destroyed but that
|
|
* is not easy.
|
|
*/
|
|
new_cc = callout_cpu_switch(c, cc, new_cpu);
|
|
callout_cc_add(c, new_cc, new_ticks, new_func, new_arg,
|
|
new_cpu);
|
|
CC_UNLOCK(new_cc);
|
|
CC_LOCK(cc);
|
|
#else
|
|
panic("migration should not happen");
|
|
#endif
|
|
}
|
|
#ifdef SMP
|
|
nextc:
|
|
#endif
|
|
return (cc->cc_next);
|
|
}
|
|
|
|
/*
|
|
* The callout mechanism is based on the work of Adam M. Costello and
|
|
* George Varghese, published in a technical report entitled "Redesigning
|
|
* the BSD Callout and Timer Facilities" and modified slightly for inclusion
|
|
* in FreeBSD by Justin T. Gibbs. The original work on the data structures
|
|
* used in this implementation was published by G. Varghese and T. Lauck in
|
|
* the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
|
|
* the Efficient Implementation of a Timer Facility" in the Proceedings of
|
|
* the 11th ACM Annual Symposium on Operating Systems Principles,
|
|
* Austin, Texas Nov 1987.
|
|
*/
|
|
|
|
/*
|
|
* Software (low priority) clock interrupt.
|
|
* Run periodic events from timeout queue.
|
|
*/
|
|
void
|
|
softclock(void *arg)
|
|
{
|
|
struct callout_cpu *cc;
|
|
struct callout *c;
|
|
struct callout_tailq *bucket;
|
|
int curticks;
|
|
int steps; /* #steps since we last allowed interrupts */
|
|
int depth;
|
|
int mpcalls;
|
|
int lockcalls;
|
|
int gcalls;
|
|
|
|
#ifndef MAX_SOFTCLOCK_STEPS
|
|
#define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */
|
|
#endif /* MAX_SOFTCLOCK_STEPS */
|
|
|
|
mpcalls = 0;
|
|
lockcalls = 0;
|
|
gcalls = 0;
|
|
depth = 0;
|
|
steps = 0;
|
|
cc = (struct callout_cpu *)arg;
|
|
CC_LOCK(cc);
|
|
while (cc->cc_softticks - 1 != cc->cc_ticks) {
|
|
/*
|
|
* cc_softticks may be modified by hard clock, so cache
|
|
* it while we work on a given bucket.
|
|
*/
|
|
curticks = cc->cc_softticks;
|
|
cc->cc_softticks++;
|
|
bucket = &cc->cc_callwheel[curticks & callwheelmask];
|
|
c = TAILQ_FIRST(bucket);
|
|
while (c != NULL) {
|
|
depth++;
|
|
if (c->c_time != curticks) {
|
|
c = TAILQ_NEXT(c, c_links.tqe);
|
|
++steps;
|
|
if (steps >= MAX_SOFTCLOCK_STEPS) {
|
|
cc->cc_next = c;
|
|
/* Give interrupts a chance. */
|
|
CC_UNLOCK(cc);
|
|
; /* nothing */
|
|
CC_LOCK(cc);
|
|
c = cc->cc_next;
|
|
steps = 0;
|
|
}
|
|
} else {
|
|
TAILQ_REMOVE(bucket, c, c_links.tqe);
|
|
c = softclock_call_cc(c, cc, &mpcalls,
|
|
&lockcalls, &gcalls);
|
|
steps = 0;
|
|
}
|
|
}
|
|
}
|
|
avg_depth += (depth * 1000 - avg_depth) >> 8;
|
|
avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
|
|
avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
|
|
avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
|
|
cc->cc_next = NULL;
|
|
CC_UNLOCK(cc);
|
|
}
|
|
|
|
/*
|
|
* timeout --
|
|
* Execute a function after a specified length of time.
|
|
*
|
|
* untimeout --
|
|
* Cancel previous timeout function call.
|
|
*
|
|
* callout_handle_init --
|
|
* Initialize a handle so that using it with untimeout is benign.
|
|
*
|
|
* See AT&T BCI Driver Reference Manual for specification. This
|
|
* implementation differs from that one in that although an
|
|
* identification value is returned from timeout, the original
|
|
* arguments to timeout as well as the identifier are used to
|
|
* identify entries for untimeout.
|
|
*/
|
|
struct callout_handle
|
|
timeout(ftn, arg, to_ticks)
|
|
timeout_t *ftn;
|
|
void *arg;
|
|
int to_ticks;
|
|
{
|
|
struct callout_cpu *cc;
|
|
struct callout *new;
|
|
struct callout_handle handle;
|
|
|
|
cc = CC_CPU(timeout_cpu);
|
|
CC_LOCK(cc);
|
|
/* Fill in the next free callout structure. */
|
|
new = SLIST_FIRST(&cc->cc_callfree);
|
|
if (new == NULL)
|
|
/* XXX Attempt to malloc first */
|
|
panic("timeout table full");
|
|
SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
|
|
callout_reset(new, to_ticks, ftn, arg);
|
|
handle.callout = new;
|
|
CC_UNLOCK(cc);
|
|
|
|
return (handle);
|
|
}
|
|
|
|
void
|
|
untimeout(ftn, arg, handle)
|
|
timeout_t *ftn;
|
|
void *arg;
|
|
struct callout_handle handle;
|
|
{
|
|
struct callout_cpu *cc;
|
|
|
|
/*
|
|
* Check for a handle that was initialized
|
|
* by callout_handle_init, but never used
|
|
* for a real timeout.
|
|
*/
|
|
if (handle.callout == NULL)
|
|
return;
|
|
|
|
cc = callout_lock(handle.callout);
|
|
if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
|
|
callout_stop(handle.callout);
|
|
CC_UNLOCK(cc);
|
|
}
|
|
|
|
void
|
|
callout_handle_init(struct callout_handle *handle)
|
|
{
|
|
handle->callout = NULL;
|
|
}
|
|
|
|
/*
|
|
* New interface; clients allocate their own callout structures.
|
|
*
|
|
* callout_reset() - establish or change a timeout
|
|
* callout_stop() - disestablish a timeout
|
|
* callout_init() - initialize a callout structure so that it can
|
|
* safely be passed to callout_reset() and callout_stop()
|
|
*
|
|
* <sys/callout.h> defines three convenience macros:
|
|
*
|
|
* callout_active() - returns truth if callout has not been stopped,
|
|
* drained, or deactivated since the last time the callout was
|
|
* reset.
|
|
* callout_pending() - returns truth if callout is still waiting for timeout
|
|
* callout_deactivate() - marks the callout as having been serviced
|
|
*/
|
|
int
|
|
callout_reset_on(struct callout *c, int to_ticks, void (*ftn)(void *),
|
|
void *arg, int cpu)
|
|
{
|
|
struct callout_cpu *cc;
|
|
int cancelled = 0;
|
|
|
|
/*
|
|
* Don't allow migration of pre-allocated callouts lest they
|
|
* become unbalanced.
|
|
*/
|
|
if (c->c_flags & CALLOUT_LOCAL_ALLOC)
|
|
cpu = c->c_cpu;
|
|
cc = callout_lock(c);
|
|
if (cc->cc_curr == c) {
|
|
/*
|
|
* We're being asked to reschedule a callout which is
|
|
* currently in progress. If there is a lock then we
|
|
* can cancel the callout if it has not really started.
|
|
*/
|
|
if (c->c_lock != NULL && !cc->cc_cancel)
|
|
cancelled = cc->cc_cancel = 1;
|
|
if (cc->cc_waiting) {
|
|
/*
|
|
* Someone has called callout_drain to kill this
|
|
* callout. Don't reschedule.
|
|
*/
|
|
CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
|
|
cancelled ? "cancelled" : "failed to cancel",
|
|
c, c->c_func, c->c_arg);
|
|
CC_UNLOCK(cc);
|
|
return (cancelled);
|
|
}
|
|
}
|
|
if (c->c_flags & CALLOUT_PENDING) {
|
|
if (cc->cc_next == c) {
|
|
cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
|
|
}
|
|
TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
|
|
c_links.tqe);
|
|
|
|
cancelled = 1;
|
|
c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
|
|
}
|
|
|
|
#ifdef SMP
|
|
/*
|
|
* If the callout must migrate try to perform it immediately.
|
|
* If the callout is currently running, just defer the migration
|
|
* to a more appropriate moment.
|
|
*/
|
|
if (c->c_cpu != cpu) {
|
|
if (cc->cc_curr == c) {
|
|
cc->cc_migration_cpu = cpu;
|
|
cc->cc_migration_ticks = to_ticks;
|
|
cc->cc_migration_func = ftn;
|
|
cc->cc_migration_arg = arg;
|
|
c->c_flags |= CALLOUT_DFRMIGRATION;
|
|
CTR5(KTR_CALLOUT,
|
|
"migration of %p func %p arg %p in %d to %u deferred",
|
|
c, c->c_func, c->c_arg, to_ticks, cpu);
|
|
CC_UNLOCK(cc);
|
|
return (cancelled);
|
|
}
|
|
cc = callout_cpu_switch(c, cc, cpu);
|
|
}
|
|
#endif
|
|
|
|
callout_cc_add(c, cc, to_ticks, ftn, arg, cpu);
|
|
CTR5(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d",
|
|
cancelled ? "re" : "", c, c->c_func, c->c_arg, to_ticks);
|
|
CC_UNLOCK(cc);
|
|
|
|
return (cancelled);
|
|
}
|
|
|
|
/*
|
|
* Common idioms that can be optimized in the future.
|
|
*/
|
|
int
|
|
callout_schedule_on(struct callout *c, int to_ticks, int cpu)
|
|
{
|
|
return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
|
|
}
|
|
|
|
int
|
|
callout_schedule(struct callout *c, int to_ticks)
|
|
{
|
|
return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
|
|
}
|
|
|
|
int
|
|
_callout_stop_safe(c, safe)
|
|
struct callout *c;
|
|
int safe;
|
|
{
|
|
struct callout_cpu *cc, *old_cc;
|
|
struct lock_class *class;
|
|
int use_lock, sq_locked;
|
|
|
|
/*
|
|
* Some old subsystems don't hold Giant while running a callout_stop(),
|
|
* so just discard this check for the moment.
|
|
*/
|
|
if (!safe && c->c_lock != NULL) {
|
|
if (c->c_lock == &Giant.lock_object)
|
|
use_lock = mtx_owned(&Giant);
|
|
else {
|
|
use_lock = 1;
|
|
class = LOCK_CLASS(c->c_lock);
|
|
class->lc_assert(c->c_lock, LA_XLOCKED);
|
|
}
|
|
} else
|
|
use_lock = 0;
|
|
|
|
sq_locked = 0;
|
|
old_cc = NULL;
|
|
again:
|
|
cc = callout_lock(c);
|
|
|
|
/*
|
|
* If the callout was migrating while the callout cpu lock was
|
|
* dropped, just drop the sleepqueue lock and check the states
|
|
* again.
|
|
*/
|
|
if (sq_locked != 0 && cc != old_cc) {
|
|
#ifdef SMP
|
|
CC_UNLOCK(cc);
|
|
sleepq_release(&old_cc->cc_waiting);
|
|
sq_locked = 0;
|
|
old_cc = NULL;
|
|
goto again;
|
|
#else
|
|
panic("migration should not happen");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If the callout isn't pending, it's not on the queue, so
|
|
* don't attempt to remove it from the queue. We can try to
|
|
* stop it by other means however.
|
|
*/
|
|
if (!(c->c_flags & CALLOUT_PENDING)) {
|
|
c->c_flags &= ~CALLOUT_ACTIVE;
|
|
|
|
/*
|
|
* If it wasn't on the queue and it isn't the current
|
|
* callout, then we can't stop it, so just bail.
|
|
*/
|
|
if (cc->cc_curr != c) {
|
|
CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
|
|
c, c->c_func, c->c_arg);
|
|
CC_UNLOCK(cc);
|
|
if (sq_locked)
|
|
sleepq_release(&cc->cc_waiting);
|
|
return (0);
|
|
}
|
|
|
|
if (safe) {
|
|
/*
|
|
* The current callout is running (or just
|
|
* about to run) and blocking is allowed, so
|
|
* just wait for the current invocation to
|
|
* finish.
|
|
*/
|
|
while (cc->cc_curr == c) {
|
|
|
|
/*
|
|
* Use direct calls to sleepqueue interface
|
|
* instead of cv/msleep in order to avoid
|
|
* a LOR between cc_lock and sleepqueue
|
|
* chain spinlocks. This piece of code
|
|
* emulates a msleep_spin() call actually.
|
|
*
|
|
* If we already have the sleepqueue chain
|
|
* locked, then we can safely block. If we
|
|
* don't already have it locked, however,
|
|
* we have to drop the cc_lock to lock
|
|
* it. This opens several races, so we
|
|
* restart at the beginning once we have
|
|
* both locks. If nothing has changed, then
|
|
* we will end up back here with sq_locked
|
|
* set.
|
|
*/
|
|
if (!sq_locked) {
|
|
CC_UNLOCK(cc);
|
|
sleepq_lock(&cc->cc_waiting);
|
|
sq_locked = 1;
|
|
old_cc = cc;
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* Migration could be cancelled here, but
|
|
* as long as it is still not sure when it
|
|
* will be packed up, just let softclock()
|
|
* take care of it.
|
|
*/
|
|
cc->cc_waiting = 1;
|
|
DROP_GIANT();
|
|
CC_UNLOCK(cc);
|
|
sleepq_add(&cc->cc_waiting,
|
|
&cc->cc_lock.lock_object, "codrain",
|
|
SLEEPQ_SLEEP, 0);
|
|
sleepq_wait(&cc->cc_waiting, 0);
|
|
sq_locked = 0;
|
|
old_cc = NULL;
|
|
|
|
/* Reacquire locks previously released. */
|
|
PICKUP_GIANT();
|
|
CC_LOCK(cc);
|
|
}
|
|
} else if (use_lock && !cc->cc_cancel) {
|
|
/*
|
|
* The current callout is waiting for its
|
|
* lock which we hold. Cancel the callout
|
|
* and return. After our caller drops the
|
|
* lock, the callout will be skipped in
|
|
* softclock().
|
|
*/
|
|
cc->cc_cancel = 1;
|
|
CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
|
|
c, c->c_func, c->c_arg);
|
|
KASSERT(!cc_cme_migrating(cc),
|
|
("callout wrongly scheduled for migration"));
|
|
CC_UNLOCK(cc);
|
|
KASSERT(!sq_locked, ("sleepqueue chain locked"));
|
|
return (1);
|
|
} else if ((c->c_flags & CALLOUT_DFRMIGRATION) != 0) {
|
|
c->c_flags &= ~CALLOUT_DFRMIGRATION;
|
|
CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
|
|
c, c->c_func, c->c_arg);
|
|
CC_UNLOCK(cc);
|
|
return (1);
|
|
}
|
|
CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
|
|
c, c->c_func, c->c_arg);
|
|
CC_UNLOCK(cc);
|
|
KASSERT(!sq_locked, ("sleepqueue chain still locked"));
|
|
return (0);
|
|
}
|
|
if (sq_locked)
|
|
sleepq_release(&cc->cc_waiting);
|
|
|
|
c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
|
|
|
|
CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
|
|
c, c->c_func, c->c_arg);
|
|
TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
|
|
c_links.tqe);
|
|
callout_cc_del(c, cc);
|
|
|
|
CC_UNLOCK(cc);
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
callout_init(c, mpsafe)
|
|
struct callout *c;
|
|
int mpsafe;
|
|
{
|
|
bzero(c, sizeof *c);
|
|
if (mpsafe) {
|
|
c->c_lock = NULL;
|
|
c->c_flags = CALLOUT_RETURNUNLOCKED;
|
|
} else {
|
|
c->c_lock = &Giant.lock_object;
|
|
c->c_flags = 0;
|
|
}
|
|
c->c_cpu = timeout_cpu;
|
|
}
|
|
|
|
void
|
|
_callout_init_lock(c, lock, flags)
|
|
struct callout *c;
|
|
struct lock_object *lock;
|
|
int flags;
|
|
{
|
|
bzero(c, sizeof *c);
|
|
c->c_lock = lock;
|
|
KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
|
|
("callout_init_lock: bad flags %d", flags));
|
|
KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
|
|
("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
|
|
KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
|
|
(LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
|
|
__func__));
|
|
c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
|
|
c->c_cpu = timeout_cpu;
|
|
}
|
|
|
|
#ifdef APM_FIXUP_CALLTODO
|
|
/*
|
|
* Adjust the kernel calltodo timeout list. This routine is used after
|
|
* an APM resume to recalculate the calltodo timer list values with the
|
|
* number of hz's we have been sleeping. The next hardclock() will detect
|
|
* that there are fired timers and run softclock() to execute them.
|
|
*
|
|
* Please note, I have not done an exhaustive analysis of what code this
|
|
* might break. I am motivated to have my select()'s and alarm()'s that
|
|
* have expired during suspend firing upon resume so that the applications
|
|
* which set the timer can do the maintanence the timer was for as close
|
|
* as possible to the originally intended time. Testing this code for a
|
|
* week showed that resuming from a suspend resulted in 22 to 25 timers
|
|
* firing, which seemed independant on whether the suspend was 2 hours or
|
|
* 2 days. Your milage may vary. - Ken Key <key@cs.utk.edu>
|
|
*/
|
|
void
|
|
adjust_timeout_calltodo(time_change)
|
|
struct timeval *time_change;
|
|
{
|
|
register struct callout *p;
|
|
unsigned long delta_ticks;
|
|
|
|
/*
|
|
* How many ticks were we asleep?
|
|
* (stolen from tvtohz()).
|
|
*/
|
|
|
|
/* Don't do anything */
|
|
if (time_change->tv_sec < 0)
|
|
return;
|
|
else if (time_change->tv_sec <= LONG_MAX / 1000000)
|
|
delta_ticks = (time_change->tv_sec * 1000000 +
|
|
time_change->tv_usec + (tick - 1)) / tick + 1;
|
|
else if (time_change->tv_sec <= LONG_MAX / hz)
|
|
delta_ticks = time_change->tv_sec * hz +
|
|
(time_change->tv_usec + (tick - 1)) / tick + 1;
|
|
else
|
|
delta_ticks = LONG_MAX;
|
|
|
|
if (delta_ticks > INT_MAX)
|
|
delta_ticks = INT_MAX;
|
|
|
|
/*
|
|
* Now rip through the timer calltodo list looking for timers
|
|
* to expire.
|
|
*/
|
|
|
|
/* don't collide with softclock() */
|
|
CC_LOCK(cc);
|
|
for (p = calltodo.c_next; p != NULL; p = p->c_next) {
|
|
p->c_time -= delta_ticks;
|
|
|
|
/* Break if the timer had more time on it than delta_ticks */
|
|
if (p->c_time > 0)
|
|
break;
|
|
|
|
/* take back the ticks the timer didn't use (p->c_time <= 0) */
|
|
delta_ticks = -p->c_time;
|
|
}
|
|
CC_UNLOCK(cc);
|
|
|
|
return;
|
|
}
|
|
#endif /* APM_FIXUP_CALLTODO */
|