1084 lines
28 KiB
C
1084 lines
28 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2012 Adrian Chadd <adrian@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
* redistribution must be conditioned upon including a substantially
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Driver for the Atheros Wireless LAN controller.
|
|
*
|
|
* This software is derived from work of Atsushi Onoe; his contribution
|
|
* is greatly appreciated.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ath.h"
|
|
/*
|
|
* This is needed for register operations which are performed
|
|
* by the driver - eg, calls to ath_hal_gettsf32().
|
|
*
|
|
* It's also required for any AH_DEBUG checks in here, eg the
|
|
* module dependencies.
|
|
*/
|
|
#include "opt_ah.h"
|
|
#include "opt_wlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/module.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/smp.h> /* for mp_ncpus */
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_llc.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_regdomain.h>
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
#include <net80211/ieee80211_superg.h>
|
|
#endif
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
#include <net80211/ieee80211_tdma.h>
|
|
#endif
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_athvar.h>
|
|
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
|
|
#include <dev/ath/ath_hal/ah_diagcodes.h>
|
|
|
|
#include <dev/ath/if_ath_debug.h>
|
|
#include <dev/ath/if_ath_misc.h>
|
|
#include <dev/ath/if_ath_tsf.h>
|
|
#include <dev/ath/if_ath_tx.h>
|
|
#include <dev/ath/if_ath_sysctl.h>
|
|
#include <dev/ath/if_ath_led.h>
|
|
#include <dev/ath/if_ath_keycache.h>
|
|
#include <dev/ath/if_ath_rx.h>
|
|
#include <dev/ath/if_ath_beacon.h>
|
|
#include <dev/ath/if_athdfs.h>
|
|
#include <dev/ath/if_ath_descdma.h>
|
|
|
|
#ifdef ATH_TX99_DIAG
|
|
#include <dev/ath/ath_tx99/ath_tx99.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_ath_tx_edma.h>
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
#include <dev/ath/if_ath_alq.h>
|
|
#endif
|
|
|
|
/*
|
|
* some general macros
|
|
*/
|
|
#define INCR(_l, _sz) (_l) ++; (_l) &= ((_sz) - 1)
|
|
#define DECR(_l, _sz) (_l) --; (_l) &= ((_sz) - 1)
|
|
|
|
/*
|
|
* XXX doesn't belong here, and should be tunable
|
|
*/
|
|
#define ATH_TXSTATUS_RING_SIZE 512
|
|
|
|
MALLOC_DECLARE(M_ATHDEV);
|
|
|
|
static void ath_edma_tx_processq(struct ath_softc *sc, int dosched);
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
static void
|
|
ath_tx_alq_edma_push(struct ath_softc *sc, int txq, int nframes,
|
|
int fifo_depth, int frame_cnt)
|
|
{
|
|
struct if_ath_alq_tx_fifo_push aq;
|
|
|
|
aq.txq = htobe32(txq);
|
|
aq.nframes = htobe32(nframes);
|
|
aq.fifo_depth = htobe32(fifo_depth);
|
|
aq.frame_cnt = htobe32(frame_cnt);
|
|
|
|
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TX_FIFO_PUSH,
|
|
sizeof(aq),
|
|
(const char *) &aq);
|
|
}
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
|
|
/*
|
|
* XXX TODO: push an aggregate as a single FIFO slot, even though
|
|
* it may not meet the TXOP for say, DBA-gated traffic in TDMA mode.
|
|
*
|
|
* The TX completion code handles a TX FIFO slot having multiple frames,
|
|
* aggregate or otherwise, but it may just make things easier to deal
|
|
* with.
|
|
*
|
|
* XXX TODO: track the number of aggregate subframes and put that in the
|
|
* push alq message.
|
|
*/
|
|
static void
|
|
ath_tx_edma_push_staging_list(struct ath_softc *sc, struct ath_txq *txq,
|
|
int limit)
|
|
{
|
|
struct ath_buf *bf, *bf_last;
|
|
struct ath_buf *bfi, *bfp;
|
|
int i, sqdepth;
|
|
TAILQ_HEAD(axq_q_f_s, ath_buf) sq;
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_TX_PROC,
|
|
"%s: called; TXQ=%d, fifo.depth=%d, axq_q empty=%d\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
txq->axq_fifo_depth,
|
|
!! (TAILQ_EMPTY(&txq->axq_q)));
|
|
|
|
/*
|
|
* Don't bother doing any work if it's full.
|
|
*/
|
|
if (txq->axq_fifo_depth >= HAL_TXFIFO_DEPTH)
|
|
return;
|
|
|
|
if (TAILQ_EMPTY(&txq->axq_q))
|
|
return;
|
|
|
|
TAILQ_INIT(&sq);
|
|
|
|
/*
|
|
* First pass - walk sq, queue up to 'limit' entries,
|
|
* subtract them from the staging queue.
|
|
*/
|
|
sqdepth = 0;
|
|
for (i = 0; i < limit; i++) {
|
|
/* Grab the head entry */
|
|
bf = ATH_TXQ_FIRST(txq);
|
|
if (bf == NULL)
|
|
break;
|
|
ATH_TXQ_REMOVE(txq, bf, bf_list);
|
|
|
|
/* Queue it into our staging list */
|
|
TAILQ_INSERT_TAIL(&sq, bf, bf_list);
|
|
|
|
/* Ensure the flags are cleared */
|
|
bf->bf_flags &= ~(ATH_BUF_FIFOPTR | ATH_BUF_FIFOEND);
|
|
sqdepth++;
|
|
}
|
|
|
|
/*
|
|
* Ok, so now we have a staging list of up to 'limit'
|
|
* frames from the txq. Now let's wrap that up
|
|
* into its own list and pass that to the hardware
|
|
* as one FIFO entry.
|
|
*/
|
|
|
|
bf = TAILQ_FIRST(&sq);
|
|
bf_last = TAILQ_LAST(&sq, axq_q_s);
|
|
|
|
/*
|
|
* Ok, so here's the gymnastics reqiured to make this
|
|
* all sensible.
|
|
*/
|
|
|
|
/*
|
|
* Tag the first/last buffer appropriately.
|
|
*/
|
|
bf->bf_flags |= ATH_BUF_FIFOPTR;
|
|
bf_last->bf_flags |= ATH_BUF_FIFOEND;
|
|
|
|
/*
|
|
* Walk the descriptor list and link them appropriately.
|
|
*/
|
|
bfp = NULL;
|
|
TAILQ_FOREACH(bfi, &sq, bf_list) {
|
|
if (bfp != NULL) {
|
|
ath_hal_settxdesclink(sc->sc_ah, bfp->bf_lastds,
|
|
bfi->bf_daddr);
|
|
}
|
|
bfp = bfi;
|
|
}
|
|
|
|
i = 0;
|
|
TAILQ_FOREACH(bfi, &sq, bf_list) {
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
|
|
ath_printtxbuf(sc, bfi, txq->axq_qnum, i, 0);
|
|
#endif/* ATH_DEBUG */
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
|
|
ath_tx_alq_post(sc, bfi);
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* We now need to push this set of frames onto the tail
|
|
* of the FIFO queue. We don't adjust the aggregate
|
|
* count, only the queue depth counter(s).
|
|
* We also need to blank the link pointer now.
|
|
*/
|
|
|
|
TAILQ_CONCAT(&txq->fifo.axq_q, &sq, bf_list);
|
|
/* Bump total queue tracking in FIFO queue */
|
|
txq->fifo.axq_depth += sqdepth;
|
|
|
|
/* Bump FIFO queue */
|
|
txq->axq_fifo_depth++;
|
|
DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_TX_PROC,
|
|
"%s: queued %d packets; depth=%d, fifo depth=%d\n",
|
|
__func__, sqdepth, txq->fifo.axq_depth, txq->axq_fifo_depth);
|
|
|
|
/* Push the first entry into the hardware */
|
|
ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr);
|
|
|
|
/* Push start on the DMA if it's not already started */
|
|
ath_hal_txstart(sc->sc_ah, txq->axq_qnum);
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
ath_tx_alq_edma_push(sc, txq->axq_qnum, sqdepth,
|
|
txq->axq_fifo_depth,
|
|
txq->fifo.axq_depth);
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
}
|
|
|
|
#define TX_BATCH_SIZE 32
|
|
|
|
/*
|
|
* Push some frames into the TX FIFO if we have space.
|
|
*/
|
|
static void
|
|
ath_edma_tx_fifo_fill(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC,
|
|
"%s: Q%d: called; fifo.depth=%d, fifo depth=%d, depth=%d, aggr_depth=%d\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
txq->fifo.axq_depth,
|
|
txq->axq_fifo_depth,
|
|
txq->axq_depth,
|
|
txq->axq_aggr_depth);
|
|
|
|
/*
|
|
* For now, push up to 32 frames per TX FIFO slot.
|
|
* If more are in the hardware queue then they'll
|
|
* get populated when we try to send another frame
|
|
* or complete a frame - so at most there'll be
|
|
* 32 non-AMPDU frames per node/TID anyway.
|
|
*
|
|
* Note that the hardware staging queue will limit
|
|
* how many frames in total we will have pushed into
|
|
* here.
|
|
*
|
|
* Later on, we'll want to push less frames into
|
|
* the TX FIFO since we don't want to necessarily
|
|
* fill tens or hundreds of milliseconds of potential
|
|
* frames.
|
|
*
|
|
* However, we need more frames right now because of
|
|
* how the MAC implements the frame scheduling policy.
|
|
* It only ungates a single FIFO entry at a time,
|
|
* and will run that until CHNTIME expires or the
|
|
* end of that FIFO entry descriptor list is reached.
|
|
* So for TDMA we suffer a big performance penalty -
|
|
* single TX FIFO entries mean the MAC only sends out
|
|
* one frame per DBA event, which turned out on average
|
|
* 6ms per TX frame.
|
|
*
|
|
* So, for aggregates it's okay - it'll push two at a
|
|
* time and this will just do them more efficiently.
|
|
* For non-aggregates it'll do 4 at a time, up to the
|
|
* non-aggr limit (non_aggr, which is 32.) They should
|
|
* be time based rather than a hard count, but I also
|
|
* do need sleep.
|
|
*/
|
|
|
|
/*
|
|
* Do some basic, basic batching to the hardware
|
|
* queue.
|
|
*
|
|
* If we have TX_BATCH_SIZE entries in the staging
|
|
* queue, then let's try to send them all in one hit.
|
|
*
|
|
* Ensure we don't push more than TX_BATCH_SIZE worth
|
|
* in, otherwise we end up draining 8 slots worth of
|
|
* 32 frames into the hardware queue and then we don't
|
|
* attempt to push more frames in until we empty the
|
|
* FIFO.
|
|
*/
|
|
if (txq->axq_depth >= TX_BATCH_SIZE / 2 &&
|
|
txq->fifo.axq_depth <= TX_BATCH_SIZE) {
|
|
ath_tx_edma_push_staging_list(sc, txq, TX_BATCH_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Aggregate check: if we have less than two FIFO slots
|
|
* busy and we have some aggregate frames, queue it.
|
|
*
|
|
* Now, ideally we'd just check to see if the scheduler
|
|
* has given us aggregate frames and push them into the FIFO
|
|
* as individual slots, as honestly we should just be pushing
|
|
* a single aggregate in as one FIFO slot.
|
|
*
|
|
* Let's do that next once I know this works.
|
|
*/
|
|
else if (txq->axq_aggr_depth > 0 && txq->axq_fifo_depth < 2)
|
|
ath_tx_edma_push_staging_list(sc, txq, TX_BATCH_SIZE);
|
|
|
|
/*
|
|
*
|
|
* If we have less, and the TXFIFO isn't empty, let's
|
|
* wait until we've finished sending the FIFO.
|
|
*
|
|
* If we have less, and the TXFIFO is empty, then
|
|
* send them.
|
|
*/
|
|
else if (txq->axq_fifo_depth == 0) {
|
|
ath_tx_edma_push_staging_list(sc, txq, TX_BATCH_SIZE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Re-initialise the DMA FIFO with the current contents of
|
|
* said TXQ.
|
|
*
|
|
* This should only be called as part of the chip reset path, as it
|
|
* assumes the FIFO is currently empty.
|
|
*/
|
|
static void
|
|
ath_edma_dma_restart(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_buf *bf;
|
|
int i = 0;
|
|
int fifostart = 1;
|
|
int old_fifo_depth;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: Q%d: called\n",
|
|
__func__,
|
|
txq->axq_qnum);
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
/*
|
|
* Let's log if the tracked FIFO depth doesn't match
|
|
* what we actually push in.
|
|
*/
|
|
old_fifo_depth = txq->axq_fifo_depth;
|
|
txq->axq_fifo_depth = 0;
|
|
|
|
/*
|
|
* Walk the FIFO staging list, looking for "head" entries.
|
|
* Since we may have a partially completed list of frames,
|
|
* we push the first frame we see into the FIFO and re-mark
|
|
* it as the head entry. We then skip entries until we see
|
|
* FIFO end, at which point we get ready to push another
|
|
* entry into the FIFO.
|
|
*/
|
|
TAILQ_FOREACH(bf, &txq->fifo.axq_q, bf_list) {
|
|
/*
|
|
* If we're looking for FIFOEND and we haven't found
|
|
* it, skip.
|
|
*
|
|
* If we're looking for FIFOEND and we've found it,
|
|
* reset for another descriptor.
|
|
*/
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
|
|
ath_printtxbuf(sc, bf, txq->axq_qnum, i, 0);
|
|
#endif/* ATH_DEBUG */
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
|
|
ath_tx_alq_post(sc, bf);
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
|
|
if (fifostart == 0) {
|
|
if (bf->bf_flags & ATH_BUF_FIFOEND)
|
|
fifostart = 1;
|
|
continue;
|
|
}
|
|
|
|
/* Make sure we're not overflowing the FIFO! */
|
|
if (txq->axq_fifo_depth >= HAL_TXFIFO_DEPTH) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: Q%d: more frames in the queue; FIFO depth=%d?!\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
txq->axq_fifo_depth);
|
|
}
|
|
|
|
#if 0
|
|
DPRINTF(sc, ATH_DEBUG_RESET,
|
|
"%s: Q%d: depth=%d: pushing bf=%p; start=%d, end=%d\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
txq->axq_fifo_depth,
|
|
bf,
|
|
!! (bf->bf_flags & ATH_BUF_FIFOPTR),
|
|
!! (bf->bf_flags & ATH_BUF_FIFOEND));
|
|
#endif
|
|
|
|
/*
|
|
* Set this to be the first buffer in the FIFO
|
|
* list - even if it's also the last buffer in
|
|
* a FIFO list!
|
|
*/
|
|
bf->bf_flags |= ATH_BUF_FIFOPTR;
|
|
|
|
/* Push it into the FIFO and bump the FIFO count */
|
|
ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr);
|
|
txq->axq_fifo_depth++;
|
|
|
|
/*
|
|
* If this isn't the last entry either, let's
|
|
* clear fifostart so we continue looking for
|
|
* said last entry.
|
|
*/
|
|
if (! (bf->bf_flags & ATH_BUF_FIFOEND))
|
|
fifostart = 0;
|
|
i++;
|
|
}
|
|
|
|
/* Only bother starting the queue if there's something in it */
|
|
if (i > 0)
|
|
ath_hal_txstart(sc->sc_ah, txq->axq_qnum);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: Q%d: FIFO depth was %d, is %d\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
old_fifo_depth,
|
|
txq->axq_fifo_depth);
|
|
|
|
/* And now, let's check! */
|
|
if (txq->axq_fifo_depth != old_fifo_depth) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: Q%d: FIFO depth should be %d, is %d\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
old_fifo_depth,
|
|
txq->axq_fifo_depth);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Hand off this frame to a hardware queue.
|
|
*
|
|
* Things are a bit hairy in the EDMA world. The TX FIFO is only
|
|
* 8 entries deep, so we need to keep track of exactly what we've
|
|
* pushed into the FIFO and what's just sitting in the TX queue,
|
|
* waiting to go out.
|
|
*
|
|
* So this is split into two halves - frames get appended to the
|
|
* TXQ; then a scheduler is called to push some frames into the
|
|
* actual TX FIFO.
|
|
*/
|
|
static void
|
|
ath_edma_xmit_handoff_hw(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_buf *bf)
|
|
{
|
|
|
|
ATH_TXQ_LOCK(txq);
|
|
|
|
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
|
|
("%s: busy status 0x%x", __func__, bf->bf_flags));
|
|
|
|
/*
|
|
* XXX TODO: write a hard-coded check to ensure that
|
|
* the queue id in the TX descriptor matches txq->axq_qnum.
|
|
*/
|
|
|
|
/* Update aggr stats */
|
|
if (bf->bf_state.bfs_aggr)
|
|
txq->axq_aggr_depth++;
|
|
|
|
/* Push and update frame stats */
|
|
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
|
|
|
|
/*
|
|
* Finally, call the FIFO schedule routine to schedule some
|
|
* frames to the FIFO.
|
|
*/
|
|
ath_edma_tx_fifo_fill(sc, txq);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
}
|
|
|
|
/*
|
|
* Hand off this frame to a multicast software queue.
|
|
*
|
|
* The EDMA TX CABQ will get a list of chained frames, chained
|
|
* together using the next pointer. The single head of that
|
|
* particular queue is pushed to the hardware CABQ.
|
|
*/
|
|
static void
|
|
ath_edma_xmit_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_buf *bf)
|
|
{
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
|
|
("%s: busy status 0x%x", __func__, bf->bf_flags));
|
|
|
|
ATH_TXQ_LOCK(txq);
|
|
/*
|
|
* XXX this is mostly duplicated in ath_tx_handoff_mcast().
|
|
*/
|
|
if (ATH_TXQ_LAST(txq, axq_q_s) != NULL) {
|
|
struct ath_buf *bf_last = ATH_TXQ_LAST(txq, axq_q_s);
|
|
struct ieee80211_frame *wh;
|
|
|
|
/* mark previous frame */
|
|
wh = mtod(bf_last->bf_m, struct ieee80211_frame *);
|
|
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
|
|
|
|
/* re-sync buffer to memory */
|
|
bus_dmamap_sync(sc->sc_dmat, bf_last->bf_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* link descriptor */
|
|
ath_hal_settxdesclink(sc->sc_ah,
|
|
bf_last->bf_lastds,
|
|
bf->bf_daddr);
|
|
}
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
|
|
ath_tx_alq_post(sc, bf);
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
}
|
|
|
|
/*
|
|
* Handoff this frame to the hardware.
|
|
*
|
|
* For the multicast queue, this will treat it as a software queue
|
|
* and append it to the list, after updating the MORE_DATA flag
|
|
* in the previous frame. The cabq processing code will ensure
|
|
* that the queue contents gets transferred over.
|
|
*
|
|
* For the hardware queues, this will queue a frame to the queue
|
|
* like before, then populate the FIFO from that. Since the
|
|
* EDMA hardware has 8 FIFO slots per TXQ, this ensures that
|
|
* frames such as management frames don't get prematurely dropped.
|
|
*
|
|
* This does imply that a similar flush-hwq-to-fifoq method will
|
|
* need to be called from the processq function, before the
|
|
* per-node software scheduler is called.
|
|
*/
|
|
static void
|
|
ath_edma_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_buf *bf)
|
|
{
|
|
|
|
DPRINTF(sc, ATH_DEBUG_XMIT_DESC,
|
|
"%s: called; bf=%p, txq=%p, qnum=%d\n",
|
|
__func__,
|
|
bf,
|
|
txq,
|
|
txq->axq_qnum);
|
|
|
|
if (txq->axq_qnum == ATH_TXQ_SWQ)
|
|
ath_edma_xmit_handoff_mcast(sc, txq, bf);
|
|
else
|
|
ath_edma_xmit_handoff_hw(sc, txq, bf);
|
|
}
|
|
|
|
static int
|
|
ath_edma_setup_txfifo(struct ath_softc *sc, int qnum)
|
|
{
|
|
struct ath_tx_edma_fifo *te = &sc->sc_txedma[qnum];
|
|
|
|
te->m_fifo = malloc(sizeof(struct ath_buf *) * HAL_TXFIFO_DEPTH,
|
|
M_ATHDEV,
|
|
M_NOWAIT | M_ZERO);
|
|
if (te->m_fifo == NULL) {
|
|
device_printf(sc->sc_dev, "%s: malloc failed\n",
|
|
__func__);
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Set initial "empty" state.
|
|
*/
|
|
te->m_fifo_head = te->m_fifo_tail = te->m_fifo_depth = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ath_edma_free_txfifo(struct ath_softc *sc, int qnum)
|
|
{
|
|
struct ath_tx_edma_fifo *te = &sc->sc_txedma[qnum];
|
|
|
|
/* XXX TODO: actually deref the ath_buf entries? */
|
|
free(te->m_fifo, M_ATHDEV);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ath_edma_dma_txsetup(struct ath_softc *sc)
|
|
{
|
|
int error;
|
|
int i;
|
|
|
|
error = ath_descdma_alloc_desc(sc, &sc->sc_txsdma,
|
|
NULL, "txcomp", sc->sc_tx_statuslen, ATH_TXSTATUS_RING_SIZE);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
ath_hal_setuptxstatusring(sc->sc_ah,
|
|
(void *) sc->sc_txsdma.dd_desc,
|
|
sc->sc_txsdma.dd_desc_paddr,
|
|
ATH_TXSTATUS_RING_SIZE);
|
|
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
|
|
ath_edma_setup_txfifo(sc, i);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ath_edma_dma_txteardown(struct ath_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
|
|
ath_edma_free_txfifo(sc, i);
|
|
}
|
|
|
|
ath_descdma_cleanup(sc, &sc->sc_txsdma, NULL);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Drain all TXQs, potentially after completing the existing completed
|
|
* frames.
|
|
*/
|
|
static void
|
|
ath_edma_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
|
|
{
|
|
int i;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
|
|
|
|
(void) ath_stoptxdma(sc);
|
|
|
|
/*
|
|
* If reset type is noloss, the TX FIFO needs to be serviced
|
|
* and those frames need to be handled.
|
|
*
|
|
* Otherwise, just toss everything in each TX queue.
|
|
*/
|
|
if (reset_type == ATH_RESET_NOLOSS) {
|
|
ath_edma_tx_processq(sc, 0);
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
ATH_TXQ_LOCK(&sc->sc_txq[i]);
|
|
/*
|
|
* Free the holding buffer; DMA is now
|
|
* stopped.
|
|
*/
|
|
ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
|
|
/*
|
|
* Reset the link pointer to NULL; there's
|
|
* no frames to chain DMA to.
|
|
*/
|
|
sc->sc_txq[i].axq_link = NULL;
|
|
ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_draintxq(sc, &sc->sc_txq[i]);
|
|
}
|
|
}
|
|
|
|
/* XXX dump out the TX completion FIFO contents */
|
|
|
|
/* XXX dump out the frames */
|
|
|
|
sc->sc_wd_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* TX completion tasklet.
|
|
*/
|
|
|
|
static void
|
|
ath_edma_tx_proc(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *) arg;
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txproc_cnt++;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
#if 0
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: called, npending=%d\n",
|
|
__func__, npending);
|
|
#endif
|
|
ath_edma_tx_processq(sc, 1);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txproc_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ath_tx_kick(sc);
|
|
}
|
|
|
|
/*
|
|
* Process the TX status queue.
|
|
*/
|
|
static void
|
|
ath_edma_tx_processq(struct ath_softc *sc, int dosched)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
struct ath_tx_status ts;
|
|
struct ath_txq *txq;
|
|
struct ath_buf *bf;
|
|
struct ieee80211_node *ni;
|
|
int nacked = 0;
|
|
int idx;
|
|
int i;
|
|
|
|
#ifdef ATH_DEBUG
|
|
/* XXX */
|
|
uint32_t txstatus[32];
|
|
#endif
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: called\n", __func__);
|
|
|
|
for (idx = 0; ; idx++) {
|
|
bzero(&ts, sizeof(ts));
|
|
|
|
ATH_TXSTATUS_LOCK(sc);
|
|
#ifdef ATH_DEBUG
|
|
ath_hal_gettxrawtxdesc(ah, txstatus);
|
|
#endif
|
|
status = ath_hal_txprocdesc(ah, NULL, (void *) &ts);
|
|
ATH_TXSTATUS_UNLOCK(sc);
|
|
|
|
if (status == HAL_EINPROGRESS) {
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC,
|
|
"%s: (%d): EINPROGRESS\n",
|
|
__func__, idx);
|
|
break;
|
|
}
|
|
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_TX_PROC)
|
|
if (ts.ts_queue_id != sc->sc_bhalq)
|
|
ath_printtxstatbuf(sc, NULL, txstatus, ts.ts_queue_id,
|
|
idx, (status == HAL_OK));
|
|
#endif
|
|
|
|
/*
|
|
* If there is an error with this descriptor, continue
|
|
* processing.
|
|
*
|
|
* XXX TBD: log some statistics?
|
|
*/
|
|
if (status == HAL_EIO) {
|
|
device_printf(sc->sc_dev, "%s: invalid TX status?\n",
|
|
__func__);
|
|
break;
|
|
}
|
|
|
|
#if defined(ATH_DEBUG_ALQ) && defined(ATH_DEBUG)
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS)) {
|
|
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
|
|
sc->sc_tx_statuslen,
|
|
(char *) txstatus);
|
|
}
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
|
|
/*
|
|
* At this point we have a valid status descriptor.
|
|
* The QID and descriptor ID (which currently isn't set)
|
|
* is part of the status.
|
|
*
|
|
* We then assume that the descriptor in question is the
|
|
* -head- of the given QID. Eventually we should verify
|
|
* this by using the descriptor ID.
|
|
*/
|
|
|
|
/*
|
|
* The beacon queue is not currently a "real" queue.
|
|
* Frames aren't pushed onto it and the lock isn't setup.
|
|
* So skip it for now; the beacon handling code will
|
|
* free and alloc more beacon buffers as appropriate.
|
|
*/
|
|
if (ts.ts_queue_id == sc->sc_bhalq)
|
|
continue;
|
|
|
|
txq = &sc->sc_txq[ts.ts_queue_id];
|
|
|
|
ATH_TXQ_LOCK(txq);
|
|
bf = ATH_TXQ_FIRST(&txq->fifo);
|
|
|
|
/*
|
|
* Work around the situation where I'm seeing notifications
|
|
* for Q1 when no frames are available. That needs to be
|
|
* debugged but not by crashing _here_.
|
|
*/
|
|
if (bf == NULL) {
|
|
device_printf(sc->sc_dev, "%s: Q%d: empty?\n",
|
|
__func__,
|
|
ts.ts_queue_id);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
continue;
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: Q%d, bf=%p, start=%d, end=%d\n",
|
|
__func__,
|
|
ts.ts_queue_id, bf,
|
|
!! (bf->bf_flags & ATH_BUF_FIFOPTR),
|
|
!! (bf->bf_flags & ATH_BUF_FIFOEND));
|
|
|
|
/* XXX TODO: actually output debugging info about this */
|
|
|
|
#if 0
|
|
/* XXX assert the buffer/descriptor matches the status descid */
|
|
if (ts.ts_desc_id != bf->bf_descid) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: mismatched descid (qid=%d, tsdescid=%d, "
|
|
"bfdescid=%d\n",
|
|
__func__,
|
|
ts.ts_queue_id,
|
|
ts.ts_desc_id,
|
|
bf->bf_descid);
|
|
}
|
|
#endif
|
|
|
|
/* This removes the buffer and decrements the queue depth */
|
|
ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
|
|
if (bf->bf_state.bfs_aggr)
|
|
txq->axq_aggr_depth--;
|
|
|
|
/*
|
|
* If this was the end of a FIFO set, decrement FIFO depth
|
|
*/
|
|
if (bf->bf_flags & ATH_BUF_FIFOEND)
|
|
txq->axq_fifo_depth--;
|
|
|
|
/*
|
|
* If this isn't the final buffer in a FIFO set, mark
|
|
* the buffer as busy so it goes onto the holding queue.
|
|
*/
|
|
if (! (bf->bf_flags & ATH_BUF_FIFOEND))
|
|
bf->bf_flags |= ATH_BUF_BUSY;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: Q%d: FIFO depth is now %d (%d)\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
txq->axq_fifo_depth,
|
|
txq->fifo.axq_depth);
|
|
|
|
/* XXX assert FIFO depth >= 0 */
|
|
ATH_TXQ_UNLOCK(txq);
|
|
|
|
/*
|
|
* Outside of the TX lock - if the buffer is end
|
|
* end buffer in this FIFO, we don't need a holding
|
|
* buffer any longer.
|
|
*/
|
|
if (bf->bf_flags & ATH_BUF_FIFOEND) {
|
|
ATH_TXQ_LOCK(txq);
|
|
ath_txq_freeholdingbuf(sc, txq);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
}
|
|
|
|
/*
|
|
* First we need to make sure ts_rate is valid.
|
|
*
|
|
* Pre-EDMA chips pass the whole TX descriptor to
|
|
* the proctxdesc function which will then fill out
|
|
* ts_rate based on the ts_finaltsi (final TX index)
|
|
* in the TX descriptor. However the TX completion
|
|
* FIFO doesn't have this information. So here we
|
|
* do a separate HAL call to populate that information.
|
|
*
|
|
* The same problem exists with ts_longretry.
|
|
* The FreeBSD HAL corrects ts_longretry in the HAL layer;
|
|
* the AR9380 HAL currently doesn't. So until the HAL
|
|
* is imported and this can be added, we correct for it
|
|
* here.
|
|
*/
|
|
/* XXX TODO */
|
|
/* XXX faked for now. Ew. */
|
|
if (ts.ts_finaltsi < 4) {
|
|
ts.ts_rate =
|
|
bf->bf_state.bfs_rc[ts.ts_finaltsi].ratecode;
|
|
switch (ts.ts_finaltsi) {
|
|
case 3: ts.ts_longretry +=
|
|
bf->bf_state.bfs_rc[2].tries;
|
|
case 2: ts.ts_longretry +=
|
|
bf->bf_state.bfs_rc[1].tries;
|
|
case 1: ts.ts_longretry +=
|
|
bf->bf_state.bfs_rc[0].tries;
|
|
}
|
|
} else {
|
|
device_printf(sc->sc_dev, "%s: finaltsi=%d\n",
|
|
__func__,
|
|
ts.ts_finaltsi);
|
|
ts.ts_rate = bf->bf_state.bfs_rc[0].ratecode;
|
|
}
|
|
|
|
/*
|
|
* XXX This is terrible.
|
|
*
|
|
* Right now, some code uses the TX status that is
|
|
* passed in here, but the completion handlers in the
|
|
* software TX path also use bf_status.ds_txstat.
|
|
* Ew. That should all go away.
|
|
*
|
|
* XXX It's also possible the rate control completion
|
|
* routine is called twice.
|
|
*/
|
|
memcpy(&bf->bf_status, &ts, sizeof(ts));
|
|
|
|
ni = bf->bf_node;
|
|
|
|
/* Update RSSI */
|
|
/* XXX duplicate from ath_tx_processq */
|
|
if (ni != NULL && ts.ts_status == 0 &&
|
|
((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
|
|
nacked++;
|
|
sc->sc_stats.ast_tx_rssi = ts.ts_rssi;
|
|
ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
|
|
ts.ts_rssi);
|
|
ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgtxrssi,
|
|
ts.ts_rssi);
|
|
}
|
|
|
|
/* Handle frame completion and rate control update */
|
|
ath_tx_process_buf_completion(sc, txq, &ts, bf);
|
|
|
|
/* NB: bf is invalid at this point */
|
|
}
|
|
|
|
sc->sc_wd_timer = 0;
|
|
|
|
/*
|
|
* XXX It's inefficient to do this if the FIFO queue is full,
|
|
* but there's no easy way right now to only populate
|
|
* the txq task for _one_ TXQ. This should be fixed.
|
|
*/
|
|
if (dosched) {
|
|
/* Attempt to schedule more hardware frames to the TX FIFO */
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
ATH_TX_LOCK(sc);
|
|
ath_txq_sched(sc, &sc->sc_txq[i]);
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
ATH_TXQ_LOCK(&sc->sc_txq[i]);
|
|
ath_edma_tx_fifo_fill(sc, &sc->sc_txq[i]);
|
|
ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
|
|
}
|
|
}
|
|
/* Kick software scheduler */
|
|
ath_tx_swq_kick(sc);
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: end\n", __func__);
|
|
}
|
|
|
|
static void
|
|
ath_edma_attach_comp_func(struct ath_softc *sc)
|
|
{
|
|
|
|
TASK_INIT(&sc->sc_txtask, 0, ath_edma_tx_proc, sc);
|
|
}
|
|
|
|
void
|
|
ath_xmit_setup_edma(struct ath_softc *sc)
|
|
{
|
|
|
|
/* Fetch EDMA field and buffer sizes */
|
|
(void) ath_hal_gettxdesclen(sc->sc_ah, &sc->sc_tx_desclen);
|
|
(void) ath_hal_gettxstatuslen(sc->sc_ah, &sc->sc_tx_statuslen);
|
|
(void) ath_hal_getntxmaps(sc->sc_ah, &sc->sc_tx_nmaps);
|
|
|
|
if (bootverbose) {
|
|
device_printf(sc->sc_dev, "TX descriptor length: %d\n",
|
|
sc->sc_tx_desclen);
|
|
device_printf(sc->sc_dev, "TX status length: %d\n",
|
|
sc->sc_tx_statuslen);
|
|
device_printf(sc->sc_dev, "TX buffers per descriptor: %d\n",
|
|
sc->sc_tx_nmaps);
|
|
}
|
|
|
|
sc->sc_tx.xmit_setup = ath_edma_dma_txsetup;
|
|
sc->sc_tx.xmit_teardown = ath_edma_dma_txteardown;
|
|
sc->sc_tx.xmit_attach_comp_func = ath_edma_attach_comp_func;
|
|
|
|
sc->sc_tx.xmit_dma_restart = ath_edma_dma_restart;
|
|
sc->sc_tx.xmit_handoff = ath_edma_xmit_handoff;
|
|
sc->sc_tx.xmit_drain = ath_edma_tx_drain;
|
|
}
|