freebsd-dev/sys/netinet/ip_input.c
Andre Oppermann de38924dc0 Support for dynamically loadable and unloadable IP protocols in the ipmux.
With pr_proto_register() it has become possible to dynamically load protocols
within the PF_INET domain.  However the PF_INET domain has a second important
structure called ip_protox[] that is derived from the 'struct protosw inetsw[]'
and takes care of the de-multiplexing of the various protocols that ride on
top of IP packets.

The functions ipproto_[un]register() allow to dynamically adjust the ip_protox[]
array mux in a consistent and easy way.  To register a protocol within
ip_protox[] the existence of a corresponding and matching protocol definition
in inetsw[] is required.  The function does not allow to overwrite an already
registered protocol.  The unregister function simply replaces the mux slot with
the default index pointer to IPPROTO_RAW as it was previously.
2004-10-19 15:45:57 +00:00

2110 lines
53 KiB
C

/*
* Copyright (c) 1982, 1986, 1988, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ip_input.c 8.2 (Berkeley) 1/4/94
* $FreeBSD$
*/
#include "opt_bootp.h"
#include "opt_ipfw.h"
#include "opt_ipstealth.h"
#include "opt_ipsec.h"
#include "opt_mac.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mac.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <net/pfil.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/route.h>
#include <net/netisr.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet/ip_icmp.h>
#include <machine/in_cksum.h>
#include <sys/socketvar.h>
/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
#include <netinet/ip_fw.h>
#include <netinet/ip_dummynet.h>
#ifdef IPSEC
#include <netinet6/ipsec.h>
#include <netkey/key.h>
#endif
#ifdef FAST_IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/key.h>
#endif
int rsvp_on = 0;
int ipforwarding = 0;
SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
&ipforwarding, 0, "Enable IP forwarding between interfaces");
static int ipsendredirects = 1; /* XXX */
SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
&ipsendredirects, 0, "Enable sending IP redirects");
int ip_defttl = IPDEFTTL;
SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
&ip_defttl, 0, "Maximum TTL on IP packets");
static int ip_dosourceroute = 0;
SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
&ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
static int ip_acceptsourceroute = 0;
SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
CTLFLAG_RW, &ip_acceptsourceroute, 0,
"Enable accepting source routed IP packets");
int ip_doopts = 1; /* 0 = ignore, 1 = process, 2 = reject */
SYSCTL_INT(_net_inet_ip, OID_AUTO, process_options, CTLFLAG_RW,
&ip_doopts, 0, "Enable IP options processing ([LS]SRR, RR, TS)");
static int ip_keepfaith = 0;
SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
&ip_keepfaith, 0,
"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
static int nipq = 0; /* total # of reass queues */
static int maxnipq;
SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
&maxnipq, 0,
"Maximum number of IPv4 fragment reassembly queue entries");
static int maxfragsperpacket;
SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
&maxfragsperpacket, 0,
"Maximum number of IPv4 fragments allowed per packet");
static int ip_sendsourcequench = 0;
SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
&ip_sendsourcequench, 0,
"Enable the transmission of source quench packets");
int ip_do_randomid = 0;
SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
&ip_do_randomid, 0,
"Assign random ip_id values");
/*
* XXX - Setting ip_checkinterface mostly implements the receive side of
* the Strong ES model described in RFC 1122, but since the routing table
* and transmit implementation do not implement the Strong ES model,
* setting this to 1 results in an odd hybrid.
*
* XXX - ip_checkinterface currently must be disabled if you use ipnat
* to translate the destination address to another local interface.
*
* XXX - ip_checkinterface must be disabled if you add IP aliases
* to the loopback interface instead of the interface where the
* packets for those addresses are received.
*/
static int ip_checkinterface = 0;
SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
&ip_checkinterface, 0, "Verify packet arrives on correct interface");
#ifdef DIAGNOSTIC
static int ipprintfs = 0;
#endif
struct pfil_head inet_pfil_hook; /* Packet filter hooks */
static struct ifqueue ipintrq;
static int ipqmaxlen = IFQ_MAXLEN;
extern struct domain inetdomain;
extern struct protosw inetsw[];
u_char ip_protox[IPPROTO_MAX];
struct in_ifaddrhead in_ifaddrhead; /* first inet address */
struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */
u_long in_ifaddrhmask; /* mask for hash table */
SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
&ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
&ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
struct ipstat ipstat;
SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
&ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
/* Packet reassembly stuff */
#define IPREASS_NHASH_LOG2 6
#define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
#define IPREASS_HMASK (IPREASS_NHASH - 1)
#define IPREASS_HASH(x,y) \
(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
struct mtx ipqlock;
#define IPQ_LOCK() mtx_lock(&ipqlock)
#define IPQ_UNLOCK() mtx_unlock(&ipqlock)
#define IPQ_LOCK_INIT() mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
#define IPQ_LOCK_ASSERT() mtx_assert(&ipqlock, MA_OWNED)
#ifdef IPCTL_DEFMTU
SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
&ip_mtu, 0, "Default MTU");
#endif
#ifdef IPSTEALTH
int ipstealth = 0;
SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
&ipstealth, 0, "");
#endif
/*
* ipfw_ether and ipfw_bridge hooks.
* XXX: Temporary until those are converted to pfil_hooks as well.
*/
ip_fw_chk_t *ip_fw_chk_ptr = NULL;
ip_dn_io_t *ip_dn_io_ptr = NULL;
int fw_enable = 1;
int fw_one_pass = 1;
/*
* XXX this is ugly. IP options source routing magic.
*/
struct ipoptrt {
struct in_addr dst; /* final destination */
char nop; /* one NOP to align */
char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
};
struct ipopt_tag {
struct m_tag tag;
int ip_nhops;
struct ipoptrt ip_srcrt;
};
static void save_rte(struct mbuf *, u_char *, struct in_addr);
static int ip_dooptions(struct mbuf *m, int);
static void ip_forward(struct mbuf *m, int srcrt);
static void ip_freef(struct ipqhead *, struct ipq *);
/*
* IP initialization: fill in IP protocol switch table.
* All protocols not implemented in kernel go to raw IP protocol handler.
*/
void
ip_init()
{
register struct protosw *pr;
register int i;
TAILQ_INIT(&in_ifaddrhead);
in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
if (pr == 0)
panic("ip_init: PF_INET not found");
/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
for (i = 0; i < IPPROTO_MAX; i++)
ip_protox[i] = pr - inetsw;
/*
* Cycle through IP protocols and put them into the appropriate place
* in ip_protox[].
*/
for (pr = inetdomain.dom_protosw;
pr < inetdomain.dom_protoswNPROTOSW; pr++)
if (pr->pr_domain->dom_family == PF_INET &&
pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
/* Be careful to only index valid IP protocols. */
if (pr->pr_protocol <= IPPROTO_MAX)
ip_protox[pr->pr_protocol] = pr - inetsw;
}
/* Initialize packet filter hooks. */
inet_pfil_hook.ph_type = PFIL_TYPE_AF;
inet_pfil_hook.ph_af = AF_INET;
if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
printf("%s: WARNING: unable to register pfil hook, "
"error %d\n", __func__, i);
/* Initialize IP reassembly queue. */
IPQ_LOCK_INIT();
for (i = 0; i < IPREASS_NHASH; i++)
TAILQ_INIT(&ipq[i]);
maxnipq = nmbclusters / 32;
maxfragsperpacket = 16;
/* Initialize various other remaining things. */
ip_id = time_second & 0xffff;
ipintrq.ifq_maxlen = ipqmaxlen;
mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
}
/*
* Ip input routine. Checksum and byte swap header. If fragmented
* try to reassemble. Process options. Pass to next level.
*/
void
ip_input(struct mbuf *m)
{
struct ip *ip = NULL;
struct in_ifaddr *ia = NULL;
struct ifaddr *ifa;
int checkif, hlen = 0;
u_short sum;
int dchg = 0; /* dest changed after fw */
struct in_addr odst; /* original dst address */
#ifdef FAST_IPSEC
struct m_tag *mtag;
struct tdb_ident *tdbi;
struct secpolicy *sp;
int s, error;
#endif /* FAST_IPSEC */
M_ASSERTPKTHDR(m);
if (m->m_flags & M_FASTFWD_OURS) {
/*
* Firewall or NAT changed destination to local.
* We expect ip_len and ip_off to be in host byte order.
*/
m->m_flags &= ~M_FASTFWD_OURS;
/* Set up some basics that will be used later. */
ip = mtod(m, struct ip *);
hlen = ip->ip_hl << 2;
goto ours;
}
ipstat.ips_total++;
if (m->m_pkthdr.len < sizeof(struct ip))
goto tooshort;
if (m->m_len < sizeof (struct ip) &&
(m = m_pullup(m, sizeof (struct ip))) == NULL) {
ipstat.ips_toosmall++;
return;
}
ip = mtod(m, struct ip *);
if (ip->ip_v != IPVERSION) {
ipstat.ips_badvers++;
goto bad;
}
hlen = ip->ip_hl << 2;
if (hlen < sizeof(struct ip)) { /* minimum header length */
ipstat.ips_badhlen++;
goto bad;
}
if (hlen > m->m_len) {
if ((m = m_pullup(m, hlen)) == NULL) {
ipstat.ips_badhlen++;
return;
}
ip = mtod(m, struct ip *);
}
/* 127/8 must not appear on wire - RFC1122 */
if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
(ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
ipstat.ips_badaddr++;
goto bad;
}
}
if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
} else {
if (hlen == sizeof(struct ip)) {
sum = in_cksum_hdr(ip);
} else {
sum = in_cksum(m, hlen);
}
}
if (sum) {
ipstat.ips_badsum++;
goto bad;
}
#ifdef ALTQ
if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
/* packet is dropped by traffic conditioner */
return;
#endif
/*
* Convert fields to host representation.
*/
ip->ip_len = ntohs(ip->ip_len);
if (ip->ip_len < hlen) {
ipstat.ips_badlen++;
goto bad;
}
ip->ip_off = ntohs(ip->ip_off);
/*
* Check that the amount of data in the buffers
* is as at least much as the IP header would have us expect.
* Trim mbufs if longer than we expect.
* Drop packet if shorter than we expect.
*/
if (m->m_pkthdr.len < ip->ip_len) {
tooshort:
ipstat.ips_tooshort++;
goto bad;
}
if (m->m_pkthdr.len > ip->ip_len) {
if (m->m_len == m->m_pkthdr.len) {
m->m_len = ip->ip_len;
m->m_pkthdr.len = ip->ip_len;
} else
m_adj(m, ip->ip_len - m->m_pkthdr.len);
}
#if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
/*
* Bypass packet filtering for packets from a tunnel (gif).
*/
if (ipsec_getnhist(m))
goto passin;
#endif
#if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
/*
* Bypass packet filtering for packets from a tunnel (gif).
*/
if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
goto passin;
#endif
/*
* Run through list of hooks for input packets.
*
* NB: Beware of the destination address changing (e.g.
* by NAT rewriting). When this happens, tell
* ip_forward to do the right thing.
*/
/* Jump over all PFIL processing if hooks are not active. */
if (inet_pfil_hook.ph_busy_count == -1)
goto passin;
odst = ip->ip_dst;
if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
PFIL_IN, NULL) != 0)
return;
if (m == NULL) /* consumed by filter */
return;
ip = mtod(m, struct ip *);
dchg = (odst.s_addr != ip->ip_dst.s_addr);
#ifdef IPFIREWALL_FORWARD
if (m->m_flags & M_FASTFWD_OURS) {
m->m_flags &= ~M_FASTFWD_OURS;
goto ours;
}
dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
#endif /* IPFIREWALL_FORWARD */
passin:
/*
* Process options and, if not destined for us,
* ship it on. ip_dooptions returns 1 when an
* error was detected (causing an icmp message
* to be sent and the original packet to be freed).
*/
if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
return;
/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
* matter if it is destined to another node, or whether it is
* a multicast one, RSVP wants it! and prevents it from being forwarded
* anywhere else. Also checks if the rsvp daemon is running before
* grabbing the packet.
*/
if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
goto ours;
/*
* Check our list of addresses, to see if the packet is for us.
* If we don't have any addresses, assume any unicast packet
* we receive might be for us (and let the upper layers deal
* with it).
*/
if (TAILQ_EMPTY(&in_ifaddrhead) &&
(m->m_flags & (M_MCAST|M_BCAST)) == 0)
goto ours;
/*
* Enable a consistency check between the destination address
* and the arrival interface for a unicast packet (the RFC 1122
* strong ES model) if IP forwarding is disabled and the packet
* is not locally generated and the packet is not subject to
* 'ipfw fwd'.
*
* XXX - Checking also should be disabled if the destination
* address is ipnat'ed to a different interface.
*
* XXX - Checking is incompatible with IP aliases added
* to the loopback interface instead of the interface where
* the packets are received.
*/
checkif = ip_checkinterface && (ipforwarding == 0) &&
m->m_pkthdr.rcvif != NULL &&
((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
(dchg == 0);
/*
* Check for exact addresses in the hash bucket.
*/
LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
/*
* If the address matches, verify that the packet
* arrived via the correct interface if checking is
* enabled.
*/
if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
(!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
goto ours;
}
/*
* Check for broadcast addresses.
*
* Only accept broadcast packets that arrive via the matching
* interface. Reception of forwarded directed broadcasts would
* be handled via ip_forward() and ether_output() with the loopback
* into the stack for SIMPLEX interfaces handled by ether_output().
*/
if (m->m_pkthdr.rcvif != NULL &&
m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != AF_INET)
continue;
ia = ifatoia(ifa);
if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
ip->ip_dst.s_addr)
goto ours;
if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
goto ours;
#ifdef BOOTP_COMPAT
if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
goto ours;
#endif
}
}
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
struct in_multi *inm;
if (ip_mrouter) {
/*
* If we are acting as a multicast router, all
* incoming multicast packets are passed to the
* kernel-level multicast forwarding function.
* The packet is returned (relatively) intact; if
* ip_mforward() returns a non-zero value, the packet
* must be discarded, else it may be accepted below.
*/
if (ip_mforward &&
ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
ipstat.ips_cantforward++;
m_freem(m);
return;
}
/*
* The process-level routing daemon needs to receive
* all multicast IGMP packets, whether or not this
* host belongs to their destination groups.
*/
if (ip->ip_p == IPPROTO_IGMP)
goto ours;
ipstat.ips_forward++;
}
/*
* See if we belong to the destination multicast group on the
* arrival interface.
*/
IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
if (inm == NULL) {
ipstat.ips_notmember++;
m_freem(m);
return;
}
goto ours;
}
if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
goto ours;
if (ip->ip_dst.s_addr == INADDR_ANY)
goto ours;
/*
* FAITH(Firewall Aided Internet Translator)
*/
if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
if (ip_keepfaith) {
if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
goto ours;
}
m_freem(m);
return;
}
/*
* Not for us; forward if possible and desirable.
*/
if (ipforwarding == 0) {
ipstat.ips_cantforward++;
m_freem(m);
} else {
#ifdef IPSEC
/*
* Enforce inbound IPsec SPD.
*/
if (ipsec4_in_reject(m, NULL)) {
ipsecstat.in_polvio++;
goto bad;
}
#endif /* IPSEC */
#ifdef FAST_IPSEC
mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
s = splnet();
if (mtag != NULL) {
tdbi = (struct tdb_ident *)(mtag + 1);
sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
} else {
sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
IP_FORWARDING, &error);
}
if (sp == NULL) { /* NB: can happen if error */
splx(s);
/*XXX error stat???*/
DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
goto bad;
}
/*
* Check security policy against packet attributes.
*/
error = ipsec_in_reject(sp, m);
KEY_FREESP(&sp);
splx(s);
if (error) {
ipstat.ips_cantforward++;
goto bad;
}
#endif /* FAST_IPSEC */
ip_forward(m, dchg);
}
return;
ours:
#ifdef IPSTEALTH
/*
* IPSTEALTH: Process non-routing options only
* if the packet is destined for us.
*/
if (ipstealth && hlen > sizeof (struct ip) &&
ip_dooptions(m, 1))
return;
#endif /* IPSTEALTH */
/* Count the packet in the ip address stats */
if (ia != NULL) {
ia->ia_ifa.if_ipackets++;
ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
}
/*
* Attempt reassembly; if it succeeds, proceed.
* ip_reass() will return a different mbuf.
*/
if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
m = ip_reass(m);
if (m == NULL)
return;
ip = mtod(m, struct ip *);
/* Get the header length of the reassembled packet */
hlen = ip->ip_hl << 2;
}
/*
* Further protocols expect the packet length to be w/o the
* IP header.
*/
ip->ip_len -= hlen;
#ifdef IPSEC
/*
* enforce IPsec policy checking if we are seeing last header.
* note that we do not visit this with protocols with pcb layer
* code - like udp/tcp/raw ip.
*/
if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
ipsec4_in_reject(m, NULL)) {
ipsecstat.in_polvio++;
goto bad;
}
#endif
#if FAST_IPSEC
/*
* enforce IPsec policy checking if we are seeing last header.
* note that we do not visit this with protocols with pcb layer
* code - like udp/tcp/raw ip.
*/
if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
/*
* Check if the packet has already had IPsec processing
* done. If so, then just pass it along. This tag gets
* set during AH, ESP, etc. input handling, before the
* packet is returned to the ip input queue for delivery.
*/
mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
s = splnet();
if (mtag != NULL) {
tdbi = (struct tdb_ident *)(mtag + 1);
sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
} else {
sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
IP_FORWARDING, &error);
}
if (sp != NULL) {
/*
* Check security policy against packet attributes.
*/
error = ipsec_in_reject(sp, m);
KEY_FREESP(&sp);
} else {
/* XXX error stat??? */
error = EINVAL;
DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
goto bad;
}
splx(s);
if (error)
goto bad;
}
#endif /* FAST_IPSEC */
/*
* Switch out to protocol's input routine.
*/
ipstat.ips_delivered++;
(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
return;
bad:
m_freem(m);
}
/*
* Take incoming datagram fragment and try to reassemble it into
* whole datagram. If the argument is the first fragment or one
* in between the function will return NULL and store the mbuf
* in the fragment chain. If the argument is the last fragment
* the packet will be reassembled and the pointer to the new
* mbuf returned for further processing. Only m_tags attached
* to the first packet/fragment are preserved.
* The IP header is *NOT* adjusted out of iplen.
*/
struct mbuf *
ip_reass(struct mbuf *m)
{
struct ip *ip;
struct mbuf *p, *q, *nq, *t;
struct ipq *fp = NULL;
struct ipqhead *head;
int i, hlen, next;
u_int8_t ecn, ecn0;
u_short hash;
/* If maxnipq is 0, never accept fragments. */
if (maxnipq == 0) {
ipstat.ips_fragments++;
ipstat.ips_fragdropped++;
m_freem(m);
return (NULL);
}
ip = mtod(m, struct ip *);
hlen = ip->ip_hl << 2;
hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
head = &ipq[hash];
IPQ_LOCK();
/*
* Look for queue of fragments
* of this datagram.
*/
TAILQ_FOREACH(fp, head, ipq_list)
if (ip->ip_id == fp->ipq_id &&
ip->ip_src.s_addr == fp->ipq_src.s_addr &&
ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
#ifdef MAC
mac_fragment_match(m, fp) &&
#endif
ip->ip_p == fp->ipq_p)
goto found;
fp = NULL;
/*
* Enforce upper bound on number of fragmented packets
* for which we attempt reassembly;
* If maxnipq is -1, accept all fragments without limitation.
*/
if ((nipq > maxnipq) && (maxnipq > 0)) {
/*
* drop something from the tail of the current queue
* before proceeding further
*/
struct ipq *q = TAILQ_LAST(head, ipqhead);
if (q == NULL) { /* gak */
for (i = 0; i < IPREASS_NHASH; i++) {
struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
if (r) {
ipstat.ips_fragtimeout += r->ipq_nfrags;
ip_freef(&ipq[i], r);
break;
}
}
} else {
ipstat.ips_fragtimeout += q->ipq_nfrags;
ip_freef(head, q);
}
}
found:
/*
* Adjust ip_len to not reflect header,
* convert offset of this to bytes.
*/
ip->ip_len -= hlen;
if (ip->ip_off & IP_MF) {
/*
* Make sure that fragments have a data length
* that's a non-zero multiple of 8 bytes.
*/
if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
ipstat.ips_toosmall++; /* XXX */
goto dropfrag;
}
m->m_flags |= M_FRAG;
} else
m->m_flags &= ~M_FRAG;
ip->ip_off <<= 3;
/*
* Attempt reassembly; if it succeeds, proceed.
* ip_reass() will return a different mbuf.
*/
ipstat.ips_fragments++;
m->m_pkthdr.header = ip;
/* Previous ip_reass() started here. */
/*
* Presence of header sizes in mbufs
* would confuse code below.
*/
m->m_data += hlen;
m->m_len -= hlen;
/*
* If first fragment to arrive, create a reassembly queue.
*/
if (fp == NULL) {
if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
goto dropfrag;
fp = mtod(t, struct ipq *);
#ifdef MAC
if (mac_init_ipq(fp, M_NOWAIT) != 0) {
m_free(t);
goto dropfrag;
}
mac_create_ipq(m, fp);
#endif
TAILQ_INSERT_HEAD(head, fp, ipq_list);
nipq++;
fp->ipq_nfrags = 1;
fp->ipq_ttl = IPFRAGTTL;
fp->ipq_p = ip->ip_p;
fp->ipq_id = ip->ip_id;
fp->ipq_src = ip->ip_src;
fp->ipq_dst = ip->ip_dst;
fp->ipq_frags = m;
m->m_nextpkt = NULL;
goto inserted;
} else {
fp->ipq_nfrags++;
#ifdef MAC
mac_update_ipq(m, fp);
#endif
}
#define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
/*
* Handle ECN by comparing this segment with the first one;
* if CE is set, do not lose CE.
* drop if CE and not-ECT are mixed for the same packet.
*/
ecn = ip->ip_tos & IPTOS_ECN_MASK;
ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
if (ecn == IPTOS_ECN_CE) {
if (ecn0 == IPTOS_ECN_NOTECT)
goto dropfrag;
if (ecn0 != IPTOS_ECN_CE)
GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
}
if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
goto dropfrag;
/*
* Find a segment which begins after this one does.
*/
for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
if (GETIP(q)->ip_off > ip->ip_off)
break;
/*
* If there is a preceding segment, it may provide some of
* our data already. If so, drop the data from the incoming
* segment. If it provides all of our data, drop us, otherwise
* stick new segment in the proper place.
*
* If some of the data is dropped from the the preceding
* segment, then it's checksum is invalidated.
*/
if (p) {
i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
if (i > 0) {
if (i >= ip->ip_len)
goto dropfrag;
m_adj(m, i);
m->m_pkthdr.csum_flags = 0;
ip->ip_off += i;
ip->ip_len -= i;
}
m->m_nextpkt = p->m_nextpkt;
p->m_nextpkt = m;
} else {
m->m_nextpkt = fp->ipq_frags;
fp->ipq_frags = m;
}
/*
* While we overlap succeeding segments trim them or,
* if they are completely covered, dequeue them.
*/
for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
q = nq) {
i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
if (i < GETIP(q)->ip_len) {
GETIP(q)->ip_len -= i;
GETIP(q)->ip_off += i;
m_adj(q, i);
q->m_pkthdr.csum_flags = 0;
break;
}
nq = q->m_nextpkt;
m->m_nextpkt = nq;
ipstat.ips_fragdropped++;
fp->ipq_nfrags--;
m_freem(q);
}
inserted:
/*
* Check for complete reassembly and perform frag per packet
* limiting.
*
* Frag limiting is performed here so that the nth frag has
* a chance to complete the packet before we drop the packet.
* As a result, n+1 frags are actually allowed per packet, but
* only n will ever be stored. (n = maxfragsperpacket.)
*
*/
next = 0;
for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
if (GETIP(q)->ip_off != next) {
if (fp->ipq_nfrags > maxfragsperpacket) {
ipstat.ips_fragdropped += fp->ipq_nfrags;
ip_freef(head, fp);
}
goto done;
}
next += GETIP(q)->ip_len;
}
/* Make sure the last packet didn't have the IP_MF flag */
if (p->m_flags & M_FRAG) {
if (fp->ipq_nfrags > maxfragsperpacket) {
ipstat.ips_fragdropped += fp->ipq_nfrags;
ip_freef(head, fp);
}
goto done;
}
/*
* Reassembly is complete. Make sure the packet is a sane size.
*/
q = fp->ipq_frags;
ip = GETIP(q);
if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
ipstat.ips_toolong++;
ipstat.ips_fragdropped += fp->ipq_nfrags;
ip_freef(head, fp);
goto done;
}
/*
* Concatenate fragments.
*/
m = q;
t = m->m_next;
m->m_next = 0;
m_cat(m, t);
nq = q->m_nextpkt;
q->m_nextpkt = 0;
for (q = nq; q != NULL; q = nq) {
nq = q->m_nextpkt;
q->m_nextpkt = NULL;
m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
m_cat(m, q);
}
#ifdef MAC
mac_create_datagram_from_ipq(fp, m);
mac_destroy_ipq(fp);
#endif
/*
* Create header for new ip packet by modifying header of first
* packet; dequeue and discard fragment reassembly header.
* Make header visible.
*/
ip->ip_len = (ip->ip_hl << 2) + next;
ip->ip_src = fp->ipq_src;
ip->ip_dst = fp->ipq_dst;
TAILQ_REMOVE(head, fp, ipq_list);
nipq--;
(void) m_free(dtom(fp));
m->m_len += (ip->ip_hl << 2);
m->m_data -= (ip->ip_hl << 2);
/* some debugging cruft by sklower, below, will go away soon */
if (m->m_flags & M_PKTHDR) /* XXX this should be done elsewhere */
m_fixhdr(m);
ipstat.ips_reassembled++;
IPQ_UNLOCK();
return (m);
dropfrag:
ipstat.ips_fragdropped++;
if (fp != NULL)
fp->ipq_nfrags--;
m_freem(m);
done:
IPQ_UNLOCK();
return (NULL);
#undef GETIP
}
/*
* Free a fragment reassembly header and all
* associated datagrams.
*/
static void
ip_freef(fhp, fp)
struct ipqhead *fhp;
struct ipq *fp;
{
register struct mbuf *q;
IPQ_LOCK_ASSERT();
while (fp->ipq_frags) {
q = fp->ipq_frags;
fp->ipq_frags = q->m_nextpkt;
m_freem(q);
}
TAILQ_REMOVE(fhp, fp, ipq_list);
(void) m_free(dtom(fp));
nipq--;
}
/*
* IP timer processing;
* if a timer expires on a reassembly
* queue, discard it.
*/
void
ip_slowtimo()
{
register struct ipq *fp;
int s = splnet();
int i;
IPQ_LOCK();
for (i = 0; i < IPREASS_NHASH; i++) {
for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
struct ipq *fpp;
fpp = fp;
fp = TAILQ_NEXT(fp, ipq_list);
if(--fpp->ipq_ttl == 0) {
ipstat.ips_fragtimeout += fpp->ipq_nfrags;
ip_freef(&ipq[i], fpp);
}
}
}
/*
* If we are over the maximum number of fragments
* (due to the limit being lowered), drain off
* enough to get down to the new limit.
*/
if (maxnipq >= 0 && nipq > maxnipq) {
for (i = 0; i < IPREASS_NHASH; i++) {
while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
ipstat.ips_fragdropped +=
TAILQ_FIRST(&ipq[i])->ipq_nfrags;
ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
}
}
}
IPQ_UNLOCK();
splx(s);
}
/*
* Drain off all datagram fragments.
*/
void
ip_drain()
{
int i;
IPQ_LOCK();
for (i = 0; i < IPREASS_NHASH; i++) {
while(!TAILQ_EMPTY(&ipq[i])) {
ipstat.ips_fragdropped +=
TAILQ_FIRST(&ipq[i])->ipq_nfrags;
ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
}
}
IPQ_UNLOCK();
in_rtqdrain();
}
/*
* The protocol to be inserted into ip_protox[] must be already registered
* in inetsw[], either statically or through pf_proto_register().
*/
int
ipproto_register(u_char ipproto)
{
struct protosw *pr;
/* Sanity checks. */
if (ipproto == 0)
return (EPROTONOSUPPORT);
/*
* The protocol slot must not be occupied by another protocol
* already. An index pointing to IPPROTO_RAW is unused.
*/
pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
if (pr == NULL)
return (EPFNOSUPPORT);
if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */
return (EEXIST);
/* Find the protocol position in inetsw[] and set the index. */
for (pr = inetdomain.dom_protosw;
pr < inetdomain.dom_protoswNPROTOSW; pr++) {
if (pr->pr_domain->dom_family == PF_INET &&
pr->pr_protocol && pr->pr_protocol == ipproto) {
/* Be careful to only index valid IP protocols. */
if (pr->pr_protocol <= IPPROTO_MAX) {
ip_protox[pr->pr_protocol] = pr - inetsw;
return (0);
} else
return (EINVAL);
}
}
return (EPROTONOSUPPORT);
}
int
ipproto_unregister(u_char ipproto)
{
struct protosw *pr;
/* Sanity checks. */
if (ipproto == 0)
return (EPROTONOSUPPORT);
/* Check if the protocol was indeed registered. */
pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
if (pr == NULL)
return (EPFNOSUPPORT);
if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */
return (ENOENT);
/* Reset the protocol slot to IPPROTO_RAW. */
ip_protox[ipproto] = pr - inetsw;
return (0);
}
/*
* Do option processing on a datagram,
* possibly discarding it if bad options are encountered,
* or forwarding it if source-routed.
* The pass argument is used when operating in the IPSTEALTH
* mode to tell what options to process:
* [LS]SRR (pass 0) or the others (pass 1).
* The reason for as many as two passes is that when doing IPSTEALTH,
* non-routing options should be processed only if the packet is for us.
* Returns 1 if packet has been forwarded/freed,
* 0 if the packet should be processed further.
*/
static int
ip_dooptions(struct mbuf *m, int pass)
{
struct ip *ip = mtod(m, struct ip *);
u_char *cp;
struct in_ifaddr *ia;
int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
struct in_addr *sin, dst;
n_time ntime;
struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
/* ignore or reject packets with IP options */
if (ip_doopts == 0)
return 0;
else if (ip_doopts == 2) {
type = ICMP_UNREACH;
code = ICMP_UNREACH_FILTER_PROHIB;
goto bad;
}
dst = ip->ip_dst;
cp = (u_char *)(ip + 1);
cnt = (ip->ip_hl << 2) - sizeof (struct ip);
for (; cnt > 0; cnt -= optlen, cp += optlen) {
opt = cp[IPOPT_OPTVAL];
if (opt == IPOPT_EOL)
break;
if (opt == IPOPT_NOP)
optlen = 1;
else {
if (cnt < IPOPT_OLEN + sizeof(*cp)) {
code = &cp[IPOPT_OLEN] - (u_char *)ip;
goto bad;
}
optlen = cp[IPOPT_OLEN];
if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
code = &cp[IPOPT_OLEN] - (u_char *)ip;
goto bad;
}
}
switch (opt) {
default:
break;
/*
* Source routing with record.
* Find interface with current destination address.
* If none on this machine then drop if strictly routed,
* or do nothing if loosely routed.
* Record interface address and bring up next address
* component. If strictly routed make sure next
* address is on directly accessible net.
*/
case IPOPT_LSRR:
case IPOPT_SSRR:
#ifdef IPSTEALTH
if (ipstealth && pass > 0)
break;
#endif
if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
code = &cp[IPOPT_OLEN] - (u_char *)ip;
goto bad;
}
if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
code = &cp[IPOPT_OFFSET] - (u_char *)ip;
goto bad;
}
ipaddr.sin_addr = ip->ip_dst;
ia = (struct in_ifaddr *)
ifa_ifwithaddr((struct sockaddr *)&ipaddr);
if (ia == NULL) {
if (opt == IPOPT_SSRR) {
type = ICMP_UNREACH;
code = ICMP_UNREACH_SRCFAIL;
goto bad;
}
if (!ip_dosourceroute)
goto nosourcerouting;
/*
* Loose routing, and not at next destination
* yet; nothing to do except forward.
*/
break;
}
off--; /* 0 origin */
if (off > optlen - (int)sizeof(struct in_addr)) {
/*
* End of source route. Should be for us.
*/
if (!ip_acceptsourceroute)
goto nosourcerouting;
save_rte(m, cp, ip->ip_src);
break;
}
#ifdef IPSTEALTH
if (ipstealth)
goto dropit;
#endif
if (!ip_dosourceroute) {
if (ipforwarding) {
char buf[16]; /* aaa.bbb.ccc.ddd\0 */
/*
* Acting as a router, so generate ICMP
*/
nosourcerouting:
strcpy(buf, inet_ntoa(ip->ip_dst));
log(LOG_WARNING,
"attempted source route from %s to %s\n",
inet_ntoa(ip->ip_src), buf);
type = ICMP_UNREACH;
code = ICMP_UNREACH_SRCFAIL;
goto bad;
} else {
/*
* Not acting as a router, so silently drop.
*/
#ifdef IPSTEALTH
dropit:
#endif
ipstat.ips_cantforward++;
m_freem(m);
return (1);
}
}
/*
* locate outgoing interface
*/
(void)memcpy(&ipaddr.sin_addr, cp + off,
sizeof(ipaddr.sin_addr));
if (opt == IPOPT_SSRR) {
#define INA struct in_ifaddr *
#define SA struct sockaddr *
if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == NULL)
ia = (INA)ifa_ifwithnet((SA)&ipaddr);
} else
ia = ip_rtaddr(ipaddr.sin_addr);
if (ia == NULL) {
type = ICMP_UNREACH;
code = ICMP_UNREACH_SRCFAIL;
goto bad;
}
ip->ip_dst = ipaddr.sin_addr;
(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
sizeof(struct in_addr));
cp[IPOPT_OFFSET] += sizeof(struct in_addr);
/*
* Let ip_intr's mcast routing check handle mcast pkts
*/
forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
break;
case IPOPT_RR:
#ifdef IPSTEALTH
if (ipstealth && pass == 0)
break;
#endif
if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
code = &cp[IPOPT_OFFSET] - (u_char *)ip;
goto bad;
}
if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
code = &cp[IPOPT_OFFSET] - (u_char *)ip;
goto bad;
}
/*
* If no space remains, ignore.
*/
off--; /* 0 origin */
if (off > optlen - (int)sizeof(struct in_addr))
break;
(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
sizeof(ipaddr.sin_addr));
/*
* locate outgoing interface; if we're the destination,
* use the incoming interface (should be same).
*/
if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
(ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
type = ICMP_UNREACH;
code = ICMP_UNREACH_HOST;
goto bad;
}
(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
sizeof(struct in_addr));
cp[IPOPT_OFFSET] += sizeof(struct in_addr);
break;
case IPOPT_TS:
#ifdef IPSTEALTH
if (ipstealth && pass == 0)
break;
#endif
code = cp - (u_char *)ip;
if (optlen < 4 || optlen > 40) {
code = &cp[IPOPT_OLEN] - (u_char *)ip;
goto bad;
}
if ((off = cp[IPOPT_OFFSET]) < 5) {
code = &cp[IPOPT_OLEN] - (u_char *)ip;
goto bad;
}
if (off > optlen - (int)sizeof(int32_t)) {
cp[IPOPT_OFFSET + 1] += (1 << 4);
if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
code = &cp[IPOPT_OFFSET] - (u_char *)ip;
goto bad;
}
break;
}
off--; /* 0 origin */
sin = (struct in_addr *)(cp + off);
switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
case IPOPT_TS_TSONLY:
break;
case IPOPT_TS_TSANDADDR:
if (off + sizeof(n_time) +
sizeof(struct in_addr) > optlen) {
code = &cp[IPOPT_OFFSET] - (u_char *)ip;
goto bad;
}
ipaddr.sin_addr = dst;
ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
m->m_pkthdr.rcvif);
if (ia == NULL)
continue;
(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
sizeof(struct in_addr));
cp[IPOPT_OFFSET] += sizeof(struct in_addr);
off += sizeof(struct in_addr);
break;
case IPOPT_TS_PRESPEC:
if (off + sizeof(n_time) +
sizeof(struct in_addr) > optlen) {
code = &cp[IPOPT_OFFSET] - (u_char *)ip;
goto bad;
}
(void)memcpy(&ipaddr.sin_addr, sin,
sizeof(struct in_addr));
if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
continue;
cp[IPOPT_OFFSET] += sizeof(struct in_addr);
off += sizeof(struct in_addr);
break;
default:
code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
goto bad;
}
ntime = iptime();
(void)memcpy(cp + off, &ntime, sizeof(n_time));
cp[IPOPT_OFFSET] += sizeof(n_time);
}
}
if (forward && ipforwarding) {
ip_forward(m, 1);
return (1);
}
return (0);
bad:
icmp_error(m, type, code, 0, 0);
ipstat.ips_badoptions++;
return (1);
}
/*
* Given address of next destination (final or next hop),
* return internet address info of interface to be used to get there.
*/
struct in_ifaddr *
ip_rtaddr(dst)
struct in_addr dst;
{
struct route sro;
struct sockaddr_in *sin;
struct in_ifaddr *ifa;
bzero(&sro, sizeof(sro));
sin = (struct sockaddr_in *)&sro.ro_dst;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = dst;
rtalloc_ign(&sro, RTF_CLONING);
if (sro.ro_rt == NULL)
return ((struct in_ifaddr *)0);
ifa = ifatoia(sro.ro_rt->rt_ifa);
RTFREE(sro.ro_rt);
return ifa;
}
/*
* Save incoming source route for use in replies,
* to be picked up later by ip_srcroute if the receiver is interested.
*/
static void
save_rte(m, option, dst)
struct mbuf *m;
u_char *option;
struct in_addr dst;
{
unsigned olen;
struct ipopt_tag *opts;
opts = (struct ipopt_tag *)m_tag_get(PACKET_TAG_IPOPTIONS,
sizeof(struct ipopt_tag), M_NOWAIT);
if (opts == NULL)
return;
olen = option[IPOPT_OLEN];
#ifdef DIAGNOSTIC
if (ipprintfs)
printf("save_rte: olen %d\n", olen);
#endif
if (olen > sizeof(opts->ip_srcrt) - (1 + sizeof(dst)))
return;
bcopy(option, opts->ip_srcrt.srcopt, olen);
opts->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
opts->ip_srcrt.dst = dst;
m_tag_prepend(m, (struct m_tag *)opts);
}
/*
* Retrieve incoming source route for use in replies,
* in the same form used by setsockopt.
* The first hop is placed before the options, will be removed later.
*/
struct mbuf *
ip_srcroute(m0)
struct mbuf *m0;
{
register struct in_addr *p, *q;
register struct mbuf *m;
struct ipopt_tag *opts;
opts = (struct ipopt_tag *)m_tag_find(m0, PACKET_TAG_IPOPTIONS, NULL);
if (opts == NULL)
return ((struct mbuf *)0);
if (opts->ip_nhops == 0)
return ((struct mbuf *)0);
m = m_get(M_DONTWAIT, MT_HEADER);
if (m == NULL)
return ((struct mbuf *)0);
#define OPTSIZ (sizeof(opts->ip_srcrt.nop) + sizeof(opts->ip_srcrt.srcopt))
/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
m->m_len = opts->ip_nhops * sizeof(struct in_addr) +
sizeof(struct in_addr) + OPTSIZ;
#ifdef DIAGNOSTIC
if (ipprintfs)
printf("ip_srcroute: nhops %d mlen %d", opts->ip_nhops, m->m_len);
#endif
/*
* First save first hop for return route
*/
p = &(opts->ip_srcrt.route[opts->ip_nhops - 1]);
*(mtod(m, struct in_addr *)) = *p--;
#ifdef DIAGNOSTIC
if (ipprintfs)
printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
#endif
/*
* Copy option fields and padding (nop) to mbuf.
*/
opts->ip_srcrt.nop = IPOPT_NOP;
opts->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
&(opts->ip_srcrt.nop), OPTSIZ);
q = (struct in_addr *)(mtod(m, caddr_t) +
sizeof(struct in_addr) + OPTSIZ);
#undef OPTSIZ
/*
* Record return path as an IP source route,
* reversing the path (pointers are now aligned).
*/
while (p >= opts->ip_srcrt.route) {
#ifdef DIAGNOSTIC
if (ipprintfs)
printf(" %lx", (u_long)ntohl(q->s_addr));
#endif
*q++ = *p--;
}
/*
* Last hop goes to final destination.
*/
*q = opts->ip_srcrt.dst;
#ifdef DIAGNOSTIC
if (ipprintfs)
printf(" %lx\n", (u_long)ntohl(q->s_addr));
#endif
m_tag_delete(m0, (struct m_tag *)opts);
return (m);
}
/*
* Strip out IP options, at higher
* level protocol in the kernel.
* Second argument is buffer to which options
* will be moved, and return value is their length.
* XXX should be deleted; last arg currently ignored.
*/
void
ip_stripoptions(m, mopt)
register struct mbuf *m;
struct mbuf *mopt;
{
register int i;
struct ip *ip = mtod(m, struct ip *);
register caddr_t opts;
int olen;
olen = (ip->ip_hl << 2) - sizeof (struct ip);
opts = (caddr_t)(ip + 1);
i = m->m_len - (sizeof (struct ip) + olen);
bcopy(opts + olen, opts, (unsigned)i);
m->m_len -= olen;
if (m->m_flags & M_PKTHDR)
m->m_pkthdr.len -= olen;
ip->ip_v = IPVERSION;
ip->ip_hl = sizeof(struct ip) >> 2;
}
u_char inetctlerrmap[PRC_NCMDS] = {
0, 0, 0, 0,
0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
EMSGSIZE, EHOSTUNREACH, 0, 0,
0, 0, EHOSTUNREACH, 0,
ENOPROTOOPT, ECONNREFUSED
};
/*
* Forward a packet. If some error occurs return the sender
* an icmp packet. Note we can't always generate a meaningful
* icmp message because icmp doesn't have a large enough repertoire
* of codes and types.
*
* If not forwarding, just drop the packet. This could be confusing
* if ipforwarding was zero but some routing protocol was advancing
* us as a gateway to somewhere. However, we must let the routing
* protocol deal with that.
*
* The srcrt parameter indicates whether the packet is being forwarded
* via a source route.
*/
void
ip_forward(struct mbuf *m, int srcrt)
{
struct ip *ip = mtod(m, struct ip *);
struct in_ifaddr *ia = NULL;
int error, type = 0, code = 0;
struct mbuf *mcopy;
struct in_addr dest;
struct ifnet *destifp, dummyifp;
#ifdef DIAGNOSTIC
if (ipprintfs)
printf("forward: src %lx dst %lx ttl %x\n",
(u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
ip->ip_ttl);
#endif
if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
ipstat.ips_cantforward++;
m_freem(m);
return;
}
#ifdef IPSTEALTH
if (!ipstealth) {
#endif
if (ip->ip_ttl <= IPTTLDEC) {
icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
0, 0);
return;
}
#ifdef IPSTEALTH
}
#endif
if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
return;
}
/*
* Save the IP header and at most 8 bytes of the payload,
* in case we need to generate an ICMP message to the src.
*
* XXX this can be optimized a lot by saving the data in a local
* buffer on the stack (72 bytes at most), and only allocating the
* mbuf if really necessary. The vast majority of the packets
* are forwarded without having to send an ICMP back (either
* because unnecessary, or because rate limited), so we are
* really we are wasting a lot of work here.
*
* We don't use m_copy() because it might return a reference
* to a shared cluster. Both this function and ip_output()
* assume exclusive access to the IP header in `m', so any
* data in a cluster may change before we reach icmp_error().
*/
MGET(mcopy, M_DONTWAIT, m->m_type);
if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
/*
* It's probably ok if the pkthdr dup fails (because
* the deep copy of the tag chain failed), but for now
* be conservative and just discard the copy since
* code below may some day want the tags.
*/
m_free(mcopy);
mcopy = NULL;
}
if (mcopy != NULL) {
mcopy->m_len = imin((ip->ip_hl << 2) + 8,
(int)ip->ip_len);
mcopy->m_pkthdr.len = mcopy->m_len;
m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
}
#ifdef IPSTEALTH
if (!ipstealth) {
#endif
ip->ip_ttl -= IPTTLDEC;
#ifdef IPSTEALTH
}
#endif
/*
* If forwarding packet using same interface that it came in on,
* perhaps should send a redirect to sender to shortcut a hop.
* Only send redirect if source is sending directly to us,
* and if packet was not source routed (or has any options).
* Also, don't send redirect if forwarding using a default route
* or a route modified by a redirect.
*/
dest.s_addr = 0;
if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
struct sockaddr_in *sin;
struct route ro;
struct rtentry *rt;
bzero(&ro, sizeof(ro));
sin = (struct sockaddr_in *)&ro.ro_dst;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = ip->ip_dst;
rtalloc_ign(&ro, RTF_CLONING);
rt = ro.ro_rt;
if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
satosin(rt_key(rt))->sin_addr.s_addr != 0) {
#define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
u_long src = ntohl(ip->ip_src.s_addr);
if (RTA(rt) &&
(src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
if (rt->rt_flags & RTF_GATEWAY)
dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
else
dest.s_addr = ip->ip_dst.s_addr;
/* Router requirements says to only send host redirects */
type = ICMP_REDIRECT;
code = ICMP_REDIRECT_HOST;
#ifdef DIAGNOSTIC
if (ipprintfs)
printf("redirect (%d) to %lx\n", code, (u_long)dest.s_addr);
#endif
}
}
if (rt)
RTFREE(rt);
}
error = ip_output(m, (struct mbuf *)0, NULL, IP_FORWARDING, 0, NULL);
if (error)
ipstat.ips_cantforward++;
else {
ipstat.ips_forward++;
if (type)
ipstat.ips_redirectsent++;
else {
if (mcopy)
m_freem(mcopy);
return;
}
}
if (mcopy == NULL)
return;
destifp = NULL;
switch (error) {
case 0: /* forwarded, but need redirect */
/* type, code set above */
break;
case ENETUNREACH: /* shouldn't happen, checked above */
case EHOSTUNREACH:
case ENETDOWN:
case EHOSTDOWN:
default:
type = ICMP_UNREACH;
code = ICMP_UNREACH_HOST;
break;
case EMSGSIZE:
type = ICMP_UNREACH;
code = ICMP_UNREACH_NEEDFRAG;
#if defined(IPSEC) || defined(FAST_IPSEC)
/*
* If the packet is routed over IPsec tunnel, tell the
* originator the tunnel MTU.
* tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
* XXX quickhack!!!
*/
{
struct secpolicy *sp = NULL;
int ipsecerror;
int ipsechdr;
struct route *ro;
#ifdef IPSEC
sp = ipsec4_getpolicybyaddr(mcopy,
IPSEC_DIR_OUTBOUND,
IP_FORWARDING,
&ipsecerror);
#else /* FAST_IPSEC */
sp = ipsec_getpolicybyaddr(mcopy,
IPSEC_DIR_OUTBOUND,
IP_FORWARDING,
&ipsecerror);
#endif
if (sp != NULL) {
/* count IPsec header size */
ipsechdr = ipsec4_hdrsiz(mcopy,
IPSEC_DIR_OUTBOUND,
NULL);
/*
* find the correct route for outer IPv4
* header, compute tunnel MTU.
*
* XXX BUG ALERT
* The "dummyifp" code relies upon the fact
* that icmp_error() touches only ifp->if_mtu.
*/
/*XXX*/
destifp = NULL;
if (sp->req != NULL
&& sp->req->sav != NULL
&& sp->req->sav->sah != NULL) {
ro = &sp->req->sav->sah->sa_route;
if (ro->ro_rt && ro->ro_rt->rt_ifp) {
dummyifp.if_mtu =
ro->ro_rt->rt_rmx.rmx_mtu ?
ro->ro_rt->rt_rmx.rmx_mtu :
ro->ro_rt->rt_ifp->if_mtu;
dummyifp.if_mtu -= ipsechdr;
destifp = &dummyifp;
}
}
#ifdef IPSEC
key_freesp(sp);
#else /* FAST_IPSEC */
KEY_FREESP(&sp);
#endif
ipstat.ips_cantfrag++;
break;
} else
#endif /*IPSEC || FAST_IPSEC*/
/*
* When doing source routing 'ia' can be NULL. Fall back
* to the minimum guaranteed routeable packet size and use
* the same hack as IPSEC to setup a dummyifp for icmp.
*/
if (ia == NULL) {
dummyifp.if_mtu = IP_MSS;
destifp = &dummyifp;
} else
destifp = ia->ia_ifp;
#if defined(IPSEC) || defined(FAST_IPSEC)
}
#endif /*IPSEC || FAST_IPSEC*/
ipstat.ips_cantfrag++;
break;
case ENOBUFS:
/*
* A router should not generate ICMP_SOURCEQUENCH as
* required in RFC1812 Requirements for IP Version 4 Routers.
* Source quench could be a big problem under DoS attacks,
* or if the underlying interface is rate-limited.
* Those who need source quench packets may re-enable them
* via the net.inet.ip.sendsourcequench sysctl.
*/
if (ip_sendsourcequench == 0) {
m_freem(mcopy);
return;
} else {
type = ICMP_SOURCEQUENCH;
code = 0;
}
break;
case EACCES: /* ipfw denied packet */
m_freem(mcopy);
return;
}
icmp_error(mcopy, type, code, dest.s_addr, destifp);
}
void
ip_savecontrol(inp, mp, ip, m)
register struct inpcb *inp;
register struct mbuf **mp;
register struct ip *ip;
register struct mbuf *m;
{
if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
struct bintime bt;
bintime(&bt);
if (inp->inp_socket->so_options & SO_BINTIME) {
*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
SCM_BINTIME, SOL_SOCKET);
if (*mp)
mp = &(*mp)->m_next;
}
if (inp->inp_socket->so_options & SO_TIMESTAMP) {
struct timeval tv;
bintime2timeval(&bt, &tv);
*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
SCM_TIMESTAMP, SOL_SOCKET);
if (*mp)
mp = &(*mp)->m_next;
}
}
if (inp->inp_flags & INP_RECVDSTADDR) {
*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
if (*mp)
mp = &(*mp)->m_next;
}
if (inp->inp_flags & INP_RECVTTL) {
*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
if (*mp)
mp = &(*mp)->m_next;
}
#ifdef notyet
/* XXX
* Moving these out of udp_input() made them even more broken
* than they already were.
*/
/* options were tossed already */
if (inp->inp_flags & INP_RECVOPTS) {
*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
if (*mp)
mp = &(*mp)->m_next;
}
/* ip_srcroute doesn't do what we want here, need to fix */
if (inp->inp_flags & INP_RECVRETOPTS) {
*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
if (*mp)
mp = &(*mp)->m_next;
}
#endif
if (inp->inp_flags & INP_RECVIF) {
struct ifnet *ifp;
struct sdlbuf {
struct sockaddr_dl sdl;
u_char pad[32];
} sdlbuf;
struct sockaddr_dl *sdp;
struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
if (((ifp = m->m_pkthdr.rcvif))
&& ( ifp->if_index && (ifp->if_index <= if_index))) {
sdp = (struct sockaddr_dl *)
(ifaddr_byindex(ifp->if_index)->ifa_addr);
/*
* Change our mind and don't try copy.
*/
if ((sdp->sdl_family != AF_LINK)
|| (sdp->sdl_len > sizeof(sdlbuf))) {
goto makedummy;
}
bcopy(sdp, sdl2, sdp->sdl_len);
} else {
makedummy:
sdl2->sdl_len
= offsetof(struct sockaddr_dl, sdl_data[0]);
sdl2->sdl_family = AF_LINK;
sdl2->sdl_index = 0;
sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
}
*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
IP_RECVIF, IPPROTO_IP);
if (*mp)
mp = &(*mp)->m_next;
}
}
/*
* XXX these routines are called from the upper part of the kernel.
* They need to be locked when we remove Giant.
*
* They could also be moved to ip_mroute.c, since all the RSVP
* handling is done there already.
*/
static int ip_rsvp_on;
struct socket *ip_rsvpd;
int
ip_rsvp_init(struct socket *so)
{
if (so->so_type != SOCK_RAW ||
so->so_proto->pr_protocol != IPPROTO_RSVP)
return EOPNOTSUPP;
if (ip_rsvpd != NULL)
return EADDRINUSE;
ip_rsvpd = so;
/*
* This may seem silly, but we need to be sure we don't over-increment
* the RSVP counter, in case something slips up.
*/
if (!ip_rsvp_on) {
ip_rsvp_on = 1;
rsvp_on++;
}
return 0;
}
int
ip_rsvp_done(void)
{
ip_rsvpd = NULL;
/*
* This may seem silly, but we need to be sure we don't over-decrement
* the RSVP counter, in case something slips up.
*/
if (ip_rsvp_on) {
ip_rsvp_on = 0;
rsvp_on--;
}
return 0;
}
void
rsvp_input(struct mbuf *m, int off) /* XXX must fixup manually */
{
if (rsvp_input_p) { /* call the real one if loaded */
rsvp_input_p(m, off);
return;
}
/* Can still get packets with rsvp_on = 0 if there is a local member
* of the group to which the RSVP packet is addressed. But in this
* case we want to throw the packet away.
*/
if (!rsvp_on) {
m_freem(m);
return;
}
if (ip_rsvpd != NULL) {
rip_input(m, off);
return;
}
/* Drop the packet */
m_freem(m);
}