2457 lines
58 KiB
C
2457 lines
58 KiB
C
/*-
|
|
* Copyright (c) 2007 Sepherosa Ziehau. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The DragonFly Project
|
|
* by Sepherosa Ziehau <sepherosa@gmail.com>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name of The DragonFly Project nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific, prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.10 2008/05/18 07:47:14 sephe Exp $
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/module.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/bpf.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <dev/et/if_etreg.h>
|
|
#include <dev/et/if_etvar.h>
|
|
|
|
#include "miibus_if.h"
|
|
|
|
MODULE_DEPEND(et, pci, 1, 1, 1);
|
|
MODULE_DEPEND(et, ether, 1, 1, 1);
|
|
MODULE_DEPEND(et, miibus, 1, 1, 1);
|
|
|
|
/* Tunables. */
|
|
static int msi_disable = 0;
|
|
TUNABLE_INT("hw.et.msi_disable", &msi_disable);
|
|
|
|
#define ET_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
|
|
|
|
static int et_probe(device_t);
|
|
static int et_attach(device_t);
|
|
static int et_detach(device_t);
|
|
static int et_shutdown(device_t);
|
|
|
|
static int et_miibus_readreg(device_t, int, int);
|
|
static int et_miibus_writereg(device_t, int, int, int);
|
|
static void et_miibus_statchg(device_t);
|
|
|
|
static void et_init_locked(struct et_softc *);
|
|
static void et_init(void *);
|
|
static int et_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void et_start_locked(struct ifnet *);
|
|
static void et_start(struct ifnet *);
|
|
static void et_watchdog(struct et_softc *);
|
|
static int et_ifmedia_upd_locked(struct ifnet *);
|
|
static int et_ifmedia_upd(struct ifnet *);
|
|
static void et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
|
|
static void et_add_sysctls(struct et_softc *);
|
|
static int et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS);
|
|
static int et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS);
|
|
|
|
static void et_intr(void *);
|
|
static void et_enable_intrs(struct et_softc *, uint32_t);
|
|
static void et_disable_intrs(struct et_softc *);
|
|
static void et_rxeof(struct et_softc *);
|
|
static void et_txeof(struct et_softc *);
|
|
|
|
static int et_dma_alloc(device_t);
|
|
static void et_dma_free(device_t);
|
|
static int et_dma_mem_create(device_t, bus_size_t, bus_dma_tag_t *,
|
|
void **, bus_addr_t *, bus_dmamap_t *);
|
|
static void et_dma_mem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
|
|
static int et_dma_mbuf_create(device_t);
|
|
static void et_dma_mbuf_destroy(device_t, int, const int[]);
|
|
static void et_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
|
|
static void et_dma_buf_addr(void *, bus_dma_segment_t *, int,
|
|
bus_size_t, int);
|
|
static int et_init_tx_ring(struct et_softc *);
|
|
static int et_init_rx_ring(struct et_softc *);
|
|
static void et_free_tx_ring(struct et_softc *);
|
|
static void et_free_rx_ring(struct et_softc *);
|
|
static int et_encap(struct et_softc *, struct mbuf **);
|
|
static int et_newbuf(struct et_rxbuf_data *, int, int, int);
|
|
static int et_newbuf_cluster(struct et_rxbuf_data *, int, int);
|
|
static int et_newbuf_hdr(struct et_rxbuf_data *, int, int);
|
|
|
|
static void et_stop(struct et_softc *);
|
|
static int et_chip_init(struct et_softc *);
|
|
static void et_chip_attach(struct et_softc *);
|
|
static void et_init_mac(struct et_softc *);
|
|
static void et_init_rxmac(struct et_softc *);
|
|
static void et_init_txmac(struct et_softc *);
|
|
static int et_init_rxdma(struct et_softc *);
|
|
static int et_init_txdma(struct et_softc *);
|
|
static int et_start_rxdma(struct et_softc *);
|
|
static int et_start_txdma(struct et_softc *);
|
|
static int et_stop_rxdma(struct et_softc *);
|
|
static int et_stop_txdma(struct et_softc *);
|
|
static int et_enable_txrx(struct et_softc *, int);
|
|
static void et_reset(struct et_softc *);
|
|
static int et_bus_config(struct et_softc *);
|
|
static void et_get_eaddr(device_t, uint8_t[]);
|
|
static void et_setmulti(struct et_softc *);
|
|
static void et_tick(void *);
|
|
static void et_setmedia(struct et_softc *);
|
|
static void et_setup_rxdesc(struct et_rxbuf_data *, int, bus_addr_t);
|
|
|
|
static const struct et_dev {
|
|
uint16_t vid;
|
|
uint16_t did;
|
|
const char *desc;
|
|
} et_devices[] = {
|
|
{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310,
|
|
"Agere ET1310 Gigabit Ethernet" },
|
|
{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_FAST,
|
|
"Agere ET1310 Fast Ethernet" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static device_method_t et_methods[] = {
|
|
DEVMETHOD(device_probe, et_probe),
|
|
DEVMETHOD(device_attach, et_attach),
|
|
DEVMETHOD(device_detach, et_detach),
|
|
DEVMETHOD(device_shutdown, et_shutdown),
|
|
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
|
|
DEVMETHOD(miibus_readreg, et_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, et_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, et_miibus_statchg),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t et_driver = {
|
|
"et",
|
|
et_methods,
|
|
sizeof(struct et_softc)
|
|
};
|
|
|
|
static devclass_t et_devclass;
|
|
|
|
DRIVER_MODULE(et, pci, et_driver, et_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, et, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
static int et_rx_intr_npkts = 32;
|
|
static int et_rx_intr_delay = 20; /* x10 usec */
|
|
static int et_tx_intr_nsegs = 126;
|
|
static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */
|
|
|
|
TUNABLE_INT("hw.et.timer", &et_timer);
|
|
TUNABLE_INT("hw.et.rx_intr_npkts", &et_rx_intr_npkts);
|
|
TUNABLE_INT("hw.et.rx_intr_delay", &et_rx_intr_delay);
|
|
TUNABLE_INT("hw.et.tx_intr_nsegs", &et_tx_intr_nsegs);
|
|
|
|
struct et_bsize {
|
|
int bufsize;
|
|
et_newbuf_t newbuf;
|
|
};
|
|
|
|
static const struct et_bsize et_bufsize_std[ET_RX_NRING] = {
|
|
{ .bufsize = ET_RXDMA_CTRL_RING0_128,
|
|
.newbuf = et_newbuf_hdr },
|
|
{ .bufsize = ET_RXDMA_CTRL_RING1_2048,
|
|
.newbuf = et_newbuf_cluster },
|
|
};
|
|
|
|
static int
|
|
et_probe(device_t dev)
|
|
{
|
|
const struct et_dev *d;
|
|
uint16_t did, vid;
|
|
|
|
vid = pci_get_vendor(dev);
|
|
did = pci_get_device(dev);
|
|
|
|
for (d = et_devices; d->desc != NULL; ++d) {
|
|
if (vid == d->vid && did == d->did) {
|
|
device_set_desc(dev, d->desc);
|
|
return (0);
|
|
}
|
|
}
|
|
return (ENXIO);
|
|
}
|
|
|
|
static int
|
|
et_attach(device_t dev)
|
|
{
|
|
struct et_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
int cap, error, msic;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->dev = dev;
|
|
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
|
|
ifp = sc->ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "can not if_alloc()\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Initialize tunables
|
|
*/
|
|
sc->sc_rx_intr_npkts = et_rx_intr_npkts;
|
|
sc->sc_rx_intr_delay = et_rx_intr_delay;
|
|
sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
|
|
sc->sc_timer = et_timer;
|
|
|
|
/* Enable bus mastering */
|
|
pci_enable_busmaster(dev);
|
|
|
|
/*
|
|
* Allocate IO memory
|
|
*/
|
|
sc->sc_mem_rid = ET_PCIR_BAR;
|
|
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
|
|
&sc->sc_mem_rid, RF_ACTIVE);
|
|
if (sc->sc_mem_res == NULL) {
|
|
device_printf(dev, "can't allocate IO memory\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
msic = 0;
|
|
if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
|
|
sc->sc_expcap = cap;
|
|
sc->sc_flags |= ET_FLAG_PCIE;
|
|
msic = pci_msi_count(dev);
|
|
if (bootverbose)
|
|
device_printf(dev, "MSI count: %d\n", msic);
|
|
}
|
|
if (msic > 0 && msi_disable == 0) {
|
|
msic = 1;
|
|
if (pci_alloc_msi(dev, &msic) == 0) {
|
|
if (msic == 1) {
|
|
device_printf(dev, "Using %d MSI message\n",
|
|
msic);
|
|
sc->sc_flags |= ET_FLAG_MSI;
|
|
} else
|
|
pci_release_msi(dev);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate IRQ
|
|
*/
|
|
if ((sc->sc_flags & ET_FLAG_MSI) == 0) {
|
|
sc->sc_irq_rid = 0;
|
|
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
|
|
&sc->sc_irq_rid, RF_SHAREABLE | RF_ACTIVE);
|
|
} else {
|
|
sc->sc_irq_rid = 1;
|
|
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
|
|
&sc->sc_irq_rid, RF_ACTIVE);
|
|
}
|
|
if (sc->sc_irq_res == NULL) {
|
|
device_printf(dev, "can't allocate irq\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
error = et_bus_config(sc);
|
|
if (error)
|
|
goto fail;
|
|
|
|
et_get_eaddr(dev, eaddr);
|
|
|
|
CSR_WRITE_4(sc, ET_PM,
|
|
ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
|
|
|
|
et_reset(sc);
|
|
|
|
et_disable_intrs(sc);
|
|
|
|
error = et_dma_alloc(dev);
|
|
if (error)
|
|
goto fail;
|
|
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_init = et_init;
|
|
ifp->if_ioctl = et_ioctl;
|
|
ifp->if_start = et_start;
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
et_chip_attach(sc);
|
|
|
|
error = mii_attach(dev, &sc->sc_miibus, ifp, et_ifmedia_upd,
|
|
et_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
|
|
if (error) {
|
|
device_printf(dev, "attaching PHYs failed\n");
|
|
goto fail;
|
|
}
|
|
|
|
ether_ifattach(ifp, eaddr);
|
|
callout_init_mtx(&sc->sc_tick, &sc->sc_mtx, 0);
|
|
|
|
error = bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_NET | INTR_MPSAFE,
|
|
NULL, et_intr, sc, &sc->sc_irq_handle);
|
|
if (error) {
|
|
ether_ifdetach(ifp);
|
|
device_printf(dev, "can't setup intr\n");
|
|
goto fail;
|
|
}
|
|
|
|
et_add_sysctls(sc);
|
|
|
|
return (0);
|
|
fail:
|
|
et_detach(dev);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
et_detach(device_t dev)
|
|
{
|
|
struct et_softc *sc = device_get_softc(dev);
|
|
|
|
if (device_is_attached(dev)) {
|
|
struct ifnet *ifp = sc->ifp;
|
|
|
|
ET_LOCK(sc);
|
|
et_stop(sc);
|
|
bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_handle);
|
|
ET_UNLOCK(sc);
|
|
|
|
ether_ifdetach(ifp);
|
|
}
|
|
|
|
if (sc->sc_miibus != NULL)
|
|
device_delete_child(dev, sc->sc_miibus);
|
|
bus_generic_detach(dev);
|
|
|
|
if (sc->sc_irq_res != NULL) {
|
|
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
|
|
sc->sc_irq_res);
|
|
}
|
|
if ((sc->sc_flags & ET_FLAG_MSI) != 0)
|
|
pci_release_msi(dev);
|
|
|
|
if (sc->sc_mem_res != NULL) {
|
|
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
|
|
sc->sc_mem_res);
|
|
}
|
|
|
|
if (sc->ifp != NULL)
|
|
if_free(sc->ifp);
|
|
|
|
et_dma_free(dev);
|
|
|
|
mtx_destroy(&sc->sc_mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_shutdown(device_t dev)
|
|
{
|
|
struct et_softc *sc = device_get_softc(dev);
|
|
|
|
ET_LOCK(sc);
|
|
et_stop(sc);
|
|
ET_UNLOCK(sc);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct et_softc *sc = device_get_softc(dev);
|
|
uint32_t val;
|
|
int i, ret;
|
|
|
|
/* Stop any pending operations */
|
|
CSR_WRITE_4(sc, ET_MII_CMD, 0);
|
|
|
|
val = (phy << ET_MII_ADDR_PHY_SHIFT) & ET_MII_ADDR_PHY_MASK;
|
|
val |= (reg << ET_MII_ADDR_REG_SHIFT) & ET_MII_ADDR_REG_MASK;
|
|
CSR_WRITE_4(sc, ET_MII_ADDR, val);
|
|
|
|
/* Start reading */
|
|
CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
|
|
|
|
#define NRETRY 50
|
|
|
|
for (i = 0; i < NRETRY; ++i) {
|
|
val = CSR_READ_4(sc, ET_MII_IND);
|
|
if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
|
|
break;
|
|
DELAY(50);
|
|
}
|
|
if (i == NRETRY) {
|
|
if_printf(sc->ifp,
|
|
"read phy %d, reg %d timed out\n", phy, reg);
|
|
ret = 0;
|
|
goto back;
|
|
}
|
|
|
|
#undef NRETRY
|
|
|
|
val = CSR_READ_4(sc, ET_MII_STAT);
|
|
ret = val & ET_MII_STAT_VALUE_MASK;
|
|
|
|
back:
|
|
/* Make sure that the current operation is stopped */
|
|
CSR_WRITE_4(sc, ET_MII_CMD, 0);
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
et_miibus_writereg(device_t dev, int phy, int reg, int val0)
|
|
{
|
|
struct et_softc *sc = device_get_softc(dev);
|
|
uint32_t val;
|
|
int i;
|
|
|
|
/* Stop any pending operations */
|
|
CSR_WRITE_4(sc, ET_MII_CMD, 0);
|
|
|
|
val = (phy << ET_MII_ADDR_PHY_SHIFT) & ET_MII_ADDR_PHY_MASK;
|
|
val |= (reg << ET_MII_ADDR_REG_SHIFT) & ET_MII_ADDR_REG_MASK;
|
|
CSR_WRITE_4(sc, ET_MII_ADDR, val);
|
|
|
|
/* Start writing */
|
|
CSR_WRITE_4(sc, ET_MII_CTRL,
|
|
(val0 << ET_MII_CTRL_VALUE_SHIFT) & ET_MII_CTRL_VALUE_MASK);
|
|
|
|
#define NRETRY 100
|
|
|
|
for (i = 0; i < NRETRY; ++i) {
|
|
val = CSR_READ_4(sc, ET_MII_IND);
|
|
if ((val & ET_MII_IND_BUSY) == 0)
|
|
break;
|
|
DELAY(50);
|
|
}
|
|
if (i == NRETRY) {
|
|
if_printf(sc->ifp,
|
|
"write phy %d, reg %d timed out\n", phy, reg);
|
|
et_miibus_readreg(dev, phy, reg);
|
|
}
|
|
|
|
#undef NRETRY
|
|
|
|
/* Make sure that the current operation is stopped */
|
|
CSR_WRITE_4(sc, ET_MII_CMD, 0);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_miibus_statchg(device_t dev)
|
|
{
|
|
et_setmedia(device_get_softc(dev));
|
|
}
|
|
|
|
static int
|
|
et_ifmedia_upd_locked(struct ifnet *ifp)
|
|
{
|
|
struct et_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = device_get_softc(sc->sc_miibus);
|
|
struct mii_softc *miisc;
|
|
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
PHY_RESET(miisc);
|
|
mii_mediachg(mii);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct et_softc *sc = ifp->if_softc;
|
|
int res;
|
|
|
|
ET_LOCK(sc);
|
|
res = et_ifmedia_upd_locked(ifp);
|
|
ET_UNLOCK(sc);
|
|
|
|
return (res);
|
|
}
|
|
|
|
static void
|
|
et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct et_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = device_get_softc(sc->sc_miibus);
|
|
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
}
|
|
|
|
static void
|
|
et_stop(struct et_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
|
|
ET_LOCK_ASSERT(sc);
|
|
|
|
callout_stop(&sc->sc_tick);
|
|
|
|
et_stop_rxdma(sc);
|
|
et_stop_txdma(sc);
|
|
|
|
et_disable_intrs(sc);
|
|
|
|
et_free_tx_ring(sc);
|
|
et_free_rx_ring(sc);
|
|
|
|
et_reset(sc);
|
|
|
|
sc->sc_tx = 0;
|
|
sc->sc_tx_intr = 0;
|
|
sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED;
|
|
|
|
sc->watchdog_timer = 0;
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
}
|
|
|
|
static int
|
|
et_bus_config(struct et_softc *sc)
|
|
{
|
|
uint32_t val, max_plsz;
|
|
uint16_t ack_latency, replay_timer;
|
|
|
|
/*
|
|
* Test whether EEPROM is valid
|
|
* NOTE: Read twice to get the correct value
|
|
*/
|
|
pci_read_config(sc->dev, ET_PCIR_EEPROM_STATUS, 1);
|
|
val = pci_read_config(sc->dev, ET_PCIR_EEPROM_STATUS, 1);
|
|
if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
|
|
device_printf(sc->dev, "EEPROM status error 0x%02x\n", val);
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* TODO: LED */
|
|
|
|
if ((sc->sc_flags & ET_FLAG_PCIE) == 0)
|
|
return (0);
|
|
|
|
/*
|
|
* Configure ACK latency and replay timer according to
|
|
* max playload size
|
|
*/
|
|
val = pci_read_config(sc->dev,
|
|
sc->sc_expcap + PCIR_EXPRESS_DEVICE_CAP, 4);
|
|
max_plsz = val & PCIM_EXP_CAP_MAX_PAYLOAD;
|
|
|
|
switch (max_plsz) {
|
|
case ET_PCIV_DEVICE_CAPS_PLSZ_128:
|
|
ack_latency = ET_PCIV_ACK_LATENCY_128;
|
|
replay_timer = ET_PCIV_REPLAY_TIMER_128;
|
|
break;
|
|
|
|
case ET_PCIV_DEVICE_CAPS_PLSZ_256:
|
|
ack_latency = ET_PCIV_ACK_LATENCY_256;
|
|
replay_timer = ET_PCIV_REPLAY_TIMER_256;
|
|
break;
|
|
|
|
default:
|
|
ack_latency = pci_read_config(sc->dev, ET_PCIR_ACK_LATENCY, 2);
|
|
replay_timer = pci_read_config(sc->dev,
|
|
ET_PCIR_REPLAY_TIMER, 2);
|
|
device_printf(sc->dev, "ack latency %u, replay timer %u\n",
|
|
ack_latency, replay_timer);
|
|
break;
|
|
}
|
|
if (ack_latency != 0) {
|
|
pci_write_config(sc->dev, ET_PCIR_ACK_LATENCY, ack_latency, 2);
|
|
pci_write_config(sc->dev, ET_PCIR_REPLAY_TIMER, replay_timer,
|
|
2);
|
|
}
|
|
|
|
/*
|
|
* Set L0s and L1 latency timer to 2us
|
|
*/
|
|
val = pci_read_config(sc->dev, ET_PCIR_L0S_L1_LATENCY, 4);
|
|
val &= ~(PCIM_LINK_CAP_L0S_EXIT | PCIM_LINK_CAP_L1_EXIT);
|
|
/* L0s exit latency : 2us */
|
|
val |= 0x00005000;
|
|
/* L1 exit latency : 2us */
|
|
val |= 0x00028000;
|
|
pci_write_config(sc->dev, ET_PCIR_L0S_L1_LATENCY, val, 4);
|
|
|
|
/*
|
|
* Set max read request size to 2048 bytes
|
|
*/
|
|
val = pci_read_config(sc->dev,
|
|
sc->sc_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
|
|
val &= ~PCIM_EXP_CTL_MAX_READ_REQUEST;
|
|
val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
|
|
pci_write_config(sc->dev,
|
|
sc->sc_expcap + PCIR_EXPRESS_DEVICE_CTL, val, 2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_get_eaddr(device_t dev, uint8_t eaddr[])
|
|
{
|
|
uint32_t val;
|
|
int i;
|
|
|
|
val = pci_read_config(dev, ET_PCIR_MAC_ADDR0, 4);
|
|
for (i = 0; i < 4; ++i)
|
|
eaddr[i] = (val >> (8 * i)) & 0xff;
|
|
|
|
val = pci_read_config(dev, ET_PCIR_MAC_ADDR1, 2);
|
|
for (; i < ETHER_ADDR_LEN; ++i)
|
|
eaddr[i] = (val >> (8 * (i - 4))) & 0xff;
|
|
}
|
|
|
|
static void
|
|
et_reset(struct et_softc *sc)
|
|
{
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1,
|
|
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
|
|
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
|
|
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
|
|
|
|
CSR_WRITE_4(sc, ET_SWRST,
|
|
ET_SWRST_TXDMA | ET_SWRST_RXDMA |
|
|
ET_SWRST_TXMAC | ET_SWRST_RXMAC |
|
|
ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
|
|
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1,
|
|
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
|
|
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
|
|
}
|
|
|
|
static void
|
|
et_disable_intrs(struct et_softc *sc)
|
|
{
|
|
CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
|
|
}
|
|
|
|
static void
|
|
et_enable_intrs(struct et_softc *sc, uint32_t intrs)
|
|
{
|
|
CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
|
|
}
|
|
|
|
static int
|
|
et_dma_alloc(device_t dev)
|
|
{
|
|
struct et_softc *sc = device_get_softc(dev);
|
|
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
|
|
struct et_txstatus_data *txsd = &sc->sc_tx_status;
|
|
struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
|
|
struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
|
|
int i, error;
|
|
|
|
/*
|
|
* Create top level DMA tag
|
|
*/
|
|
error = bus_dma_tag_create(NULL, 1, 0,
|
|
BUS_SPACE_MAXADDR_32BIT,
|
|
BUS_SPACE_MAXADDR,
|
|
NULL, NULL,
|
|
MAXBSIZE,
|
|
BUS_SPACE_UNRESTRICTED,
|
|
BUS_SPACE_MAXSIZE_32BIT,
|
|
0, NULL, NULL, &sc->sc_dtag);
|
|
if (error) {
|
|
device_printf(dev, "can't create DMA tag\n");
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create TX ring DMA stuffs
|
|
*/
|
|
error = et_dma_mem_create(dev, ET_TX_RING_SIZE, &tx_ring->tr_dtag,
|
|
(void **)&tx_ring->tr_desc,
|
|
&tx_ring->tr_paddr, &tx_ring->tr_dmap);
|
|
if (error) {
|
|
device_printf(dev, "can't create TX ring DMA stuffs\n");
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create TX status DMA stuffs
|
|
*/
|
|
error = et_dma_mem_create(dev, sizeof(uint32_t), &txsd->txsd_dtag,
|
|
(void **)&txsd->txsd_status,
|
|
&txsd->txsd_paddr, &txsd->txsd_dmap);
|
|
if (error) {
|
|
device_printf(dev, "can't create TX status DMA stuffs\n");
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create DMA stuffs for RX rings
|
|
*/
|
|
for (i = 0; i < ET_RX_NRING; ++i) {
|
|
static const uint32_t rx_ring_posreg[ET_RX_NRING] =
|
|
{ ET_RX_RING0_POS, ET_RX_RING1_POS };
|
|
|
|
struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
|
|
|
|
error = et_dma_mem_create(dev, ET_RX_RING_SIZE,
|
|
&rx_ring->rr_dtag,
|
|
(void **)&rx_ring->rr_desc,
|
|
&rx_ring->rr_paddr,
|
|
&rx_ring->rr_dmap);
|
|
if (error) {
|
|
device_printf(dev, "can't create DMA stuffs for "
|
|
"the %d RX ring\n", i);
|
|
return (error);
|
|
}
|
|
rx_ring->rr_posreg = rx_ring_posreg[i];
|
|
}
|
|
|
|
/*
|
|
* Create RX stat ring DMA stuffs
|
|
*/
|
|
error = et_dma_mem_create(dev, ET_RXSTAT_RING_SIZE,
|
|
&rxst_ring->rsr_dtag,
|
|
(void **)&rxst_ring->rsr_stat,
|
|
&rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap);
|
|
if (error) {
|
|
device_printf(dev, "can't create RX stat ring DMA stuffs\n");
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create RX status DMA stuffs
|
|
*/
|
|
error = et_dma_mem_create(dev, sizeof(struct et_rxstatus),
|
|
&rxsd->rxsd_dtag,
|
|
(void **)&rxsd->rxsd_status,
|
|
&rxsd->rxsd_paddr, &rxsd->rxsd_dmap);
|
|
if (error) {
|
|
device_printf(dev, "can't create RX status DMA stuffs\n");
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create mbuf DMA stuffs
|
|
*/
|
|
error = et_dma_mbuf_create(dev);
|
|
if (error)
|
|
return (error);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_dma_free(device_t dev)
|
|
{
|
|
struct et_softc *sc = device_get_softc(dev);
|
|
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
|
|
struct et_txstatus_data *txsd = &sc->sc_tx_status;
|
|
struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
|
|
struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
|
|
int i, rx_done[ET_RX_NRING];
|
|
|
|
/*
|
|
* Destroy TX ring DMA stuffs
|
|
*/
|
|
et_dma_mem_destroy(tx_ring->tr_dtag, tx_ring->tr_desc,
|
|
tx_ring->tr_dmap);
|
|
|
|
/*
|
|
* Destroy TX status DMA stuffs
|
|
*/
|
|
et_dma_mem_destroy(txsd->txsd_dtag, txsd->txsd_status,
|
|
txsd->txsd_dmap);
|
|
|
|
/*
|
|
* Destroy DMA stuffs for RX rings
|
|
*/
|
|
for (i = 0; i < ET_RX_NRING; ++i) {
|
|
struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
|
|
|
|
et_dma_mem_destroy(rx_ring->rr_dtag, rx_ring->rr_desc,
|
|
rx_ring->rr_dmap);
|
|
}
|
|
|
|
/*
|
|
* Destroy RX stat ring DMA stuffs
|
|
*/
|
|
et_dma_mem_destroy(rxst_ring->rsr_dtag, rxst_ring->rsr_stat,
|
|
rxst_ring->rsr_dmap);
|
|
|
|
/*
|
|
* Destroy RX status DMA stuffs
|
|
*/
|
|
et_dma_mem_destroy(rxsd->rxsd_dtag, rxsd->rxsd_status,
|
|
rxsd->rxsd_dmap);
|
|
|
|
/*
|
|
* Destroy mbuf DMA stuffs
|
|
*/
|
|
for (i = 0; i < ET_RX_NRING; ++i)
|
|
rx_done[i] = ET_RX_NDESC;
|
|
et_dma_mbuf_destroy(dev, ET_TX_NDESC, rx_done);
|
|
|
|
/*
|
|
* Destroy top level DMA tag
|
|
*/
|
|
if (sc->sc_dtag != NULL)
|
|
bus_dma_tag_destroy(sc->sc_dtag);
|
|
}
|
|
|
|
static int
|
|
et_dma_mbuf_create(device_t dev)
|
|
{
|
|
struct et_softc *sc = device_get_softc(dev);
|
|
struct et_txbuf_data *tbd = &sc->sc_tx_data;
|
|
int i, error, rx_done[ET_RX_NRING];
|
|
|
|
/*
|
|
* Create mbuf DMA tag
|
|
*/
|
|
error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
|
|
NULL, NULL,
|
|
ET_JUMBO_FRAMELEN, ET_NSEG_MAX,
|
|
BUS_SPACE_MAXSIZE_32BIT,
|
|
BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_mbuf_dtag);
|
|
if (error) {
|
|
device_printf(dev, "can't create mbuf DMA tag\n");
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create spare DMA map for RX mbufs
|
|
*/
|
|
error = bus_dmamap_create(sc->sc_mbuf_dtag, 0, &sc->sc_mbuf_tmp_dmap);
|
|
if (error) {
|
|
device_printf(dev, "can't create spare mbuf DMA map\n");
|
|
bus_dma_tag_destroy(sc->sc_mbuf_dtag);
|
|
sc->sc_mbuf_dtag = NULL;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create DMA maps for RX mbufs
|
|
*/
|
|
bzero(rx_done, sizeof(rx_done));
|
|
for (i = 0; i < ET_RX_NRING; ++i) {
|
|
struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
|
|
int j;
|
|
|
|
for (j = 0; j < ET_RX_NDESC; ++j) {
|
|
error = bus_dmamap_create(sc->sc_mbuf_dtag, 0,
|
|
&rbd->rbd_buf[j].rb_dmap);
|
|
if (error) {
|
|
device_printf(dev, "can't create %d RX mbuf "
|
|
"for %d RX ring\n", j, i);
|
|
rx_done[i] = j;
|
|
et_dma_mbuf_destroy(dev, 0, rx_done);
|
|
return (error);
|
|
}
|
|
}
|
|
rx_done[i] = ET_RX_NDESC;
|
|
|
|
rbd->rbd_softc = sc;
|
|
rbd->rbd_ring = &sc->sc_rx_ring[i];
|
|
}
|
|
|
|
/*
|
|
* Create DMA maps for TX mbufs
|
|
*/
|
|
for (i = 0; i < ET_TX_NDESC; ++i) {
|
|
error = bus_dmamap_create(sc->sc_mbuf_dtag, 0,
|
|
&tbd->tbd_buf[i].tb_dmap);
|
|
if (error) {
|
|
device_printf(dev, "can't create %d TX mbuf "
|
|
"DMA map\n", i);
|
|
et_dma_mbuf_destroy(dev, i, rx_done);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_dma_mbuf_destroy(device_t dev, int tx_done, const int rx_done[])
|
|
{
|
|
struct et_softc *sc = device_get_softc(dev);
|
|
struct et_txbuf_data *tbd = &sc->sc_tx_data;
|
|
int i;
|
|
|
|
if (sc->sc_mbuf_dtag == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Destroy DMA maps for RX mbufs
|
|
*/
|
|
for (i = 0; i < ET_RX_NRING; ++i) {
|
|
struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
|
|
int j;
|
|
|
|
for (j = 0; j < rx_done[i]; ++j) {
|
|
struct et_rxbuf *rb = &rbd->rbd_buf[j];
|
|
|
|
KASSERT(rb->rb_mbuf == NULL,
|
|
("RX mbuf in %d RX ring is not freed yet\n", i));
|
|
bus_dmamap_destroy(sc->sc_mbuf_dtag, rb->rb_dmap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Destroy DMA maps for TX mbufs
|
|
*/
|
|
for (i = 0; i < tx_done; ++i) {
|
|
struct et_txbuf *tb = &tbd->tbd_buf[i];
|
|
|
|
KASSERT(tb->tb_mbuf == NULL, ("TX mbuf is not freed yet\n"));
|
|
bus_dmamap_destroy(sc->sc_mbuf_dtag, tb->tb_dmap);
|
|
}
|
|
|
|
/*
|
|
* Destroy spare mbuf DMA map
|
|
*/
|
|
bus_dmamap_destroy(sc->sc_mbuf_dtag, sc->sc_mbuf_tmp_dmap);
|
|
|
|
/*
|
|
* Destroy mbuf DMA tag
|
|
*/
|
|
bus_dma_tag_destroy(sc->sc_mbuf_dtag);
|
|
sc->sc_mbuf_dtag = NULL;
|
|
}
|
|
|
|
static int
|
|
et_dma_mem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
|
|
void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
|
|
{
|
|
struct et_softc *sc = device_get_softc(dev);
|
|
int error;
|
|
|
|
error = bus_dma_tag_create(sc->sc_dtag, ET_ALIGN, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
|
|
NULL, NULL,
|
|
size, 1, BUS_SPACE_MAXSIZE_32BIT,
|
|
0, NULL, NULL, dtag);
|
|
if (error) {
|
|
device_printf(dev, "can't create DMA tag\n");
|
|
return (error);
|
|
}
|
|
|
|
error = bus_dmamem_alloc(*dtag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
|
|
dmap);
|
|
if (error) {
|
|
device_printf(dev, "can't allocate DMA mem\n");
|
|
bus_dma_tag_destroy(*dtag);
|
|
*dtag = NULL;
|
|
return (error);
|
|
}
|
|
|
|
error = bus_dmamap_load(*dtag, *dmap, *addr, size,
|
|
et_dma_ring_addr, paddr, BUS_DMA_WAITOK);
|
|
if (error) {
|
|
device_printf(dev, "can't load DMA mem\n");
|
|
bus_dmamem_free(*dtag, *addr, *dmap);
|
|
bus_dma_tag_destroy(*dtag);
|
|
*dtag = NULL;
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_dma_mem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
|
|
{
|
|
if (dtag != NULL) {
|
|
bus_dmamap_unload(dtag, dmap);
|
|
bus_dmamem_free(dtag, addr, dmap);
|
|
bus_dma_tag_destroy(dtag);
|
|
}
|
|
}
|
|
|
|
static void
|
|
et_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
|
|
{
|
|
KASSERT(nseg == 1, ("too many segments\n"));
|
|
*((bus_addr_t *)arg) = seg->ds_addr;
|
|
}
|
|
|
|
static void
|
|
et_chip_attach(struct et_softc *sc)
|
|
{
|
|
uint32_t val;
|
|
|
|
/*
|
|
* Perform minimal initialization
|
|
*/
|
|
|
|
/* Disable loopback */
|
|
CSR_WRITE_4(sc, ET_LOOPBACK, 0);
|
|
|
|
/* Reset MAC */
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1,
|
|
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
|
|
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
|
|
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
|
|
|
|
/*
|
|
* Setup half duplex mode
|
|
*/
|
|
val = (10 << ET_MAC_HDX_ALT_BEB_TRUNC_SHIFT) |
|
|
(15 << ET_MAC_HDX_REXMIT_MAX_SHIFT) |
|
|
(55 << ET_MAC_HDX_COLLWIN_SHIFT) |
|
|
ET_MAC_HDX_EXC_DEFER;
|
|
CSR_WRITE_4(sc, ET_MAC_HDX, val);
|
|
|
|
/* Clear MAC control */
|
|
CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
|
|
|
|
/* Reset MII */
|
|
CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
|
|
|
|
/* Bring MAC out of reset state */
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
|
|
|
|
/* Enable memory controllers */
|
|
CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
|
|
}
|
|
|
|
static void
|
|
et_intr(void *xsc)
|
|
{
|
|
struct et_softc *sc = xsc;
|
|
struct ifnet *ifp;
|
|
uint32_t intrs;
|
|
|
|
ET_LOCK(sc);
|
|
ifp = sc->ifp;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
ET_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
et_disable_intrs(sc);
|
|
|
|
intrs = CSR_READ_4(sc, ET_INTR_STATUS);
|
|
intrs &= ET_INTRS;
|
|
if (intrs == 0) /* Not interested */
|
|
goto back;
|
|
|
|
if (intrs & ET_INTR_RXEOF)
|
|
et_rxeof(sc);
|
|
if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
|
|
et_txeof(sc);
|
|
if (intrs & ET_INTR_TIMER)
|
|
CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
|
|
back:
|
|
et_enable_intrs(sc, ET_INTRS);
|
|
ET_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
et_init_locked(struct et_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
const struct et_bsize *arr;
|
|
int error, i;
|
|
|
|
ET_LOCK_ASSERT(sc);
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
et_stop(sc);
|
|
|
|
arr = et_bufsize_std;
|
|
for (i = 0; i < ET_RX_NRING; ++i) {
|
|
sc->sc_rx_data[i].rbd_bufsize = arr[i].bufsize;
|
|
sc->sc_rx_data[i].rbd_newbuf = arr[i].newbuf;
|
|
}
|
|
|
|
error = et_init_tx_ring(sc);
|
|
if (error)
|
|
goto back;
|
|
|
|
error = et_init_rx_ring(sc);
|
|
if (error)
|
|
goto back;
|
|
|
|
error = et_chip_init(sc);
|
|
if (error)
|
|
goto back;
|
|
|
|
error = et_enable_txrx(sc, 1);
|
|
if (error)
|
|
goto back;
|
|
|
|
et_enable_intrs(sc, ET_INTRS);
|
|
|
|
callout_reset(&sc->sc_tick, hz, et_tick, sc);
|
|
|
|
CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
back:
|
|
if (error)
|
|
et_stop(sc);
|
|
}
|
|
|
|
static void
|
|
et_init(void *xsc)
|
|
{
|
|
struct et_softc *sc = xsc;
|
|
|
|
ET_LOCK(sc);
|
|
et_init_locked(sc);
|
|
ET_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
et_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct et_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = device_get_softc(sc->sc_miibus);
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int error = 0, mask, max_framelen;
|
|
|
|
/* XXX LOCKSUSED */
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
ET_LOCK(sc);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
if ((ifp->if_flags ^ sc->sc_if_flags) &
|
|
(IFF_ALLMULTI | IFF_PROMISC | IFF_BROADCAST))
|
|
et_setmulti(sc);
|
|
} else {
|
|
et_init_locked(sc);
|
|
}
|
|
} else {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
et_stop(sc);
|
|
}
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
ET_UNLOCK(sc);
|
|
break;
|
|
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
ET_LOCK(sc);
|
|
et_setmulti(sc);
|
|
ET_UNLOCK(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
#if 0
|
|
if (sc->sc_flags & ET_FLAG_JUMBO)
|
|
max_framelen = ET_JUMBO_FRAMELEN;
|
|
else
|
|
#endif
|
|
max_framelen = MCLBYTES - 1;
|
|
|
|
if (ET_FRAMELEN(ifr->ifr_mtu) > max_framelen) {
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
if (ifp->if_mtu != ifr->ifr_mtu) {
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
et_init(sc);
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFCAP:
|
|
ET_LOCK(sc);
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
if ((mask & IFCAP_TXCSUM) != 0 &&
|
|
(IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
|
|
ifp->if_capenable ^= IFCAP_TXCSUM;
|
|
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
|
|
ifp->if_hwassist |= ET_CSUM_FEATURES;
|
|
else
|
|
ifp->if_hwassist &= ~ET_CSUM_FEATURES;
|
|
}
|
|
ET_UNLOCK(sc);
|
|
break;
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
et_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct et_softc *sc = ifp->if_softc;
|
|
struct et_txbuf_data *tbd;
|
|
int trans;
|
|
|
|
ET_LOCK_ASSERT(sc);
|
|
tbd = &sc->sc_tx_data;
|
|
|
|
if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
|
|
return;
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
trans = 0;
|
|
for (;;) {
|
|
struct mbuf *m;
|
|
|
|
if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == NULL)
|
|
break;
|
|
|
|
if (et_encap(sc, &m)) {
|
|
ifp->if_oerrors++;
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
trans = 1;
|
|
|
|
BPF_MTAP(ifp, m);
|
|
}
|
|
|
|
if (trans)
|
|
sc->watchdog_timer = 5;
|
|
}
|
|
|
|
static void
|
|
et_start(struct ifnet *ifp)
|
|
{
|
|
struct et_softc *sc = ifp->if_softc;
|
|
|
|
ET_LOCK(sc);
|
|
et_start_locked(ifp);
|
|
ET_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
et_watchdog(struct et_softc *sc)
|
|
{
|
|
ET_LOCK_ASSERT(sc);
|
|
|
|
if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
|
|
return;
|
|
|
|
if_printf(sc->ifp, "watchdog timed out\n");
|
|
|
|
sc->ifp->if_oerrors++;
|
|
sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
et_init_locked(sc);
|
|
et_start_locked(sc->ifp);
|
|
}
|
|
|
|
static int
|
|
et_stop_rxdma(struct et_softc *sc)
|
|
{
|
|
CSR_WRITE_4(sc, ET_RXDMA_CTRL,
|
|
ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
|
|
|
|
DELAY(5);
|
|
if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
|
|
if_printf(sc->ifp, "can't stop RX DMA engine\n");
|
|
return (ETIMEDOUT);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_stop_txdma(struct et_softc *sc)
|
|
{
|
|
CSR_WRITE_4(sc, ET_TXDMA_CTRL,
|
|
ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_free_tx_ring(struct et_softc *sc)
|
|
{
|
|
struct et_txbuf_data *tbd = &sc->sc_tx_data;
|
|
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
|
|
int i;
|
|
|
|
for (i = 0; i < ET_TX_NDESC; ++i) {
|
|
struct et_txbuf *tb = &tbd->tbd_buf[i];
|
|
|
|
if (tb->tb_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap);
|
|
m_freem(tb->tb_mbuf);
|
|
tb->tb_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
|
|
bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static void
|
|
et_free_rx_ring(struct et_softc *sc)
|
|
{
|
|
int n;
|
|
|
|
for (n = 0; n < ET_RX_NRING; ++n) {
|
|
struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
|
|
struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
|
|
int i;
|
|
|
|
for (i = 0; i < ET_RX_NDESC; ++i) {
|
|
struct et_rxbuf *rb = &rbd->rbd_buf[i];
|
|
|
|
if (rb->rb_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_mbuf_dtag,
|
|
rb->rb_dmap);
|
|
m_freem(rb->rb_mbuf);
|
|
rb->rb_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
|
|
bus_dmamap_sync(rx_ring->rr_dtag, rx_ring->rr_dmap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
et_setmulti(struct et_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint32_t hash[4] = { 0, 0, 0, 0 };
|
|
uint32_t rxmac_ctrl, pktfilt;
|
|
struct ifmultiaddr *ifma;
|
|
int i, count;
|
|
|
|
ET_LOCK_ASSERT(sc);
|
|
ifp = sc->ifp;
|
|
|
|
pktfilt = CSR_READ_4(sc, ET_PKTFILT);
|
|
rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
|
|
|
|
pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
|
|
if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
|
|
rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
|
|
goto back;
|
|
}
|
|
|
|
count = 0;
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
uint32_t *hp, h;
|
|
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
|
|
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN);
|
|
h = (h & 0x3f800000) >> 23;
|
|
|
|
hp = &hash[0];
|
|
if (h >= 32 && h < 64) {
|
|
h -= 32;
|
|
hp = &hash[1];
|
|
} else if (h >= 64 && h < 96) {
|
|
h -= 64;
|
|
hp = &hash[2];
|
|
} else if (h >= 96) {
|
|
h -= 96;
|
|
hp = &hash[3];
|
|
}
|
|
*hp |= (1 << h);
|
|
|
|
++count;
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
for (i = 0; i < 4; ++i)
|
|
CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
|
|
|
|
if (count > 0)
|
|
pktfilt |= ET_PKTFILT_MCAST;
|
|
rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
|
|
back:
|
|
CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
|
|
CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
|
|
}
|
|
|
|
static int
|
|
et_chip_init(struct et_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
uint32_t rxq_end;
|
|
int error, frame_len, rxmem_size;
|
|
|
|
/*
|
|
* Split 16Kbytes internal memory between TX and RX
|
|
* according to frame length.
|
|
*/
|
|
frame_len = ET_FRAMELEN(ifp->if_mtu);
|
|
if (frame_len < 2048) {
|
|
rxmem_size = ET_MEM_RXSIZE_DEFAULT;
|
|
} else if (frame_len <= ET_RXMAC_CUT_THRU_FRMLEN) {
|
|
rxmem_size = ET_MEM_SIZE / 2;
|
|
} else {
|
|
rxmem_size = ET_MEM_SIZE -
|
|
roundup(frame_len + ET_MEM_TXSIZE_EX, ET_MEM_UNIT);
|
|
}
|
|
rxq_end = ET_QUEUE_ADDR(rxmem_size);
|
|
|
|
CSR_WRITE_4(sc, ET_RXQUEUE_START, ET_QUEUE_ADDR_START);
|
|
CSR_WRITE_4(sc, ET_RXQUEUE_END, rxq_end);
|
|
CSR_WRITE_4(sc, ET_TXQUEUE_START, rxq_end + 1);
|
|
CSR_WRITE_4(sc, ET_TXQUEUE_END, ET_QUEUE_ADDR_END);
|
|
|
|
/* No loopback */
|
|
CSR_WRITE_4(sc, ET_LOOPBACK, 0);
|
|
|
|
/* Clear MSI configure */
|
|
if ((sc->sc_flags & ET_FLAG_MSI) == 0)
|
|
CSR_WRITE_4(sc, ET_MSI_CFG, 0);
|
|
|
|
/* Disable timer */
|
|
CSR_WRITE_4(sc, ET_TIMER, 0);
|
|
|
|
/* Initialize MAC */
|
|
et_init_mac(sc);
|
|
|
|
/* Enable memory controllers */
|
|
CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
|
|
|
|
/* Initialize RX MAC */
|
|
et_init_rxmac(sc);
|
|
|
|
/* Initialize TX MAC */
|
|
et_init_txmac(sc);
|
|
|
|
/* Initialize RX DMA engine */
|
|
error = et_init_rxdma(sc);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Initialize TX DMA engine */
|
|
error = et_init_txdma(sc);
|
|
if (error)
|
|
return (error);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_init_tx_ring(struct et_softc *sc)
|
|
{
|
|
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
|
|
struct et_txstatus_data *txsd = &sc->sc_tx_status;
|
|
struct et_txbuf_data *tbd = &sc->sc_tx_data;
|
|
|
|
bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
|
|
bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
tbd->tbd_start_index = 0;
|
|
tbd->tbd_start_wrap = 0;
|
|
tbd->tbd_used = 0;
|
|
|
|
bzero(txsd->txsd_status, sizeof(uint32_t));
|
|
bus_dmamap_sync(txsd->txsd_dtag, txsd->txsd_dmap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_init_rx_ring(struct et_softc *sc)
|
|
{
|
|
struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
|
|
struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
|
|
int n;
|
|
|
|
for (n = 0; n < ET_RX_NRING; ++n) {
|
|
struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
|
|
int i, error;
|
|
|
|
for (i = 0; i < ET_RX_NDESC; ++i) {
|
|
error = rbd->rbd_newbuf(rbd, i, 1);
|
|
if (error) {
|
|
if_printf(sc->ifp, "%d ring %d buf, "
|
|
"newbuf failed: %d\n", n, i, error);
|
|
return (error);
|
|
}
|
|
}
|
|
}
|
|
|
|
bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
|
|
bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
|
|
bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_dma_buf_addr(void *xctx, bus_dma_segment_t *segs, int nsegs,
|
|
bus_size_t mapsz __unused, int error)
|
|
{
|
|
struct et_dmamap_ctx *ctx = xctx;
|
|
int i;
|
|
|
|
if (error)
|
|
return;
|
|
|
|
if (nsegs > ctx->nsegs) {
|
|
ctx->nsegs = 0;
|
|
return;
|
|
}
|
|
|
|
ctx->nsegs = nsegs;
|
|
for (i = 0; i < nsegs; ++i)
|
|
ctx->segs[i] = segs[i];
|
|
}
|
|
|
|
static int
|
|
et_init_rxdma(struct et_softc *sc)
|
|
{
|
|
struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
|
|
struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
|
|
struct et_rxdesc_ring *rx_ring;
|
|
int error;
|
|
|
|
error = et_stop_rxdma(sc);
|
|
if (error) {
|
|
if_printf(sc->ifp, "can't init RX DMA engine\n");
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Install RX status
|
|
*/
|
|
CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
|
|
CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
|
|
|
|
/*
|
|
* Install RX stat ring
|
|
*/
|
|
CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
|
|
CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
|
|
CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
|
|
CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
|
|
CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
|
|
|
|
/* Match ET_RXSTAT_POS */
|
|
rxst_ring->rsr_index = 0;
|
|
rxst_ring->rsr_wrap = 0;
|
|
|
|
/*
|
|
* Install the 2nd RX descriptor ring
|
|
*/
|
|
rx_ring = &sc->sc_rx_ring[1];
|
|
CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
|
|
CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
|
|
CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
|
|
CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
|
|
CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
|
|
|
|
/* Match ET_RX_RING1_POS */
|
|
rx_ring->rr_index = 0;
|
|
rx_ring->rr_wrap = 1;
|
|
|
|
/*
|
|
* Install the 1st RX descriptor ring
|
|
*/
|
|
rx_ring = &sc->sc_rx_ring[0];
|
|
CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
|
|
CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
|
|
CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
|
|
CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
|
|
CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
|
|
|
|
/* Match ET_RX_RING0_POS */
|
|
rx_ring->rr_index = 0;
|
|
rx_ring->rr_wrap = 1;
|
|
|
|
/*
|
|
* RX intr moderation
|
|
*/
|
|
CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
|
|
CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_init_txdma(struct et_softc *sc)
|
|
{
|
|
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
|
|
struct et_txstatus_data *txsd = &sc->sc_tx_status;
|
|
int error;
|
|
|
|
error = et_stop_txdma(sc);
|
|
if (error) {
|
|
if_printf(sc->ifp, "can't init TX DMA engine\n");
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Install TX descriptor ring
|
|
*/
|
|
CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
|
|
CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
|
|
CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
|
|
|
|
/*
|
|
* Install TX status
|
|
*/
|
|
CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
|
|
CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
|
|
|
|
CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
|
|
|
|
/* Match ET_TX_READY_POS */
|
|
tx_ring->tr_ready_index = 0;
|
|
tx_ring->tr_ready_wrap = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_init_mac(struct et_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
const uint8_t *eaddr = IF_LLADDR(ifp);
|
|
uint32_t val;
|
|
|
|
/* Reset MAC */
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1,
|
|
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
|
|
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
|
|
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
|
|
|
|
/*
|
|
* Setup inter packet gap
|
|
*/
|
|
val = (56 << ET_IPG_NONB2B_1_SHIFT) |
|
|
(88 << ET_IPG_NONB2B_2_SHIFT) |
|
|
(80 << ET_IPG_MINIFG_SHIFT) |
|
|
(96 << ET_IPG_B2B_SHIFT);
|
|
CSR_WRITE_4(sc, ET_IPG, val);
|
|
|
|
/*
|
|
* Setup half duplex mode
|
|
*/
|
|
val = (10 << ET_MAC_HDX_ALT_BEB_TRUNC_SHIFT) |
|
|
(15 << ET_MAC_HDX_REXMIT_MAX_SHIFT) |
|
|
(55 << ET_MAC_HDX_COLLWIN_SHIFT) |
|
|
ET_MAC_HDX_EXC_DEFER;
|
|
CSR_WRITE_4(sc, ET_MAC_HDX, val);
|
|
|
|
/* Clear MAC control */
|
|
CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
|
|
|
|
/* Reset MII */
|
|
CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
|
|
|
|
/*
|
|
* Set MAC address
|
|
*/
|
|
val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
|
|
CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
|
|
val = (eaddr[0] << 16) | (eaddr[1] << 24);
|
|
CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
|
|
|
|
/* Set max frame length */
|
|
CSR_WRITE_4(sc, ET_MAX_FRMLEN, ET_FRAMELEN(ifp->if_mtu));
|
|
|
|
/* Bring MAC out of reset state */
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
|
|
}
|
|
|
|
static void
|
|
et_init_rxmac(struct et_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
const uint8_t *eaddr = IF_LLADDR(ifp);
|
|
uint32_t val;
|
|
int i;
|
|
|
|
/* Disable RX MAC and WOL */
|
|
CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
|
|
|
|
/*
|
|
* Clear all WOL related registers
|
|
*/
|
|
for (i = 0; i < 3; ++i)
|
|
CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
|
|
for (i = 0; i < 20; ++i)
|
|
CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
|
|
|
|
/*
|
|
* Set WOL source address. XXX is this necessary?
|
|
*/
|
|
val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
|
|
CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
|
|
val = (eaddr[0] << 8) | eaddr[1];
|
|
CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
|
|
|
|
/* Clear packet filters */
|
|
CSR_WRITE_4(sc, ET_PKTFILT, 0);
|
|
|
|
/* No ucast filtering */
|
|
CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
|
|
CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
|
|
CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
|
|
|
|
if (ET_FRAMELEN(ifp->if_mtu) > ET_RXMAC_CUT_THRU_FRMLEN) {
|
|
/*
|
|
* In order to transmit jumbo packets greater than
|
|
* ET_RXMAC_CUT_THRU_FRMLEN bytes, the FIFO between
|
|
* RX MAC and RX DMA needs to be reduced in size to
|
|
* (ET_MEM_SIZE - ET_MEM_TXSIZE_EX - framelen). In
|
|
* order to implement this, we must use "cut through"
|
|
* mode in the RX MAC, which chops packets down into
|
|
* segments. In this case we selected 256 bytes,
|
|
* since this is the size of the PCI-Express TLP's
|
|
* that the ET1310 uses.
|
|
*/
|
|
val = (ET_RXMAC_SEGSZ(256) & ET_RXMAC_MC_SEGSZ_MAX_MASK) |
|
|
ET_RXMAC_MC_SEGSZ_ENABLE;
|
|
} else {
|
|
val = 0;
|
|
}
|
|
CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
|
|
|
|
CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
|
|
|
|
/* Initialize RX MAC management register */
|
|
CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
|
|
|
|
CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
|
|
|
|
CSR_WRITE_4(sc, ET_RXMAC_MGT,
|
|
ET_RXMAC_MGT_PASS_ECRC |
|
|
ET_RXMAC_MGT_PASS_ELEN |
|
|
ET_RXMAC_MGT_PASS_ETRUNC |
|
|
ET_RXMAC_MGT_CHECK_PKT);
|
|
|
|
/*
|
|
* Configure runt filtering (may not work on certain chip generation)
|
|
*/
|
|
val = (ETHER_MIN_LEN << ET_PKTFILT_MINLEN_SHIFT) &
|
|
ET_PKTFILT_MINLEN_MASK;
|
|
val |= ET_PKTFILT_FRAG;
|
|
CSR_WRITE_4(sc, ET_PKTFILT, val);
|
|
|
|
/* Enable RX MAC but leave WOL disabled */
|
|
CSR_WRITE_4(sc, ET_RXMAC_CTRL,
|
|
ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
|
|
|
|
/*
|
|
* Setup multicast hash and allmulti/promisc mode
|
|
*/
|
|
et_setmulti(sc);
|
|
}
|
|
|
|
static void
|
|
et_init_txmac(struct et_softc *sc)
|
|
{
|
|
/* Disable TX MAC and FC(?) */
|
|
CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
|
|
|
|
/* No flow control yet */
|
|
CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
|
|
|
|
/* Enable TX MAC but leave FC(?) diabled */
|
|
CSR_WRITE_4(sc, ET_TXMAC_CTRL,
|
|
ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
|
|
}
|
|
|
|
static int
|
|
et_start_rxdma(struct et_softc *sc)
|
|
{
|
|
uint32_t val = 0;
|
|
|
|
val |= (sc->sc_rx_data[0].rbd_bufsize & ET_RXDMA_CTRL_RING0_SIZE_MASK) |
|
|
ET_RXDMA_CTRL_RING0_ENABLE;
|
|
val |= (sc->sc_rx_data[1].rbd_bufsize & ET_RXDMA_CTRL_RING1_SIZE_MASK) |
|
|
ET_RXDMA_CTRL_RING1_ENABLE;
|
|
|
|
CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
|
|
|
|
DELAY(5);
|
|
|
|
if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
|
|
if_printf(sc->ifp, "can't start RX DMA engine\n");
|
|
return (ETIMEDOUT);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_start_txdma(struct et_softc *sc)
|
|
{
|
|
CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
et_enable_txrx(struct et_softc *sc, int media_upd)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
uint32_t val;
|
|
int i, error;
|
|
|
|
val = CSR_READ_4(sc, ET_MAC_CFG1);
|
|
val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
|
|
val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
|
|
ET_MAC_CFG1_LOOPBACK);
|
|
CSR_WRITE_4(sc, ET_MAC_CFG1, val);
|
|
|
|
if (media_upd)
|
|
et_ifmedia_upd_locked(ifp);
|
|
else
|
|
et_setmedia(sc);
|
|
|
|
#define NRETRY 50
|
|
|
|
for (i = 0; i < NRETRY; ++i) {
|
|
val = CSR_READ_4(sc, ET_MAC_CFG1);
|
|
if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
|
|
(ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
|
|
break;
|
|
|
|
DELAY(100);
|
|
}
|
|
if (i == NRETRY) {
|
|
if_printf(ifp, "can't enable RX/TX\n");
|
|
return (0);
|
|
}
|
|
sc->sc_flags |= ET_FLAG_TXRX_ENABLED;
|
|
|
|
#undef NRETRY
|
|
|
|
/*
|
|
* Start TX/RX DMA engine
|
|
*/
|
|
error = et_start_rxdma(sc);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = et_start_txdma(sc);
|
|
if (error)
|
|
return (error);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
et_rxeof(struct et_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct et_rxstatus_data *rxsd;
|
|
struct et_rxstat_ring *rxst_ring;
|
|
uint32_t rxs_stat_ring, rxst_info2;
|
|
int rxst_wrap, rxst_index;
|
|
|
|
ET_LOCK_ASSERT(sc);
|
|
ifp = sc->ifp;
|
|
rxsd = &sc->sc_rx_status;
|
|
rxst_ring = &sc->sc_rxstat_ring;
|
|
|
|
if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
|
|
return;
|
|
|
|
bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
rxs_stat_ring = le32toh(rxsd->rxsd_status->rxs_stat_ring);
|
|
rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
|
|
rxst_index = (rxs_stat_ring & ET_RXS_STATRING_INDEX_MASK) >>
|
|
ET_RXS_STATRING_INDEX_SHIFT;
|
|
|
|
while (rxst_index != rxst_ring->rsr_index ||
|
|
rxst_wrap != rxst_ring->rsr_wrap) {
|
|
struct et_rxbuf_data *rbd;
|
|
struct et_rxdesc_ring *rx_ring;
|
|
struct et_rxstat *st;
|
|
struct mbuf *m;
|
|
int buflen, buf_idx, ring_idx;
|
|
uint32_t rxstat_pos, rxring_pos;
|
|
|
|
MPASS(rxst_ring->rsr_index < ET_RX_NSTAT);
|
|
st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
|
|
rxst_info2 = le32toh(st->rxst_info2);
|
|
buflen = (rxst_info2 & ET_RXST_INFO2_LEN_MASK) >>
|
|
ET_RXST_INFO2_LEN_SHIFT;
|
|
buf_idx = (rxst_info2 & ET_RXST_INFO2_BUFIDX_MASK) >>
|
|
ET_RXST_INFO2_BUFIDX_SHIFT;
|
|
ring_idx = (rxst_info2 & ET_RXST_INFO2_RINGIDX_MASK) >>
|
|
ET_RXST_INFO2_RINGIDX_SHIFT;
|
|
|
|
if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
|
|
rxst_ring->rsr_index = 0;
|
|
rxst_ring->rsr_wrap ^= 1;
|
|
}
|
|
rxstat_pos = rxst_ring->rsr_index & ET_RXSTAT_POS_INDEX_MASK;
|
|
if (rxst_ring->rsr_wrap)
|
|
rxstat_pos |= ET_RXSTAT_POS_WRAP;
|
|
CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
|
|
|
|
if (ring_idx >= ET_RX_NRING) {
|
|
ifp->if_ierrors++;
|
|
if_printf(ifp, "invalid ring index %d\n", ring_idx);
|
|
continue;
|
|
}
|
|
if (buf_idx >= ET_RX_NDESC) {
|
|
ifp->if_ierrors++;
|
|
if_printf(ifp, "invalid buf index %d\n", buf_idx);
|
|
continue;
|
|
}
|
|
|
|
rbd = &sc->sc_rx_data[ring_idx];
|
|
m = rbd->rbd_buf[buf_idx].rb_mbuf;
|
|
|
|
if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
|
|
if (buflen < ETHER_CRC_LEN) {
|
|
m_freem(m);
|
|
m = NULL;
|
|
ifp->if_ierrors++;
|
|
} else {
|
|
m->m_pkthdr.len = m->m_len =
|
|
buflen - ETHER_CRC_LEN;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
ifp->if_ipackets++;
|
|
ET_UNLOCK(sc);
|
|
ifp->if_input(ifp, m);
|
|
ET_LOCK(sc);
|
|
}
|
|
} else {
|
|
ifp->if_ierrors++;
|
|
}
|
|
m = NULL; /* Catch invalid reference */
|
|
|
|
rx_ring = &sc->sc_rx_ring[ring_idx];
|
|
|
|
if (buf_idx != rx_ring->rr_index) {
|
|
if_printf(ifp, "WARNING!! ring %d, "
|
|
"buf_idx %d, rr_idx %d\n",
|
|
ring_idx, buf_idx, rx_ring->rr_index);
|
|
}
|
|
|
|
MPASS(rx_ring->rr_index < ET_RX_NDESC);
|
|
if (++rx_ring->rr_index == ET_RX_NDESC) {
|
|
rx_ring->rr_index = 0;
|
|
rx_ring->rr_wrap ^= 1;
|
|
}
|
|
rxring_pos = rx_ring->rr_index & ET_RX_RING_POS_INDEX_MASK;
|
|
if (rx_ring->rr_wrap)
|
|
rxring_pos |= ET_RX_RING_POS_WRAP;
|
|
CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
|
|
}
|
|
}
|
|
|
|
static int
|
|
et_encap(struct et_softc *sc, struct mbuf **m0)
|
|
{
|
|
struct mbuf *m = *m0;
|
|
bus_dma_segment_t segs[ET_NSEG_MAX];
|
|
struct et_dmamap_ctx ctx;
|
|
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
|
|
struct et_txbuf_data *tbd = &sc->sc_tx_data;
|
|
struct et_txdesc *td;
|
|
bus_dmamap_t map;
|
|
int error, maxsegs, first_idx, last_idx, i;
|
|
uint32_t csum_flags, tx_ready_pos, last_td_ctrl2;
|
|
|
|
maxsegs = ET_TX_NDESC - tbd->tbd_used;
|
|
if (maxsegs > ET_NSEG_MAX)
|
|
maxsegs = ET_NSEG_MAX;
|
|
KASSERT(maxsegs >= ET_NSEG_SPARE,
|
|
("not enough spare TX desc (%d)\n", maxsegs));
|
|
|
|
MPASS(tx_ring->tr_ready_index < ET_TX_NDESC);
|
|
first_idx = tx_ring->tr_ready_index;
|
|
map = tbd->tbd_buf[first_idx].tb_dmap;
|
|
|
|
ctx.nsegs = maxsegs;
|
|
ctx.segs = segs;
|
|
error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, map, m,
|
|
et_dma_buf_addr, &ctx, BUS_DMA_NOWAIT);
|
|
if (!error && ctx.nsegs == 0) {
|
|
bus_dmamap_unload(sc->sc_mbuf_dtag, map);
|
|
error = EFBIG;
|
|
}
|
|
if (error && error != EFBIG) {
|
|
if_printf(sc->ifp, "can't load TX mbuf, error %d\n",
|
|
error);
|
|
goto back;
|
|
}
|
|
if (error) { /* error == EFBIG */
|
|
struct mbuf *m_new;
|
|
|
|
m_new = m_defrag(m, M_DONTWAIT);
|
|
if (m_new == NULL) {
|
|
if_printf(sc->ifp, "can't defrag TX mbuf\n");
|
|
error = ENOBUFS;
|
|
goto back;
|
|
} else {
|
|
*m0 = m = m_new;
|
|
}
|
|
|
|
ctx.nsegs = maxsegs;
|
|
ctx.segs = segs;
|
|
error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, map, m,
|
|
et_dma_buf_addr, &ctx,
|
|
BUS_DMA_NOWAIT);
|
|
if (error || ctx.nsegs == 0) {
|
|
if (ctx.nsegs == 0) {
|
|
bus_dmamap_unload(sc->sc_mbuf_dtag, map);
|
|
error = EFBIG;
|
|
}
|
|
if_printf(sc->ifp,
|
|
"can't load defraged TX mbuf\n");
|
|
goto back;
|
|
}
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_mbuf_dtag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
|
|
sc->sc_tx += ctx.nsegs;
|
|
if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
|
|
sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
|
|
last_td_ctrl2 |= ET_TDCTRL2_INTR;
|
|
}
|
|
|
|
csum_flags = 0;
|
|
if ((m->m_pkthdr.csum_flags & ET_CSUM_FEATURES) != 0) {
|
|
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
|
|
csum_flags |= ET_TDCTRL2_CSUM_IP;
|
|
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
|
|
csum_flags |= ET_TDCTRL2_CSUM_UDP;
|
|
else if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
|
|
csum_flags |= ET_TDCTRL2_CSUM_TCP;
|
|
}
|
|
last_idx = -1;
|
|
for (i = 0; i < ctx.nsegs; ++i) {
|
|
int idx;
|
|
|
|
idx = (first_idx + i) % ET_TX_NDESC;
|
|
td = &tx_ring->tr_desc[idx];
|
|
td->td_addr_hi = htole32(ET_ADDR_HI(segs[i].ds_addr));
|
|
td->td_addr_lo = htole32(ET_ADDR_LO(segs[i].ds_addr));
|
|
td->td_ctrl1 = htole32(segs[i].ds_len & ET_TDCTRL1_LEN_MASK);
|
|
if (i == ctx.nsegs - 1) { /* Last frag */
|
|
td->td_ctrl2 = htole32(last_td_ctrl2 | csum_flags);
|
|
last_idx = idx;
|
|
} else
|
|
td->td_ctrl2 = htole32(csum_flags);
|
|
|
|
MPASS(tx_ring->tr_ready_index < ET_TX_NDESC);
|
|
if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
|
|
tx_ring->tr_ready_index = 0;
|
|
tx_ring->tr_ready_wrap ^= 1;
|
|
}
|
|
}
|
|
td = &tx_ring->tr_desc[first_idx];
|
|
td->td_ctrl2 |= htole32(ET_TDCTRL2_FIRST_FRAG); /* First frag */
|
|
|
|
MPASS(last_idx >= 0);
|
|
tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
|
|
tbd->tbd_buf[last_idx].tb_dmap = map;
|
|
tbd->tbd_buf[last_idx].tb_mbuf = m;
|
|
|
|
tbd->tbd_used += ctx.nsegs;
|
|
MPASS(tbd->tbd_used <= ET_TX_NDESC);
|
|
|
|
bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
tx_ready_pos = tx_ring->tr_ready_index & ET_TX_READY_POS_INDEX_MASK;
|
|
if (tx_ring->tr_ready_wrap)
|
|
tx_ready_pos |= ET_TX_READY_POS_WRAP;
|
|
CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
|
|
|
|
error = 0;
|
|
back:
|
|
if (error) {
|
|
m_freem(m);
|
|
*m0 = NULL;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
et_txeof(struct et_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct et_txdesc_ring *tx_ring;
|
|
struct et_txbuf_data *tbd;
|
|
uint32_t tx_done;
|
|
int end, wrap;
|
|
|
|
ET_LOCK_ASSERT(sc);
|
|
ifp = sc->ifp;
|
|
tx_ring = &sc->sc_tx_ring;
|
|
tbd = &sc->sc_tx_data;
|
|
|
|
if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
|
|
return;
|
|
|
|
if (tbd->tbd_used == 0)
|
|
return;
|
|
|
|
tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
|
|
end = tx_done & ET_TX_DONE_POS_INDEX_MASK;
|
|
wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
|
|
|
|
while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
|
|
struct et_txbuf *tb;
|
|
|
|
MPASS(tbd->tbd_start_index < ET_TX_NDESC);
|
|
tb = &tbd->tbd_buf[tbd->tbd_start_index];
|
|
|
|
bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
|
|
sizeof(struct et_txdesc));
|
|
bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
if (tb->tb_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap);
|
|
m_freem(tb->tb_mbuf);
|
|
tb->tb_mbuf = NULL;
|
|
ifp->if_opackets++;
|
|
}
|
|
|
|
if (++tbd->tbd_start_index == ET_TX_NDESC) {
|
|
tbd->tbd_start_index = 0;
|
|
tbd->tbd_start_wrap ^= 1;
|
|
}
|
|
|
|
MPASS(tbd->tbd_used > 0);
|
|
tbd->tbd_used--;
|
|
}
|
|
|
|
if (tbd->tbd_used == 0)
|
|
sc->watchdog_timer = 0;
|
|
if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
et_start_locked(ifp);
|
|
}
|
|
|
|
static void
|
|
et_tick(void *xsc)
|
|
{
|
|
struct et_softc *sc = xsc;
|
|
struct ifnet *ifp;
|
|
struct mii_data *mii;
|
|
|
|
ET_LOCK_ASSERT(sc);
|
|
ifp = sc->ifp;
|
|
mii = device_get_softc(sc->sc_miibus);
|
|
|
|
mii_tick(mii);
|
|
if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0 &&
|
|
(mii->mii_media_status & IFM_ACTIVE) &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
|
|
if_printf(ifp, "Link up, enable TX/RX\n");
|
|
if (et_enable_txrx(sc, 0) == 0)
|
|
et_start_locked(ifp);
|
|
}
|
|
et_watchdog(sc);
|
|
callout_reset(&sc->sc_tick, hz, et_tick, sc);
|
|
}
|
|
|
|
static int
|
|
et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
|
|
{
|
|
return (et_newbuf(rbd, buf_idx, init, MCLBYTES));
|
|
}
|
|
|
|
static int
|
|
et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
|
|
{
|
|
return (et_newbuf(rbd, buf_idx, init, MHLEN));
|
|
}
|
|
|
|
static int
|
|
et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
|
|
{
|
|
struct et_softc *sc = rbd->rbd_softc;
|
|
struct et_rxbuf *rb;
|
|
struct mbuf *m;
|
|
struct et_dmamap_ctx ctx;
|
|
bus_dma_segment_t seg;
|
|
bus_dmamap_t dmap;
|
|
int error, len;
|
|
|
|
MPASS(buf_idx < ET_RX_NDESC);
|
|
rb = &rbd->rbd_buf[buf_idx];
|
|
|
|
m = m_getl(len0, /* init ? M_WAIT :*/ M_DONTWAIT, MT_DATA, M_PKTHDR, &len);
|
|
if (m == NULL) {
|
|
error = ENOBUFS;
|
|
|
|
if (init) {
|
|
if_printf(sc->ifp,
|
|
"m_getl failed, size %d\n", len0);
|
|
return (error);
|
|
} else {
|
|
goto back;
|
|
}
|
|
}
|
|
m->m_len = m->m_pkthdr.len = len;
|
|
|
|
/*
|
|
* Try load RX mbuf into temporary DMA tag
|
|
*/
|
|
ctx.nsegs = 1;
|
|
ctx.segs = &seg;
|
|
error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, sc->sc_mbuf_tmp_dmap, m,
|
|
et_dma_buf_addr, &ctx,
|
|
init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
|
|
if (error || ctx.nsegs == 0) {
|
|
if (!error) {
|
|
bus_dmamap_unload(sc->sc_mbuf_dtag,
|
|
sc->sc_mbuf_tmp_dmap);
|
|
error = EFBIG;
|
|
if_printf(sc->ifp, "too many segments?!\n");
|
|
}
|
|
m_freem(m);
|
|
m = NULL;
|
|
|
|
if (init) {
|
|
if_printf(sc->ifp, "can't load RX mbuf\n");
|
|
return (error);
|
|
} else {
|
|
goto back;
|
|
}
|
|
}
|
|
|
|
if (!init) {
|
|
bus_dmamap_sync(sc->sc_mbuf_dtag, rb->rb_dmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_mbuf_dtag, rb->rb_dmap);
|
|
}
|
|
rb->rb_mbuf = m;
|
|
rb->rb_paddr = seg.ds_addr;
|
|
|
|
/*
|
|
* Swap RX buf's DMA map with the loaded temporary one
|
|
*/
|
|
dmap = rb->rb_dmap;
|
|
rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
|
|
sc->sc_mbuf_tmp_dmap = dmap;
|
|
|
|
error = 0;
|
|
back:
|
|
et_setup_rxdesc(rbd, buf_idx, rb->rb_paddr);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create sysctl tree
|
|
*/
|
|
static void
|
|
et_add_sysctls(struct et_softc * sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid_list *children;
|
|
|
|
ctx = device_get_sysctl_ctx(sc->dev);
|
|
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
|
|
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_intr_npkts",
|
|
CTLTYPE_INT | CTLFLAG_RW, sc, 0, et_sysctl_rx_intr_npkts, "I",
|
|
"RX IM, # packets per RX interrupt");
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_intr_delay",
|
|
CTLTYPE_INT | CTLFLAG_RW, sc, 0, et_sysctl_rx_intr_delay, "I",
|
|
"RX IM, RX interrupt delay (x10 usec)");
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_intr_nsegs",
|
|
CTLFLAG_RW, &sc->sc_tx_intr_nsegs, 0,
|
|
"TX IM, # segments per TX interrupt");
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "timer",
|
|
CTLFLAG_RW, &sc->sc_timer, 0, "TX timer");
|
|
}
|
|
|
|
static int
|
|
et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct et_softc *sc = arg1;
|
|
struct ifnet *ifp = sc->ifp;
|
|
int error = 0, v;
|
|
|
|
v = sc->sc_rx_intr_npkts;
|
|
error = sysctl_handle_int(oidp, &v, 0, req);
|
|
if (error || req->newptr == NULL)
|
|
goto back;
|
|
if (v <= 0) {
|
|
error = EINVAL;
|
|
goto back;
|
|
}
|
|
|
|
if (sc->sc_rx_intr_npkts != v) {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, v);
|
|
sc->sc_rx_intr_npkts = v;
|
|
}
|
|
back:
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct et_softc *sc = arg1;
|
|
struct ifnet *ifp = sc->ifp;
|
|
int error = 0, v;
|
|
|
|
v = sc->sc_rx_intr_delay;
|
|
error = sysctl_handle_int(oidp, &v, 0, req);
|
|
if (error || req->newptr == NULL)
|
|
goto back;
|
|
if (v <= 0) {
|
|
error = EINVAL;
|
|
goto back;
|
|
}
|
|
|
|
if (sc->sc_rx_intr_delay != v) {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
CSR_WRITE_4(sc, ET_RX_INTR_DELAY, v);
|
|
sc->sc_rx_intr_delay = v;
|
|
}
|
|
back:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
et_setmedia(struct et_softc *sc)
|
|
{
|
|
struct mii_data *mii = device_get_softc(sc->sc_miibus);
|
|
uint32_t cfg2, ctrl;
|
|
|
|
cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
|
|
cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
|
|
ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
|
|
cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
|
|
((7 << ET_MAC_CFG2_PREAMBLE_LEN_SHIFT) &
|
|
ET_MAC_CFG2_PREAMBLE_LEN_MASK);
|
|
|
|
ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
|
|
ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
|
|
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
|
|
cfg2 |= ET_MAC_CFG2_MODE_GMII;
|
|
} else {
|
|
cfg2 |= ET_MAC_CFG2_MODE_MII;
|
|
ctrl |= ET_MAC_CTRL_MODE_MII;
|
|
}
|
|
|
|
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
|
|
cfg2 |= ET_MAC_CFG2_FDX;
|
|
else
|
|
ctrl |= ET_MAC_CTRL_GHDX;
|
|
|
|
CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
|
|
CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
|
|
}
|
|
|
|
static void
|
|
et_setup_rxdesc(struct et_rxbuf_data *rbd, int buf_idx, bus_addr_t paddr)
|
|
{
|
|
struct et_rxdesc_ring *rx_ring = rbd->rbd_ring;
|
|
struct et_rxdesc *desc;
|
|
|
|
MPASS(buf_idx < ET_RX_NDESC);
|
|
desc = &rx_ring->rr_desc[buf_idx];
|
|
|
|
desc->rd_addr_hi = htole32(ET_ADDR_HI(paddr));
|
|
desc->rd_addr_lo = htole32(ET_ADDR_LO(paddr));
|
|
desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK);
|
|
|
|
bus_dmamap_sync(rx_ring->rr_dtag, rx_ring->rr_dmap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|