freebsd-dev/usr.bin/compress/zopen.c
Pedro F. Giffuni 8a16b7a18f General further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 3-Clause license.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.

Special thanks to Wind River for providing access to "The Duke of
Highlander" tool: an older (2014) run over FreeBSD tree was useful as a
starting point.
2017-11-20 19:49:47 +00:00

741 lines
19 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1985, 1986, 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Diomidis Spinellis and James A. Woods, derived from original
* work by Spencer Thomas and Joseph Orost.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#if defined(LIBC_SCCS) && !defined(lint)
static char sccsid[] = "@(#)zopen.c 8.1 (Berkeley) 6/27/93";
#endif /* LIBC_SCCS and not lint */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* fcompress.c - File compression ala IEEE Computer, June 1984.
*
* Compress authors:
* Spencer W. Thomas (decvax!utah-cs!thomas)
* Jim McKie (decvax!mcvax!jim)
* Steve Davies (decvax!vax135!petsd!peora!srd)
* Ken Turkowski (decvax!decwrl!turtlevax!ken)
* James A. Woods (decvax!ihnp4!ames!jaw)
* Joe Orost (decvax!vax135!petsd!joe)
*
* Cleaned up and converted to library returning I/O streams by
* Diomidis Spinellis <dds@doc.ic.ac.uk>.
*
* zopen(filename, mode, bits)
* Returns a FILE * that can be used for read or write. The modes
* supported are only "r" and "w". Seeking is not allowed. On
* reading the file is decompressed, on writing it is compressed.
* The output is compatible with compress(1) with 16 bit tables.
* Any file produced by compress(1) can be read.
*/
#include <sys/param.h>
#include <sys/stat.h>
#include <ctype.h>
#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "zopen.h"
#define BITS 16 /* Default bits. */
#define HSIZE 69001 /* 95% occupancy */
/* A code_int must be able to hold 2**BITS values of type int, and also -1. */
typedef long code_int;
typedef long count_int;
typedef u_char char_type;
static char_type magic_header[] =
{'\037', '\235'}; /* 1F 9D */
#define BIT_MASK 0x1f /* Defines for third byte of header. */
#define BLOCK_MASK 0x80
/*
* Masks 0x40 and 0x20 are free. I think 0x20 should mean that there is
* a fourth header byte (for expansion).
*/
#define INIT_BITS 9 /* Initial number of bits/code. */
#define MAXCODE(n_bits) ((1 << (n_bits)) - 1)
struct s_zstate {
FILE *zs_fp; /* File stream for I/O */
char zs_mode; /* r or w */
enum {
S_START, S_MIDDLE, S_EOF
} zs_state; /* State of computation */
u_int zs_n_bits; /* Number of bits/code. */
u_int zs_maxbits; /* User settable max # bits/code. */
code_int zs_maxcode; /* Maximum code, given n_bits. */
code_int zs_maxmaxcode; /* Should NEVER generate this code. */
count_int zs_htab [HSIZE];
u_short zs_codetab [HSIZE];
code_int zs_hsize; /* For dynamic table sizing. */
code_int zs_free_ent; /* First unused entry. */
/*
* Block compression parameters -- after all codes are used up,
* and compression rate changes, start over.
*/
int zs_block_compress;
int zs_clear_flg;
long zs_ratio;
count_int zs_checkpoint;
u_int zs_offset;
long zs_in_count; /* Length of input. */
long zs_bytes_out; /* Length of compressed output. */
long zs_out_count; /* # of codes output (for debugging). */
char_type zs_buf[BITS];
union {
struct {
long zs_fcode;
code_int zs_ent;
code_int zs_hsize_reg;
int zs_hshift;
} w; /* Write parameters */
struct {
char_type *zs_stackp;
int zs_finchar;
code_int zs_code, zs_oldcode, zs_incode;
int zs_roffset, zs_size;
char_type zs_gbuf[BITS];
} r; /* Read parameters */
} u;
};
/* Definitions to retain old variable names */
#define fp zs->zs_fp
#define zmode zs->zs_mode
#define state zs->zs_state
#define n_bits zs->zs_n_bits
#define maxbits zs->zs_maxbits
#define maxcode zs->zs_maxcode
#define maxmaxcode zs->zs_maxmaxcode
#define htab zs->zs_htab
#define codetab zs->zs_codetab
#define hsize zs->zs_hsize
#define free_ent zs->zs_free_ent
#define block_compress zs->zs_block_compress
#define clear_flg zs->zs_clear_flg
#define ratio zs->zs_ratio
#define checkpoint zs->zs_checkpoint
#define offset zs->zs_offset
#define in_count zs->zs_in_count
#define bytes_out zs->zs_bytes_out
#define out_count zs->zs_out_count
#define buf zs->zs_buf
#define fcode zs->u.w.zs_fcode
#define hsize_reg zs->u.w.zs_hsize_reg
#define ent zs->u.w.zs_ent
#define hshift zs->u.w.zs_hshift
#define stackp zs->u.r.zs_stackp
#define finchar zs->u.r.zs_finchar
#define code zs->u.r.zs_code
#define oldcode zs->u.r.zs_oldcode
#define incode zs->u.r.zs_incode
#define roffset zs->u.r.zs_roffset
#define size zs->u.r.zs_size
#define gbuf zs->u.r.zs_gbuf
/*
* To save much memory, we overlay the table used by compress() with those
* used by decompress(). The tab_prefix table is the same size and type as
* the codetab. The tab_suffix table needs 2**BITS characters. We get this
* from the beginning of htab. The output stack uses the rest of htab, and
* contains characters. There is plenty of room for any possible stack
* (stack used to be 8000 characters).
*/
#define htabof(i) htab[i]
#define codetabof(i) codetab[i]
#define tab_prefixof(i) codetabof(i)
#define tab_suffixof(i) ((char_type *)(htab))[i]
#define de_stack ((char_type *)&tab_suffixof(1 << BITS))
#define CHECK_GAP 10000 /* Ratio check interval. */
/*
* the next two codes should not be changed lightly, as they must not
* lie within the contiguous general code space.
*/
#define FIRST 257 /* First free entry. */
#define CLEAR 256 /* Table clear output code. */
static int cl_block(struct s_zstate *);
static void cl_hash(struct s_zstate *, count_int);
static code_int getcode(struct s_zstate *);
static int output(struct s_zstate *, code_int);
static int zclose(void *);
static int zread(void *, char *, int);
static int zwrite(void *, const char *, int);
/*-
* Algorithm from "A Technique for High Performance Data Compression",
* Terry A. Welch, IEEE Computer Vol 17, No 6 (June 1984), pp 8-19.
*
* Algorithm:
* Modified Lempel-Ziv method (LZW). Basically finds common
* substrings and replaces them with a variable size code. This is
* deterministic, and can be done on the fly. Thus, the decompression
* procedure needs no input table, but tracks the way the table was built.
*/
/*-
* compress write
*
* Algorithm: use open addressing double hashing (no chaining) on the
* prefix code / next character combination. We do a variant of Knuth's
* algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
* secondary probe. Here, the modular division first probe is gives way
* to a faster exclusive-or manipulation. Also do block compression with
* an adaptive reset, whereby the code table is cleared when the compression
* ratio decreases, but after the table fills. The variable-length output
* codes are re-sized at this point, and a special CLEAR code is generated
* for the decompressor. Late addition: construct the table according to
* file size for noticeable speed improvement on small files. Please direct
* questions about this implementation to ames!jaw.
*/
static int
zwrite(void *cookie, const char *wbp, int num)
{
code_int i;
int c, disp;
struct s_zstate *zs;
const u_char *bp;
u_char tmp;
int count;
if (num == 0)
return (0);
zs = cookie;
count = num;
bp = (const u_char *)wbp;
if (state == S_MIDDLE)
goto middle;
state = S_MIDDLE;
maxmaxcode = 1L << maxbits;
if (fwrite(magic_header,
sizeof(char), sizeof(magic_header), fp) != sizeof(magic_header))
return (-1);
tmp = (u_char)((maxbits) | block_compress);
if (fwrite(&tmp, sizeof(char), sizeof(tmp), fp) != sizeof(tmp))
return (-1);
offset = 0;
bytes_out = 3; /* Includes 3-byte header mojo. */
out_count = 0;
clear_flg = 0;
ratio = 0;
in_count = 1;
checkpoint = CHECK_GAP;
maxcode = MAXCODE(n_bits = INIT_BITS);
free_ent = ((block_compress) ? FIRST : 256);
ent = *bp++;
--count;
hshift = 0;
for (fcode = (long)hsize; fcode < 65536L; fcode *= 2L)
hshift++;
hshift = 8 - hshift; /* Set hash code range bound. */
hsize_reg = hsize;
cl_hash(zs, (count_int)hsize_reg); /* Clear hash table. */
middle: for (i = 0; count--;) {
c = *bp++;
in_count++;
fcode = (long)(((long)c << maxbits) + ent);
i = ((c << hshift) ^ ent); /* Xor hashing. */
if (htabof(i) == fcode) {
ent = codetabof(i);
continue;
} else if ((long)htabof(i) < 0) /* Empty slot. */
goto nomatch;
disp = hsize_reg - i; /* Secondary hash (after G. Knott). */
if (i == 0)
disp = 1;
probe: if ((i -= disp) < 0)
i += hsize_reg;
if (htabof(i) == fcode) {
ent = codetabof(i);
continue;
}
if ((long)htabof(i) >= 0)
goto probe;
nomatch: if (output(zs, (code_int) ent) == -1)
return (-1);
out_count++;
ent = c;
if (free_ent < maxmaxcode) {
codetabof(i) = free_ent++; /* code -> hashtable */
htabof(i) = fcode;
} else if ((count_int)in_count >=
checkpoint && block_compress) {
if (cl_block(zs) == -1)
return (-1);
}
}
return (num);
}
static int
zclose(void *cookie)
{
struct s_zstate *zs;
int rval;
zs = cookie;
if (zmode == 'w') { /* Put out the final code. */
if (output(zs, (code_int) ent) == -1) {
(void)fclose(fp);
free(zs);
return (-1);
}
out_count++;
if (output(zs, (code_int) - 1) == -1) {
(void)fclose(fp);
free(zs);
return (-1);
}
}
rval = fclose(fp) == EOF ? -1 : 0;
free(zs);
return (rval);
}
/*-
* Output the given code.
* Inputs:
* code: A n_bits-bit integer. If == -1, then EOF. This assumes
* that n_bits =< (long)wordsize - 1.
* Outputs:
* Outputs code to the file.
* Assumptions:
* Chars are 8 bits long.
* Algorithm:
* Maintain a BITS character long buffer (so that 8 codes will
* fit in it exactly). Use the VAX insv instruction to insert each
* code in turn. When the buffer fills up empty it and start over.
*/
static char_type lmask[9] =
{0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00};
static char_type rmask[9] =
{0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};
static int
output(struct s_zstate *zs, code_int ocode)
{
int r_off;
u_int bits;
char_type *bp;
r_off = offset;
bits = n_bits;
bp = buf;
if (ocode >= 0) {
/* Get to the first byte. */
bp += (r_off >> 3);
r_off &= 7;
/*
* Since ocode is always >= 8 bits, only need to mask the first
* hunk on the left.
*/
*bp = (*bp & rmask[r_off]) | ((ocode << r_off) & lmask[r_off]);
bp++;
bits -= (8 - r_off);
ocode >>= 8 - r_off;
/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
if (bits >= 8) {
*bp++ = ocode;
ocode >>= 8;
bits -= 8;
}
/* Last bits. */
if (bits)
*bp = ocode;
offset += n_bits;
if (offset == (n_bits << 3)) {
bp = buf;
bits = n_bits;
bytes_out += bits;
if (fwrite(bp, sizeof(char), bits, fp) != bits)
return (-1);
bp += bits;
bits = 0;
offset = 0;
}
/*
* If the next entry is going to be too big for the ocode size,
* then increase it, if possible.
*/
if (free_ent > maxcode || (clear_flg > 0)) {
/*
* Write the whole buffer, because the input side won't
* discover the size increase until after it has read it.
*/
if (offset > 0) {
if (fwrite(buf, 1, n_bits, fp) != n_bits)
return (-1);
bytes_out += n_bits;
}
offset = 0;
if (clear_flg) {
maxcode = MAXCODE(n_bits = INIT_BITS);
clear_flg = 0;
} else {
n_bits++;
if (n_bits == maxbits)
maxcode = maxmaxcode;
else
maxcode = MAXCODE(n_bits);
}
}
} else {
/* At EOF, write the rest of the buffer. */
if (offset > 0) {
offset = (offset + 7) / 8;
if (fwrite(buf, 1, offset, fp) != offset)
return (-1);
bytes_out += offset;
}
offset = 0;
}
return (0);
}
/*
* Decompress read. This routine adapts to the codes in the file building
* the "string" table on-the-fly; requiring no table to be stored in the
* compressed file. The tables used herein are shared with those of the
* compress() routine. See the definitions above.
*/
static int
zread(void *cookie, char *rbp, int num)
{
u_int count;
struct s_zstate *zs;
u_char *bp, header[3];
if (num == 0)
return (0);
zs = cookie;
count = num;
bp = (u_char *)rbp;
switch (state) {
case S_START:
state = S_MIDDLE;
break;
case S_MIDDLE:
goto middle;
case S_EOF:
goto eof;
}
/* Check the magic number */
if (fread(header,
sizeof(char), sizeof(header), fp) != sizeof(header) ||
memcmp(header, magic_header, sizeof(magic_header)) != 0) {
errno = EFTYPE;
return (-1);
}
maxbits = header[2]; /* Set -b from file. */
block_compress = maxbits & BLOCK_MASK;
maxbits &= BIT_MASK;
maxmaxcode = 1L << maxbits;
if (maxbits > BITS || maxbits < 12) {
errno = EFTYPE;
return (-1);
}
/* As above, initialize the first 256 entries in the table. */
maxcode = MAXCODE(n_bits = INIT_BITS);
for (code = 255; code >= 0; code--) {
tab_prefixof(code) = 0;
tab_suffixof(code) = (char_type) code;
}
free_ent = block_compress ? FIRST : 256;
finchar = oldcode = getcode(zs);
if (oldcode == -1) /* EOF already? */
return (0); /* Get out of here */
/* First code must be 8 bits = char. */
*bp++ = (u_char)finchar;
count--;
stackp = de_stack;
while ((code = getcode(zs)) > -1) {
if ((code == CLEAR) && block_compress) {
for (code = 255; code >= 0; code--)
tab_prefixof(code) = 0;
clear_flg = 1;
free_ent = FIRST;
oldcode = -1;
continue;
}
incode = code;
/* Special case for kWkWk string. */
if (code >= free_ent) {
if (code > free_ent || oldcode == -1) {
/* Bad stream. */
errno = EINVAL;
return (-1);
}
*stackp++ = finchar;
code = oldcode;
}
/*
* The above condition ensures that code < free_ent.
* The construction of tab_prefixof in turn guarantees that
* each iteration decreases code and therefore stack usage is
* bound by 1 << BITS - 256.
*/
/* Generate output characters in reverse order. */
while (code >= 256) {
*stackp++ = tab_suffixof(code);
code = tab_prefixof(code);
}
*stackp++ = finchar = tab_suffixof(code);
/* And put them out in forward order. */
middle: do {
if (count-- == 0)
return (num);
*bp++ = *--stackp;
} while (stackp > de_stack);
/* Generate the new entry. */
if ((code = free_ent) < maxmaxcode && oldcode != -1) {
tab_prefixof(code) = (u_short) oldcode;
tab_suffixof(code) = finchar;
free_ent = code + 1;
}
/* Remember previous code. */
oldcode = incode;
}
state = S_EOF;
eof: return (num - count);
}
/*-
* Read one code from the standard input. If EOF, return -1.
* Inputs:
* stdin
* Outputs:
* code or -1 is returned.
*/
static code_int
getcode(struct s_zstate *zs)
{
code_int gcode;
int r_off, bits;
char_type *bp;
bp = gbuf;
if (clear_flg > 0 || roffset >= size || free_ent > maxcode) {
/*
* If the next entry will be too big for the current gcode
* size, then we must increase the size. This implies reading
* a new buffer full, too.
*/
if (free_ent > maxcode) {
n_bits++;
if (n_bits == maxbits) /* Won't get any bigger now. */
maxcode = maxmaxcode;
else
maxcode = MAXCODE(n_bits);
}
if (clear_flg > 0) {
maxcode = MAXCODE(n_bits = INIT_BITS);
clear_flg = 0;
}
size = fread(gbuf, 1, n_bits, fp);
if (size <= 0) /* End of file. */
return (-1);
roffset = 0;
/* Round size down to integral number of codes. */
size = (size << 3) - (n_bits - 1);
}
r_off = roffset;
bits = n_bits;
/* Get to the first byte. */
bp += (r_off >> 3);
r_off &= 7;
/* Get first part (low order bits). */
gcode = (*bp++ >> r_off);
bits -= (8 - r_off);
r_off = 8 - r_off; /* Now, roffset into gcode word. */
/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
if (bits >= 8) {
gcode |= *bp++ << r_off;
r_off += 8;
bits -= 8;
}
/* High order bits. */
gcode |= (*bp & rmask[bits]) << r_off;
roffset += n_bits;
return (gcode);
}
static int
cl_block(struct s_zstate *zs) /* Table clear for block compress. */
{
long rat;
checkpoint = in_count + CHECK_GAP;
if (in_count > 0x007fffff) { /* Shift will overflow. */
rat = bytes_out >> 8;
if (rat == 0) /* Don't divide by zero. */
rat = 0x7fffffff;
else
rat = in_count / rat;
} else
rat = (in_count << 8) / bytes_out; /* 8 fractional bits. */
if (rat > ratio)
ratio = rat;
else {
ratio = 0;
cl_hash(zs, (count_int) hsize);
free_ent = FIRST;
clear_flg = 1;
if (output(zs, (code_int) CLEAR) == -1)
return (-1);
}
return (0);
}
static void
cl_hash(struct s_zstate *zs, count_int cl_hsize) /* Reset code table. */
{
count_int *htab_p;
long i, m1;
m1 = -1;
htab_p = htab + cl_hsize;
i = cl_hsize - 16;
do { /* Might use Sys V memset(3) here. */
*(htab_p - 16) = m1;
*(htab_p - 15) = m1;
*(htab_p - 14) = m1;
*(htab_p - 13) = m1;
*(htab_p - 12) = m1;
*(htab_p - 11) = m1;
*(htab_p - 10) = m1;
*(htab_p - 9) = m1;
*(htab_p - 8) = m1;
*(htab_p - 7) = m1;
*(htab_p - 6) = m1;
*(htab_p - 5) = m1;
*(htab_p - 4) = m1;
*(htab_p - 3) = m1;
*(htab_p - 2) = m1;
*(htab_p - 1) = m1;
htab_p -= 16;
} while ((i -= 16) >= 0);
for (i += 16; i > 0; i--)
*--htab_p = m1;
}
FILE *
zopen(const char *fname, const char *mode, int bits)
{
struct s_zstate *zs;
if ((mode[0] != 'r' && mode[0] != 'w') || mode[1] != '\0' ||
bits < 0 || bits > BITS) {
errno = EINVAL;
return (NULL);
}
if ((zs = calloc(1, sizeof(struct s_zstate))) == NULL)
return (NULL);
maxbits = bits ? bits : BITS; /* User settable max # bits/code. */
maxmaxcode = 1L << maxbits; /* Should NEVER generate this code. */
hsize = HSIZE; /* For dynamic table sizing. */
free_ent = 0; /* First unused entry. */
block_compress = BLOCK_MASK;
clear_flg = 0;
ratio = 0;
checkpoint = CHECK_GAP;
in_count = 1; /* Length of input. */
out_count = 0; /* # of codes output (for debugging). */
state = S_START;
roffset = 0;
size = 0;
/*
* Layering compress on top of stdio in order to provide buffering,
* and ensure that reads and write work with the data specified.
*/
if ((fp = fopen(fname, mode)) == NULL) {
free(zs);
return (NULL);
}
switch (*mode) {
case 'r':
zmode = 'r';
return (funopen(zs, zread, NULL, NULL, zclose));
case 'w':
zmode = 'w';
return (funopen(zs, NULL, zwrite, NULL, zclose));
}
/* NOTREACHED */
return (NULL);
}