freebsd-dev/module/zfs/zpl_super.c
Chunwei Chen 06ee0031a6 Fix memleak in zpl_parse_options
strsep() will advance tmp_mntopts, and will change it to NULL on last
iteration.  This will cause strfree(tmp_mntopts) to not free anything.

unreferenced object 0xffff8800883976c0 (size 64):
  comm "mount.zfs", pid 3361, jiffies 4294931877 (age 1482.408s)
  hex dump (first 32 bytes):
    72 77 00 73 74 72 69 63 74 61 74 69 6d 65 00 7a  rw.strictatime.z
    66 73 75 74 69 6c 00 6d 6e 74 70 6f 69 6e 74 3d  fsutil.mntpoint=
  backtrace:
    [<ffffffff81810c4e>] kmemleak_alloc+0x4e/0xb0
    [<ffffffff811f9cac>] __kmalloc+0x16c/0x250
    [<ffffffffc065ce9b>] strdup+0x3b/0x60 [spl]
    [<ffffffffc080fad6>] zpl_parse_options+0x56/0x300 [zfs]
    [<ffffffffc080fe46>] zpl_mount+0x36/0x80 [zfs]
    [<ffffffff81222dc8>] mount_fs+0x38/0x160
    [<ffffffff81240097>] vfs_kern_mount+0x67/0x110
    [<ffffffff812428e0>] do_mount+0x250/0xe20
    [<ffffffff812437d5>] SyS_mount+0x95/0xe0
    [<ffffffff8181aff6>] entry_SYSCALL_64_fastpath+0x1e/0xa8
    [<ffffffffffffffff>] 0xffffffffffffffff

Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4706
Issue #4708
2016-05-31 16:04:26 -07:00

552 lines
12 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
*/
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_ctldir.h>
#include <sys/zpl.h>
static struct inode *
zpl_inode_alloc(struct super_block *sb)
{
struct inode *ip;
VERIFY3S(zfs_inode_alloc(sb, &ip), ==, 0);
ip->i_version = 1;
return (ip);
}
static void
zpl_inode_destroy(struct inode *ip)
{
ASSERT(atomic_read(&ip->i_count) == 0);
zfs_inode_destroy(ip);
}
/*
* Called from __mark_inode_dirty() to reflect that something in the
* inode has changed. We use it to ensure the znode system attributes
* are always strictly update to date with respect to the inode.
*/
#ifdef HAVE_DIRTY_INODE_WITH_FLAGS
static void
zpl_dirty_inode(struct inode *ip, int flags)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
zfs_dirty_inode(ip, flags);
spl_fstrans_unmark(cookie);
}
#else
static void
zpl_dirty_inode(struct inode *ip)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
zfs_dirty_inode(ip, 0);
spl_fstrans_unmark(cookie);
}
#endif /* HAVE_DIRTY_INODE_WITH_FLAGS */
/*
* When ->drop_inode() is called its return value indicates if the
* inode should be evicted from the inode cache. If the inode is
* unhashed and has no links the default policy is to evict it
* immediately.
*
* Prior to 2.6.36 this eviction was accomplished by the vfs calling
* ->delete_inode(). It was ->delete_inode()'s responsibility to
* truncate the inode pages and call clear_inode(). The call to
* clear_inode() synchronously invalidates all the buffers and
* calls ->clear_inode(). It was ->clear_inode()'s responsibility
* to cleanup and filesystem specific data before freeing the inode.
*
* This elaborate mechanism was replaced by ->evict_inode() which
* does the job of both ->delete_inode() and ->clear_inode(). It
* will be called exactly once, and when it returns the inode must
* be in a state where it can simply be freed.i
*
* The ->evict_inode() callback must minimally truncate the inode pages,
* and call clear_inode(). For 2.6.35 and later kernels this will
* simply update the inode state, with the sync occurring before the
* truncate in evict(). For earlier kernels clear_inode() maps to
* end_writeback() which is responsible for completing all outstanding
* write back. In either case, once this is done it is safe to cleanup
* any remaining inode specific data via zfs_inactive().
* remaining filesystem specific data.
*/
#ifdef HAVE_EVICT_INODE
static void
zpl_evict_inode(struct inode *ip)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
truncate_setsize(ip, 0);
clear_inode(ip);
zfs_inactive(ip);
spl_fstrans_unmark(cookie);
}
#else
static void
zpl_drop_inode(struct inode *ip)
{
generic_delete_inode(ip);
}
static void
zpl_clear_inode(struct inode *ip)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
zfs_inactive(ip);
spl_fstrans_unmark(cookie);
}
static void
zpl_inode_delete(struct inode *ip)
{
truncate_setsize(ip, 0);
clear_inode(ip);
}
#endif /* HAVE_EVICT_INODE */
static void
zpl_put_super(struct super_block *sb)
{
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_umount(sb);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
}
static int
zpl_sync_fs(struct super_block *sb, int wait)
{
fstrans_cookie_t cookie;
cred_t *cr = CRED();
int error;
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_sync(sb, wait, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_statfs(struct dentry *dentry, struct kstatfs *statp)
{
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_statvfs(dentry, statp);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
return (error);
}
enum {
TOKEN_RO,
TOKEN_RW,
TOKEN_SETUID,
TOKEN_NOSETUID,
TOKEN_EXEC,
TOKEN_NOEXEC,
TOKEN_DEVICES,
TOKEN_NODEVICES,
TOKEN_DIRXATTR,
TOKEN_SAXATTR,
TOKEN_XATTR,
TOKEN_NOXATTR,
TOKEN_ATIME,
TOKEN_NOATIME,
TOKEN_RELATIME,
TOKEN_NORELATIME,
TOKEN_NBMAND,
TOKEN_NONBMAND,
TOKEN_MNTPOINT,
TOKEN_LAST,
};
static const match_table_t zpl_tokens = {
{ TOKEN_RO, MNTOPT_RO },
{ TOKEN_RW, MNTOPT_RW },
{ TOKEN_SETUID, MNTOPT_SETUID },
{ TOKEN_NOSETUID, MNTOPT_NOSETUID },
{ TOKEN_EXEC, MNTOPT_EXEC },
{ TOKEN_NOEXEC, MNTOPT_NOEXEC },
{ TOKEN_DEVICES, MNTOPT_DEVICES },
{ TOKEN_NODEVICES, MNTOPT_NODEVICES },
{ TOKEN_DIRXATTR, MNTOPT_DIRXATTR },
{ TOKEN_SAXATTR, MNTOPT_SAXATTR },
{ TOKEN_XATTR, MNTOPT_XATTR },
{ TOKEN_NOXATTR, MNTOPT_NOXATTR },
{ TOKEN_ATIME, MNTOPT_ATIME },
{ TOKEN_NOATIME, MNTOPT_NOATIME },
{ TOKEN_RELATIME, MNTOPT_RELATIME },
{ TOKEN_NORELATIME, MNTOPT_NORELATIME },
{ TOKEN_NBMAND, MNTOPT_NBMAND },
{ TOKEN_NONBMAND, MNTOPT_NONBMAND },
{ TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" },
{ TOKEN_LAST, NULL },
};
static int
zpl_parse_option(char *option, int token, substring_t *args, zfs_mntopts_t *zmo)
{
switch (token) {
case TOKEN_RO:
zmo->z_readonly = B_TRUE;
zmo->z_do_readonly = B_TRUE;
break;
case TOKEN_RW:
zmo->z_readonly = B_FALSE;
zmo->z_do_readonly = B_TRUE;
break;
case TOKEN_SETUID:
zmo->z_setuid = B_TRUE;
zmo->z_do_setuid = B_TRUE;
break;
case TOKEN_NOSETUID:
zmo->z_setuid = B_FALSE;
zmo->z_do_setuid = B_TRUE;
break;
case TOKEN_EXEC:
zmo->z_exec = B_TRUE;
zmo->z_do_exec = B_TRUE;
break;
case TOKEN_NOEXEC:
zmo->z_exec = B_FALSE;
zmo->z_do_exec = B_TRUE;
break;
case TOKEN_DEVICES:
zmo->z_devices = B_TRUE;
zmo->z_do_devices = B_TRUE;
break;
case TOKEN_NODEVICES:
zmo->z_devices = B_FALSE;
zmo->z_do_devices = B_TRUE;
break;
case TOKEN_DIRXATTR:
zmo->z_xattr = ZFS_XATTR_DIR;
zmo->z_do_xattr = B_TRUE;
break;
case TOKEN_SAXATTR:
zmo->z_xattr = ZFS_XATTR_SA;
zmo->z_do_xattr = B_TRUE;
break;
case TOKEN_XATTR:
zmo->z_xattr = ZFS_XATTR_DIR;
zmo->z_do_xattr = B_TRUE;
break;
case TOKEN_NOXATTR:
zmo->z_xattr = ZFS_XATTR_OFF;
zmo->z_do_xattr = B_TRUE;
break;
case TOKEN_ATIME:
zmo->z_atime = B_TRUE;
zmo->z_do_atime = B_TRUE;
break;
case TOKEN_NOATIME:
zmo->z_atime = B_FALSE;
zmo->z_do_atime = B_TRUE;
break;
case TOKEN_RELATIME:
zmo->z_relatime = B_TRUE;
zmo->z_do_relatime = B_TRUE;
break;
case TOKEN_NORELATIME:
zmo->z_relatime = B_FALSE;
zmo->z_do_relatime = B_TRUE;
break;
case TOKEN_NBMAND:
zmo->z_nbmand = B_TRUE;
zmo->z_do_nbmand = B_TRUE;
break;
case TOKEN_NONBMAND:
zmo->z_nbmand = B_FALSE;
zmo->z_do_nbmand = B_TRUE;
break;
case TOKEN_MNTPOINT:
zmo->z_mntpoint = match_strdup(&args[0]);
if (zmo->z_mntpoint == NULL)
return (-ENOMEM);
break;
default:
break;
}
return (0);
}
/*
* Parse the mntopts string storing the results in provided zmo argument.
* If an error occurs the zmo argument will not be modified. The caller
* needs to set isremount when recycling an existing zfs_mntopts_t.
*/
static int
zpl_parse_options(char *osname, char *mntopts, zfs_mntopts_t *zmo,
boolean_t isremount)
{
zfs_mntopts_t *tmp_zmo;
int error;
tmp_zmo = zfs_mntopts_alloc();
tmp_zmo->z_osname = strdup(osname);
if (mntopts) {
substring_t args[MAX_OPT_ARGS];
char *tmp_mntopts, *p, *t;
int token;
t = tmp_mntopts = strdup(mntopts);
while ((p = strsep(&t, ",")) != NULL) {
if (!*p)
continue;
args[0].to = args[0].from = NULL;
token = match_token(p, zpl_tokens, args);
error = zpl_parse_option(p, token, args, tmp_zmo);
if (error) {
zfs_mntopts_free(tmp_zmo);
strfree(tmp_mntopts);
return (error);
}
}
strfree(tmp_mntopts);
}
if (isremount == B_TRUE) {
if (zmo->z_osname)
strfree(zmo->z_osname);
if (zmo->z_mntpoint)
strfree(zmo->z_mntpoint);
} else {
ASSERT3P(zmo->z_osname, ==, NULL);
ASSERT3P(zmo->z_mntpoint, ==, NULL);
}
memcpy(zmo, tmp_zmo, sizeof (zfs_mntopts_t));
kmem_free(tmp_zmo, sizeof (zfs_mntopts_t));
return (0);
}
static int
zpl_remount_fs(struct super_block *sb, int *flags, char *data)
{
zfs_sb_t *zsb = sb->s_fs_info;
fstrans_cookie_t cookie;
int error;
error = zpl_parse_options(zsb->z_mntopts->z_osname, data,
zsb->z_mntopts, B_TRUE);
if (error)
return (error);
cookie = spl_fstrans_mark();
error = -zfs_remount(sb, flags, zsb->z_mntopts);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
return (error);
}
static int
__zpl_show_options(struct seq_file *seq, zfs_sb_t *zsb)
{
seq_printf(seq, ",%s", zsb->z_flags & ZSB_XATTR ? "xattr" : "noxattr");
#ifdef CONFIG_FS_POSIX_ACL
switch (zsb->z_acl_type) {
case ZFS_ACLTYPE_POSIXACL:
seq_puts(seq, ",posixacl");
break;
default:
seq_puts(seq, ",noacl");
break;
}
#endif /* CONFIG_FS_POSIX_ACL */
return (0);
}
#ifdef HAVE_SHOW_OPTIONS_WITH_DENTRY
static int
zpl_show_options(struct seq_file *seq, struct dentry *root)
{
return (__zpl_show_options(seq, root->d_sb->s_fs_info));
}
#else
static int
zpl_show_options(struct seq_file *seq, struct vfsmount *vfsp)
{
return (__zpl_show_options(seq, vfsp->mnt_sb->s_fs_info));
}
#endif /* HAVE_SHOW_OPTIONS_WITH_DENTRY */
static int
zpl_fill_super(struct super_block *sb, void *data, int silent)
{
zfs_mntopts_t *zmo = (zfs_mntopts_t *)data;
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_domount(sb, zmo, silent);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
return (error);
}
#ifdef HAVE_MOUNT_NODEV
static struct dentry *
zpl_mount(struct file_system_type *fs_type, int flags,
const char *osname, void *data)
{
zfs_mntopts_t *zmo = zfs_mntopts_alloc();
int error;
error = zpl_parse_options((char *)osname, (char *)data, zmo, B_FALSE);
if (error) {
zfs_mntopts_free(zmo);
return (ERR_PTR(error));
}
return (mount_nodev(fs_type, flags, zmo, zpl_fill_super));
}
#else
static int
zpl_get_sb(struct file_system_type *fs_type, int flags,
const char *osname, void *data, struct vfsmount *mnt)
{
zfs_mntopts_t *zmo = zfs_mntopts_alloc();
int error;
error = zpl_parse_options((char *)osname, (char *)data, zmo, B_FALSE);
if (error) {
zfs_mntopts_free(zmo);
return (error);
}
return (get_sb_nodev(fs_type, flags, zmo, zpl_fill_super, mnt));
}
#endif /* HAVE_MOUNT_NODEV */
static void
zpl_kill_sb(struct super_block *sb)
{
zfs_preumount(sb);
kill_anon_super(sb);
#ifdef HAVE_S_INSTANCES_LIST_HEAD
sb->s_instances.next = &(zpl_fs_type.fs_supers);
#endif /* HAVE_S_INSTANCES_LIST_HEAD */
}
void
zpl_prune_sb(int64_t nr_to_scan, void *arg)
{
struct super_block *sb = (struct super_block *)arg;
int objects = 0;
(void) -zfs_sb_prune(sb, nr_to_scan, &objects);
}
#ifdef HAVE_NR_CACHED_OBJECTS
static int
zpl_nr_cached_objects(struct super_block *sb)
{
return (0);
}
#endif /* HAVE_NR_CACHED_OBJECTS */
#ifdef HAVE_FREE_CACHED_OBJECTS
static void
zpl_free_cached_objects(struct super_block *sb, int nr_to_scan)
{
/* noop */
}
#endif /* HAVE_FREE_CACHED_OBJECTS */
const struct super_operations zpl_super_operations = {
.alloc_inode = zpl_inode_alloc,
.destroy_inode = zpl_inode_destroy,
.dirty_inode = zpl_dirty_inode,
.write_inode = NULL,
#ifdef HAVE_EVICT_INODE
.evict_inode = zpl_evict_inode,
#else
.drop_inode = zpl_drop_inode,
.clear_inode = zpl_clear_inode,
.delete_inode = zpl_inode_delete,
#endif /* HAVE_EVICT_INODE */
.put_super = zpl_put_super,
.sync_fs = zpl_sync_fs,
.statfs = zpl_statfs,
.remount_fs = zpl_remount_fs,
.show_options = zpl_show_options,
.show_stats = NULL,
#ifdef HAVE_NR_CACHED_OBJECTS
.nr_cached_objects = zpl_nr_cached_objects,
#endif /* HAVE_NR_CACHED_OBJECTS */
#ifdef HAVE_FREE_CACHED_OBJECTS
.free_cached_objects = zpl_free_cached_objects,
#endif /* HAVE_FREE_CACHED_OBJECTS */
};
struct file_system_type zpl_fs_type = {
.owner = THIS_MODULE,
.name = ZFS_DRIVER,
#ifdef HAVE_MOUNT_NODEV
.mount = zpl_mount,
#else
.get_sb = zpl_get_sb,
#endif /* HAVE_MOUNT_NODEV */
.kill_sb = zpl_kill_sb,
};