freebsd-dev/sys/netinet/tcp_subr.c
Robert Watson cce83ffb5a tcp_timewait() performs multiple non-atomic reads on the tcptw
structure, so assert the inpcb lock associated with the tcptw.
Also assert the tcbinfo lock, as tcp_timewait() may call
tcp_twclose() or tcp_2msl_rest(), which require it.  Since
tcp_timewait() is already called with that lock from tcp_input(),
this doesn't change current locking, merely documents reasons for
it.

In tcp_twstart(), assert the tcbinfo lock, as tcp_timer_2msl_rest()
is called, which requires that lock.

In tcp_twclose(), assert the tcbinfo lock, as tcp_timer_2msl_stop()
is called, which requires that lock.

Document the locking strategy for the time wait queues in tcp_timer.c,
which consists of protecting the time wait queues in the same manner
as the tcbinfo structure (using the tcbinfo lock).

In tcp_timer_2msl_reset(), assert the tcbinfo lock, as the time wait
queues are modified.

In tcp_timer_2msl_stop(), assert the tcbinfo lock, as the time wait
queues may be modified.

In tcp_timer_2msl_tw(), assert the tcbinfo lock, as the time wait
queues may be modified.

MFC after:	2 weeks
2004-11-23 17:21:30 +00:00

2110 lines
58 KiB
C

/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
* $FreeBSD$
*/
#include "opt_compat.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ipsec.h"
#include "opt_mac.h"
#include "opt_tcpdebug.h"
#include "opt_tcp_sack.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/mac.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#ifdef INET6
#include <sys/domain.h>
#endif
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/random.h>
#include <vm/uma.h>
#include <net/route.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#ifdef INET6
#include <netinet/ip6.h>
#endif
#include <netinet/in_pcb.h>
#ifdef INET6
#include <netinet6/in6_pcb.h>
#endif
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#ifdef INET6
#include <netinet6/ip6_var.h>
#include <netinet6/nd6.h>
#endif
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#ifdef INET6
#include <netinet6/tcp6_var.h>
#endif
#include <netinet/tcpip.h>
#ifdef TCPDEBUG
#include <netinet/tcp_debug.h>
#endif
#include <netinet6/ip6protosw.h>
#ifdef IPSEC
#include <netinet6/ipsec.h>
#ifdef INET6
#include <netinet6/ipsec6.h>
#endif
#include <netkey/key.h>
#endif /*IPSEC*/
#ifdef FAST_IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/xform.h>
#ifdef INET6
#include <netipsec/ipsec6.h>
#endif
#include <netipsec/key.h>
#define IPSEC
#endif /*FAST_IPSEC*/
#include <machine/in_cksum.h>
#include <sys/md5.h>
int tcp_mssdflt = TCP_MSS;
SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
&tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
#ifdef INET6
int tcp_v6mssdflt = TCP6_MSS;
SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
CTLFLAG_RW, &tcp_v6mssdflt , 0,
"Default TCP Maximum Segment Size for IPv6");
#endif
/*
* Minimum MSS we accept and use. This prevents DoS attacks where
* we are forced to a ridiculous low MSS like 20 and send hundreds
* of packets instead of one. The effect scales with the available
* bandwidth and quickly saturates the CPU and network interface
* with packet generation and sending. Set to zero to disable MINMSS
* checking. This setting prevents us from sending too small packets.
*/
int tcp_minmss = TCP_MINMSS;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
&tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
/*
* Number of TCP segments per second we accept from remote host
* before we start to calculate average segment size. If average
* segment size drops below the minimum TCP MSS we assume a DoS
* attack and reset+drop the connection. Care has to be taken not to
* set this value too small to not kill interactive type connections
* (telnet, SSH) which send many small packets.
*/
int tcp_minmssoverload = TCP_MINMSSOVERLOAD;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
&tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
"be under the MINMSS Size");
#if 0
static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
&tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
#endif
int tcp_do_rfc1323 = 1;
SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
&tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
static int tcp_tcbhashsize = 0;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
&tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
static int do_tcpdrain = 1;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
"Enable tcp_drain routine for extra help when low on mbufs");
SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
&tcbinfo.ipi_count, 0, "Number of active PCBs");
static int icmp_may_rst = 1;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
"Certain ICMP unreachable messages may abort connections in SYN_SENT");
static int tcp_isn_reseed_interval = 0;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
&tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
/*
* TCP bandwidth limiting sysctls. Note that the default lower bound of
* 1024 exists only for debugging. A good production default would be
* something like 6100.
*/
SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
"TCP inflight data limiting");
static int tcp_inflight_enable = 1;
SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
&tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
static int tcp_inflight_debug = 0;
SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
&tcp_inflight_debug, 0, "Debug TCP inflight calculations");
static int tcp_inflight_min = 6144;
SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
&tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
&tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
static int tcp_inflight_stab = 20;
SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
&tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
uma_zone_t sack_hole_zone;
static struct inpcb *tcp_notify(struct inpcb *, int);
static void tcp_discardcb(struct tcpcb *);
static void tcp_isn_tick(void *);
/*
* Target size of TCP PCB hash tables. Must be a power of two.
*
* Note that this can be overridden by the kernel environment
* variable net.inet.tcp.tcbhashsize
*/
#ifndef TCBHASHSIZE
#define TCBHASHSIZE 512
#endif
/*
* XXX
* Callouts should be moved into struct tcp directly. They are currently
* separate because the tcpcb structure is exported to userland for sysctl
* parsing purposes, which do not know about callouts.
*/
struct tcpcb_mem {
struct tcpcb tcb;
struct callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
struct callout tcpcb_mem_2msl, tcpcb_mem_delack;
};
static uma_zone_t tcpcb_zone;
static uma_zone_t tcptw_zone;
struct callout isn_callout;
/*
* Tcp initialization
*/
void
tcp_init()
{
int hashsize = TCBHASHSIZE;
tcp_delacktime = TCPTV_DELACK;
tcp_keepinit = TCPTV_KEEP_INIT;
tcp_keepidle = TCPTV_KEEP_IDLE;
tcp_keepintvl = TCPTV_KEEPINTVL;
tcp_maxpersistidle = TCPTV_KEEP_IDLE;
tcp_msl = TCPTV_MSL;
tcp_rexmit_min = TCPTV_MIN;
tcp_rexmit_slop = TCPTV_CPU_VAR;
INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
LIST_INIT(&tcb);
tcbinfo.listhead = &tcb;
TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
if (!powerof2(hashsize)) {
printf("WARNING: TCB hash size not a power of 2\n");
hashsize = 512; /* safe default */
}
tcp_tcbhashsize = hashsize;
tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
&tcbinfo.porthashmask);
tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
#ifdef INET6
#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
#else /* INET6 */
#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
#endif /* INET6 */
if (max_protohdr < TCP_MINPROTOHDR)
max_protohdr = TCP_MINPROTOHDR;
if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
panic("tcp_init");
#undef TCP_MINPROTOHDR
/*
* These have to be type stable for the benefit of the timers.
*/
tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
uma_zone_set_max(tcpcb_zone, maxsockets);
tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
uma_zone_set_max(tcptw_zone, maxsockets / 5);
tcp_timer_init();
syncache_init();
tcp_hc_init();
tcp_reass_init();
callout_init(&isn_callout, CALLOUT_MPSAFE);
tcp_isn_tick(NULL);
EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
SHUTDOWN_PRI_DEFAULT);
sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
}
void
tcp_fini(xtp)
void *xtp;
{
callout_stop(&isn_callout);
}
/*
* Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
* tcp_template used to store this data in mbufs, but we now recopy it out
* of the tcpcb each time to conserve mbufs.
*/
void
tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
struct inpcb *inp;
void *ip_ptr;
void *tcp_ptr;
{
struct tcphdr *th = (struct tcphdr *)tcp_ptr;
#ifdef INET6
if ((inp->inp_vflag & INP_IPV6) != 0) {
struct ip6_hdr *ip6;
ip6 = (struct ip6_hdr *)ip_ptr;
ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
(IPV6_VERSION & IPV6_VERSION_MASK);
ip6->ip6_nxt = IPPROTO_TCP;
ip6->ip6_plen = sizeof(struct tcphdr);
ip6->ip6_src = inp->in6p_laddr;
ip6->ip6_dst = inp->in6p_faddr;
} else
#endif
{
struct ip *ip;
ip = (struct ip *)ip_ptr;
ip->ip_v = IPVERSION;
ip->ip_hl = 5;
ip->ip_tos = inp->inp_ip_tos;
ip->ip_len = 0;
ip->ip_id = 0;
ip->ip_off = 0;
ip->ip_ttl = inp->inp_ip_ttl;
ip->ip_sum = 0;
ip->ip_p = IPPROTO_TCP;
ip->ip_src = inp->inp_laddr;
ip->ip_dst = inp->inp_faddr;
}
th->th_sport = inp->inp_lport;
th->th_dport = inp->inp_fport;
th->th_seq = 0;
th->th_ack = 0;
th->th_x2 = 0;
th->th_off = 5;
th->th_flags = 0;
th->th_win = 0;
th->th_urp = 0;
th->th_sum = 0; /* in_pseudo() is called later for ipv4 */
}
/*
* Create template to be used to send tcp packets on a connection.
* Allocates an mbuf and fills in a skeletal tcp/ip header. The only
* use for this function is in keepalives, which use tcp_respond.
*/
struct tcptemp *
tcpip_maketemplate(inp)
struct inpcb *inp;
{
struct mbuf *m;
struct tcptemp *n;
m = m_get(M_DONTWAIT, MT_HEADER);
if (m == NULL)
return (0);
m->m_len = sizeof(struct tcptemp);
n = mtod(m, struct tcptemp *);
tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
return (n);
}
/*
* Send a single message to the TCP at address specified by
* the given TCP/IP header. If m == NULL, then we make a copy
* of the tcpiphdr at ti and send directly to the addressed host.
* This is used to force keep alive messages out using the TCP
* template for a connection. If flags are given then we send
* a message back to the TCP which originated the * segment ti,
* and discard the mbuf containing it and any other attached mbufs.
*
* In any case the ack and sequence number of the transmitted
* segment are as specified by the parameters.
*
* NOTE: If m != NULL, then ti must point to *inside* the mbuf.
*/
void
tcp_respond(tp, ipgen, th, m, ack, seq, flags)
struct tcpcb *tp;
void *ipgen;
register struct tcphdr *th;
register struct mbuf *m;
tcp_seq ack, seq;
int flags;
{
register int tlen;
int win = 0;
struct ip *ip;
struct tcphdr *nth;
#ifdef INET6
struct ip6_hdr *ip6;
int isipv6;
#endif /* INET6 */
int ipflags = 0;
struct inpcb *inp;
KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
#ifdef INET6
isipv6 = ((struct ip *)ipgen)->ip_v == 6;
ip6 = ipgen;
#endif /* INET6 */
ip = ipgen;
if (tp != NULL) {
inp = tp->t_inpcb;
KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
INP_INFO_WLOCK_ASSERT(&tcbinfo);
INP_LOCK_ASSERT(inp);
} else
inp = NULL;
if (tp != NULL) {
if (!(flags & TH_RST)) {
win = sbspace(&inp->inp_socket->so_rcv);
if (win > (long)TCP_MAXWIN << tp->rcv_scale)
win = (long)TCP_MAXWIN << tp->rcv_scale;
}
}
if (m == NULL) {
m = m_gethdr(M_DONTWAIT, MT_HEADER);
if (m == NULL)
return;
tlen = 0;
m->m_data += max_linkhdr;
#ifdef INET6
if (isipv6) {
bcopy((caddr_t)ip6, mtod(m, caddr_t),
sizeof(struct ip6_hdr));
ip6 = mtod(m, struct ip6_hdr *);
nth = (struct tcphdr *)(ip6 + 1);
} else
#endif /* INET6 */
{
bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
ip = mtod(m, struct ip *);
nth = (struct tcphdr *)(ip + 1);
}
bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
flags = TH_ACK;
} else {
m_freem(m->m_next);
m->m_next = NULL;
m->m_data = (caddr_t)ipgen;
/* m_len is set later */
tlen = 0;
#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
#ifdef INET6
if (isipv6) {
xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
nth = (struct tcphdr *)(ip6 + 1);
} else
#endif /* INET6 */
{
xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
nth = (struct tcphdr *)(ip + 1);
}
if (th != nth) {
/*
* this is usually a case when an extension header
* exists between the IPv6 header and the
* TCP header.
*/
nth->th_sport = th->th_sport;
nth->th_dport = th->th_dport;
}
xchg(nth->th_dport, nth->th_sport, n_short);
#undef xchg
}
#ifdef INET6
if (isipv6) {
ip6->ip6_flow = 0;
ip6->ip6_vfc = IPV6_VERSION;
ip6->ip6_nxt = IPPROTO_TCP;
ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
tlen));
tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
} else
#endif
{
tlen += sizeof (struct tcpiphdr);
ip->ip_len = tlen;
ip->ip_ttl = ip_defttl;
if (path_mtu_discovery)
ip->ip_off |= IP_DF;
}
m->m_len = tlen;
m->m_pkthdr.len = tlen;
m->m_pkthdr.rcvif = NULL;
#ifdef MAC
if (inp != NULL) {
/*
* Packet is associated with a socket, so allow the
* label of the response to reflect the socket label.
*/
INP_LOCK_ASSERT(inp);
mac_create_mbuf_from_inpcb(inp, m);
} else {
/*
* Packet is not associated with a socket, so possibly
* update the label in place.
*/
mac_reflect_mbuf_tcp(m);
}
#endif
nth->th_seq = htonl(seq);
nth->th_ack = htonl(ack);
nth->th_x2 = 0;
nth->th_off = sizeof (struct tcphdr) >> 2;
nth->th_flags = flags;
if (tp != NULL)
nth->th_win = htons((u_short) (win >> tp->rcv_scale));
else
nth->th_win = htons((u_short)win);
nth->th_urp = 0;
#ifdef INET6
if (isipv6) {
nth->th_sum = 0;
nth->th_sum = in6_cksum(m, IPPROTO_TCP,
sizeof(struct ip6_hdr),
tlen - sizeof(struct ip6_hdr));
ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
NULL, NULL);
} else
#endif /* INET6 */
{
nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
m->m_pkthdr.csum_flags = CSUM_TCP;
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
}
#ifdef TCPDEBUG
if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
#endif
#ifdef INET6
if (isipv6)
(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
else
#endif /* INET6 */
(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
}
/*
* Create a new TCP control block, making an
* empty reassembly queue and hooking it to the argument
* protocol control block. The `inp' parameter must have
* come from the zone allocator set up in tcp_init().
*/
struct tcpcb *
tcp_newtcpcb(inp)
struct inpcb *inp;
{
struct tcpcb_mem *tm;
struct tcpcb *tp;
#ifdef INET6
int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
#endif /* INET6 */
int callout_flag;
tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
if (tm == NULL)
return (NULL);
tp = &tm->tcb;
/* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */
tp->t_maxseg = tp->t_maxopd =
#ifdef INET6
isipv6 ? tcp_v6mssdflt :
#endif /* INET6 */
tcp_mssdflt;
/* Set up our timeouts. */
/*
* XXXRW: Are these actually MPSAFE? I think so, but need to
* review the timed wait code, as it has some list variables,
* etc, that are global.
*/
callout_flag = debug_mpsafenet ? CALLOUT_MPSAFE : 0;
callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, callout_flag);
callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, callout_flag);
callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, callout_flag);
callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, callout_flag);
callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, callout_flag);
if (tcp_do_rfc1323)
tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
tp->sack_enable = tcp_do_sack;
tp->t_inpcb = inp; /* XXX */
/*
* Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
* rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
* reasonable initial retransmit time.
*/
tp->t_srtt = TCPTV_SRTTBASE;
tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
tp->t_rttmin = tcp_rexmit_min;
tp->t_rxtcur = TCPTV_RTOBASE;
tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
tp->t_rcvtime = ticks;
tp->t_bw_rtttime = ticks;
/*
* IPv4 TTL initialization is necessary for an IPv6 socket as well,
* because the socket may be bound to an IPv6 wildcard address,
* which may match an IPv4-mapped IPv6 address.
*/
inp->inp_ip_ttl = ip_defttl;
inp->inp_ppcb = (caddr_t)tp;
return (tp); /* XXX */
}
/*
* Drop a TCP connection, reporting
* the specified error. If connection is synchronized,
* then send a RST to peer.
*/
struct tcpcb *
tcp_drop(tp, errno)
register struct tcpcb *tp;
int errno;
{
struct socket *so = tp->t_inpcb->inp_socket;
INP_LOCK_ASSERT(tp->t_inpcb);
if (TCPS_HAVERCVDSYN(tp->t_state)) {
tp->t_state = TCPS_CLOSED;
(void) tcp_output(tp);
tcpstat.tcps_drops++;
} else
tcpstat.tcps_conndrops++;
if (errno == ETIMEDOUT && tp->t_softerror)
errno = tp->t_softerror;
so->so_error = errno;
return (tcp_close(tp));
}
static void
tcp_discardcb(tp)
struct tcpcb *tp;
{
struct tseg_qent *q;
struct inpcb *inp = tp->t_inpcb;
struct socket *so = inp->inp_socket;
#ifdef INET6
int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
#endif /* INET6 */
/*
* Make sure that all of our timers are stopped before we
* delete the PCB.
*/
callout_stop(tp->tt_rexmt);
callout_stop(tp->tt_persist);
callout_stop(tp->tt_keep);
callout_stop(tp->tt_2msl);
callout_stop(tp->tt_delack);
/*
* If we got enough samples through the srtt filter,
* save the rtt and rttvar in the routing entry.
* 'Enough' is arbitrarily defined as 4 rtt samples.
* 4 samples is enough for the srtt filter to converge
* to within enough % of the correct value; fewer samples
* and we could save a bogus rtt. The danger is not high
* as tcp quickly recovers from everything.
* XXX: Works very well but needs some more statistics!
*/
if (tp->t_rttupdated >= 4) {
struct hc_metrics_lite metrics;
u_long ssthresh;
bzero(&metrics, sizeof(metrics));
/*
* Update the ssthresh always when the conditions below
* are satisfied. This gives us better new start value
* for the congestion avoidance for new connections.
* ssthresh is only set if packet loss occured on a session.
*/
ssthresh = tp->snd_ssthresh;
if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
/*
* convert the limit from user data bytes to
* packets then to packet data bytes.
*/
ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
if (ssthresh < 2)
ssthresh = 2;
ssthresh *= (u_long)(tp->t_maxseg +
#ifdef INET6
(isipv6 ? sizeof (struct ip6_hdr) +
sizeof (struct tcphdr) :
#endif
sizeof (struct tcpiphdr)
#ifdef INET6
)
#endif
);
} else
ssthresh = 0;
metrics.rmx_ssthresh = ssthresh;
metrics.rmx_rtt = tp->t_srtt;
metrics.rmx_rttvar = tp->t_rttvar;
/* XXX: This wraps if the pipe is more than 4 Gbit per second */
metrics.rmx_bandwidth = tp->snd_bandwidth;
metrics.rmx_cwnd = tp->snd_cwnd;
metrics.rmx_sendpipe = 0;
metrics.rmx_recvpipe = 0;
tcp_hc_update(&inp->inp_inc, &metrics);
}
/* free the reassembly queue, if any */
while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
LIST_REMOVE(q, tqe_q);
m_freem(q->tqe_m);
uma_zfree(tcp_reass_zone, q);
tp->t_segqlen--;
tcp_reass_qsize--;
}
tcp_free_sackholes(tp);
inp->inp_ppcb = NULL;
tp->t_inpcb = NULL;
uma_zfree(tcpcb_zone, tp);
soisdisconnected(so);
}
/*
* Close a TCP control block:
* discard all space held by the tcp
* discard internet protocol block
* wake up any sleepers
*/
struct tcpcb *
tcp_close(tp)
struct tcpcb *tp;
{
struct inpcb *inp = tp->t_inpcb;
#ifdef INET6
struct socket *so = inp->inp_socket;
#endif
tcp_discardcb(tp);
#ifdef INET6
if (INP_CHECK_SOCKAF(so, AF_INET6))
in6_pcbdetach(inp);
else
#endif
in_pcbdetach(inp);
tcpstat.tcps_closed++;
return (NULL);
}
void
tcp_drain()
{
if (do_tcpdrain)
{
struct inpcb *inpb;
struct tcpcb *tcpb;
struct tseg_qent *te;
/*
* Walk the tcpbs, if existing, and flush the reassembly queue,
* if there is one...
* XXX: The "Net/3" implementation doesn't imply that the TCP
* reassembly queue should be flushed, but in a situation
* where we're really low on mbufs, this is potentially
* usefull.
*/
INP_INFO_RLOCK(&tcbinfo);
LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
if (inpb->inp_vflag & INP_TIMEWAIT)
continue;
INP_LOCK(inpb);
if ((tcpb = intotcpcb(inpb)) != NULL) {
while ((te = LIST_FIRST(&tcpb->t_segq))
!= NULL) {
LIST_REMOVE(te, tqe_q);
m_freem(te->tqe_m);
uma_zfree(tcp_reass_zone, te);
tcpb->t_segqlen--;
tcp_reass_qsize--;
}
}
INP_UNLOCK(inpb);
}
INP_INFO_RUNLOCK(&tcbinfo);
}
}
/*
* Notify a tcp user of an asynchronous error;
* store error as soft error, but wake up user
* (for now, won't do anything until can select for soft error).
*
* Do not wake up user since there currently is no mechanism for
* reporting soft errors (yet - a kqueue filter may be added).
*/
static struct inpcb *
tcp_notify(inp, error)
struct inpcb *inp;
int error;
{
struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
/*
* Ignore some errors if we are hooked up.
* If connection hasn't completed, has retransmitted several times,
* and receives a second error, give up now. This is better
* than waiting a long time to establish a connection that
* can never complete.
*/
if (tp->t_state == TCPS_ESTABLISHED &&
(error == EHOSTUNREACH || error == ENETUNREACH ||
error == EHOSTDOWN)) {
return inp;
} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
tp->t_softerror) {
tcp_drop(tp, error);
return (struct inpcb *)0;
} else {
tp->t_softerror = error;
return inp;
}
#if 0
wakeup( &so->so_timeo);
sorwakeup(so);
sowwakeup(so);
#endif
}
static int
tcp_pcblist(SYSCTL_HANDLER_ARGS)
{
int error, i, n, s;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the TCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
if (req->oldptr == NULL) {
n = tcbinfo.ipi_count;
req->oldidx = 2 * (sizeof xig)
+ (n + n/8) * sizeof(struct xtcpcb);
return 0;
}
if (req->newptr != NULL)
return EPERM;
/*
* OK, now we're committed to doing something.
*/
s = splnet();
INP_INFO_RLOCK(&tcbinfo);
gencnt = tcbinfo.ipi_gencnt;
n = tcbinfo.ipi_count;
INP_INFO_RUNLOCK(&tcbinfo);
splx(s);
error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
+ n * sizeof(struct xtcpcb));
if (error != 0)
return (error);
xig.xig_len = sizeof xig;
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error)
return error;
inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
if (inp_list == NULL)
return ENOMEM;
s = splnet();
INP_INFO_RLOCK(&tcbinfo);
for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
inp = LIST_NEXT(inp, inp_list)) {
INP_LOCK(inp);
if (inp->inp_gencnt <= gencnt) {
/*
* XXX: This use of cr_cansee(), introduced with
* TCP state changes, is not quite right, but for
* now, better than nothing.
*/
if (inp->inp_vflag & INP_TIMEWAIT)
error = cr_cansee(req->td->td_ucred,
intotw(inp)->tw_cred);
else
error = cr_canseesocket(req->td->td_ucred,
inp->inp_socket);
if (error == 0)
inp_list[i++] = inp;
}
INP_UNLOCK(inp);
}
INP_INFO_RUNLOCK(&tcbinfo);
splx(s);
n = i;
error = 0;
for (i = 0; i < n; i++) {
inp = inp_list[i];
if (inp->inp_gencnt <= gencnt) {
struct xtcpcb xt;
caddr_t inp_ppcb;
xt.xt_len = sizeof xt;
/* XXX should avoid extra copy */
bcopy(inp, &xt.xt_inp, sizeof *inp);
inp_ppcb = inp->inp_ppcb;
if (inp_ppcb == NULL)
bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
else if (inp->inp_vflag & INP_TIMEWAIT) {
bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
xt.xt_tp.t_state = TCPS_TIME_WAIT;
} else
bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
if (inp->inp_socket != NULL)
sotoxsocket(inp->inp_socket, &xt.xt_socket);
else {
bzero(&xt.xt_socket, sizeof xt.xt_socket);
xt.xt_socket.xso_protocol = IPPROTO_TCP;
}
xt.xt_inp.inp_gencnt = inp->inp_gencnt;
error = SYSCTL_OUT(req, &xt, sizeof xt);
}
}
if (!error) {
/*
* Give the user an updated idea of our state.
* If the generation differs from what we told
* her before, she knows that something happened
* while we were processing this request, and it
* might be necessary to retry.
*/
s = splnet();
INP_INFO_RLOCK(&tcbinfo);
xig.xig_gen = tcbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = tcbinfo.ipi_count;
INP_INFO_RUNLOCK(&tcbinfo);
splx(s);
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
free(inp_list, M_TEMP);
return error;
}
SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
static int
tcp_getcred(SYSCTL_HANDLER_ARGS)
{
struct xucred xuc;
struct sockaddr_in addrs[2];
struct inpcb *inp;
int error, s;
error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
if (error)
return (error);
error = SYSCTL_IN(req, addrs, sizeof(addrs));
if (error)
return (error);
s = splnet();
INP_INFO_RLOCK(&tcbinfo);
inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
if (inp == NULL) {
error = ENOENT;
goto outunlocked;
}
INP_LOCK(inp);
if (inp->inp_socket == NULL) {
error = ENOENT;
goto out;
}
error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
if (error)
goto out;
cru2x(inp->inp_socket->so_cred, &xuc);
out:
INP_UNLOCK(inp);
outunlocked:
INP_INFO_RUNLOCK(&tcbinfo);
splx(s);
if (error == 0)
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
return (error);
}
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
#ifdef INET6
static int
tcp6_getcred(SYSCTL_HANDLER_ARGS)
{
struct xucred xuc;
struct sockaddr_in6 addrs[2];
struct inpcb *inp;
int error, s, mapped = 0;
error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
if (error)
return (error);
error = SYSCTL_IN(req, addrs, sizeof(addrs));
if (error)
return (error);
if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
mapped = 1;
else
return (EINVAL);
}
s = splnet();
INP_INFO_RLOCK(&tcbinfo);
if (mapped == 1)
inp = in_pcblookup_hash(&tcbinfo,
*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
addrs[1].sin6_port,
*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
addrs[0].sin6_port,
0, NULL);
else
inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
addrs[1].sin6_port,
&addrs[0].sin6_addr, addrs[0].sin6_port,
0, NULL);
if (inp == NULL) {
error = ENOENT;
goto outunlocked;
}
INP_LOCK(inp);
if (inp->inp_socket == NULL) {
error = ENOENT;
goto out;
}
error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
if (error)
goto out;
cru2x(inp->inp_socket->so_cred, &xuc);
out:
INP_UNLOCK(inp);
outunlocked:
INP_INFO_RUNLOCK(&tcbinfo);
splx(s);
if (error == 0)
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
return (error);
}
SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
#endif
void
tcp_ctlinput(cmd, sa, vip)
int cmd;
struct sockaddr *sa;
void *vip;
{
struct ip *ip = vip;
struct tcphdr *th;
struct in_addr faddr;
struct inpcb *inp;
struct tcpcb *tp;
struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
tcp_seq icmp_seq;
int s;
faddr = ((struct sockaddr_in *)sa)->sin_addr;
if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
return;
if (cmd == PRC_QUENCH)
notify = tcp_quench;
else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
notify = tcp_drop_syn_sent;
else if (cmd == PRC_MSGSIZE)
notify = tcp_mtudisc;
/*
* Redirects don't need to be handled up here.
*/
else if (PRC_IS_REDIRECT(cmd))
return;
/*
* Hostdead is ugly because it goes linearly through all PCBs.
* XXX: We never get this from ICMP, otherwise it makes an
* excellent DoS attack on machines with many connections.
*/
else if (cmd == PRC_HOSTDEAD)
ip = NULL;
else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
return;
if (ip != NULL) {
s = splnet();
th = (struct tcphdr *)((caddr_t)ip
+ (ip->ip_hl << 2));
INP_INFO_WLOCK(&tcbinfo);
inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
ip->ip_src, th->th_sport, 0, NULL);
if (inp != NULL) {
INP_LOCK(inp);
if (inp->inp_socket != NULL) {
icmp_seq = htonl(th->th_seq);
tp = intotcpcb(inp);
if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
SEQ_LT(icmp_seq, tp->snd_max))
inp = (*notify)(inp, inetctlerrmap[cmd]);
}
if (inp != NULL)
INP_UNLOCK(inp);
} else {
struct in_conninfo inc;
inc.inc_fport = th->th_dport;
inc.inc_lport = th->th_sport;
inc.inc_faddr = faddr;
inc.inc_laddr = ip->ip_src;
#ifdef INET6
inc.inc_isipv6 = 0;
#endif
syncache_unreach(&inc, th);
}
INP_INFO_WUNLOCK(&tcbinfo);
splx(s);
} else
in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
}
#ifdef INET6
void
tcp6_ctlinput(cmd, sa, d)
int cmd;
struct sockaddr *sa;
void *d;
{
struct tcphdr th;
struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
struct ip6_hdr *ip6;
struct mbuf *m;
struct ip6ctlparam *ip6cp = NULL;
const struct sockaddr_in6 *sa6_src = NULL;
int off;
struct tcp_portonly {
u_int16_t th_sport;
u_int16_t th_dport;
} *thp;
if (sa->sa_family != AF_INET6 ||
sa->sa_len != sizeof(struct sockaddr_in6))
return;
if (cmd == PRC_QUENCH)
notify = tcp_quench;
else if (cmd == PRC_MSGSIZE)
notify = tcp_mtudisc;
else if (!PRC_IS_REDIRECT(cmd) &&
((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
return;
/* if the parameter is from icmp6, decode it. */
if (d != NULL) {
ip6cp = (struct ip6ctlparam *)d;
m = ip6cp->ip6c_m;
ip6 = ip6cp->ip6c_ip6;
off = ip6cp->ip6c_off;
sa6_src = ip6cp->ip6c_src;
} else {
m = NULL;
ip6 = NULL;
off = 0; /* fool gcc */
sa6_src = &sa6_any;
}
if (ip6 != NULL) {
struct in_conninfo inc;
/*
* XXX: We assume that when IPV6 is non NULL,
* M and OFF are valid.
*/
/* check if we can safely examine src and dst ports */
if (m->m_pkthdr.len < off + sizeof(*thp))
return;
bzero(&th, sizeof(th));
m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
in6_pcbnotify(&tcbinfo, sa, th.th_dport,
(struct sockaddr *)ip6cp->ip6c_src,
th.th_sport, cmd, NULL, notify);
inc.inc_fport = th.th_dport;
inc.inc_lport = th.th_sport;
inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
inc.inc_isipv6 = 1;
INP_INFO_WLOCK(&tcbinfo);
syncache_unreach(&inc, &th);
INP_INFO_WUNLOCK(&tcbinfo);
} else
in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
0, cmd, NULL, notify);
}
#endif /* INET6 */
/*
* Following is where TCP initial sequence number generation occurs.
*
* There are two places where we must use initial sequence numbers:
* 1. In SYN-ACK packets.
* 2. In SYN packets.
*
* All ISNs for SYN-ACK packets are generated by the syncache. See
* tcp_syncache.c for details.
*
* The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
* depends on this property. In addition, these ISNs should be
* unguessable so as to prevent connection hijacking. To satisfy
* the requirements of this situation, the algorithm outlined in
* RFC 1948 is used, with only small modifications.
*
* Implementation details:
*
* Time is based off the system timer, and is corrected so that it
* increases by one megabyte per second. This allows for proper
* recycling on high speed LANs while still leaving over an hour
* before rollover.
*
* As reading the *exact* system time is too expensive to be done
* whenever setting up a TCP connection, we increment the time
* offset in two ways. First, a small random positive increment
* is added to isn_offset for each connection that is set up.
* Second, the function tcp_isn_tick fires once per clock tick
* and increments isn_offset as necessary so that sequence numbers
* are incremented at approximately ISN_BYTES_PER_SECOND. The
* random positive increments serve only to ensure that the same
* exact sequence number is never sent out twice (as could otherwise
* happen when a port is recycled in less than the system tick
* interval.)
*
* net.inet.tcp.isn_reseed_interval controls the number of seconds
* between seeding of isn_secret. This is normally set to zero,
* as reseeding should not be necessary.
*
* Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
* isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In
* general, this means holding an exclusive (write) lock.
*/
#define ISN_BYTES_PER_SECOND 1048576
#define ISN_STATIC_INCREMENT 4096
#define ISN_RANDOM_INCREMENT (4096 - 1)
static u_char isn_secret[32];
static int isn_last_reseed;
static u_int32_t isn_offset, isn_offset_old;
static MD5_CTX isn_ctx;
tcp_seq
tcp_new_isn(tp)
struct tcpcb *tp;
{
u_int32_t md5_buffer[4];
tcp_seq new_isn;
INP_INFO_WLOCK_ASSERT(&tcbinfo);
/* Seed if this is the first use, reseed if requested. */
if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
(((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
< (u_int)ticks))) {
read_random(&isn_secret, sizeof(isn_secret));
isn_last_reseed = ticks;
}
/* Compute the md5 hash and return the ISN. */
MD5Init(&isn_ctx);
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
#ifdef INET6
if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
sizeof(struct in6_addr));
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
sizeof(struct in6_addr));
} else
#endif
{
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
sizeof(struct in_addr));
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
sizeof(struct in_addr));
}
MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
MD5Final((u_char *) &md5_buffer, &isn_ctx);
new_isn = (tcp_seq) md5_buffer[0];
isn_offset += ISN_STATIC_INCREMENT +
(arc4random() & ISN_RANDOM_INCREMENT);
new_isn += isn_offset;
return new_isn;
}
/*
* Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
* to keep time flowing at a relatively constant rate. If the random
* increments have already pushed us past the projected offset, do nothing.
*/
static void
tcp_isn_tick(xtp)
void *xtp;
{
u_int32_t projected_offset;
INP_INFO_WLOCK(&tcbinfo);
projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / hz;
if (projected_offset > isn_offset)
isn_offset = projected_offset;
isn_offset_old = isn_offset;
callout_reset(&isn_callout, 1, tcp_isn_tick, NULL);
INP_INFO_WUNLOCK(&tcbinfo);
}
/*
* When a source quench is received, close congestion window
* to one segment. We will gradually open it again as we proceed.
*/
struct inpcb *
tcp_quench(inp, errno)
struct inpcb *inp;
int errno;
{
struct tcpcb *tp = intotcpcb(inp);
INP_LOCK_ASSERT(inp);
if (tp != NULL)
tp->snd_cwnd = tp->t_maxseg;
return (inp);
}
/*
* When a specific ICMP unreachable message is received and the
* connection state is SYN-SENT, drop the connection. This behavior
* is controlled by the icmp_may_rst sysctl.
*/
struct inpcb *
tcp_drop_syn_sent(inp, errno)
struct inpcb *inp;
int errno;
{
struct tcpcb *tp = intotcpcb(inp);
INP_LOCK_ASSERT(inp);
if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
tcp_drop(tp, errno);
return (struct inpcb *)0;
}
return inp;
}
/*
* When `need fragmentation' ICMP is received, update our idea of the MSS
* based on the new value in the route. Also nudge TCP to send something,
* since we know the packet we just sent was dropped.
* This duplicates some code in the tcp_mss() function in tcp_input.c.
*/
struct inpcb *
tcp_mtudisc(inp, errno)
struct inpcb *inp;
int errno;
{
struct tcpcb *tp = intotcpcb(inp);
struct socket *so = inp->inp_socket;
u_int maxmtu;
u_int romtu;
int mss;
#ifdef INET6
int isipv6;
#endif /* INET6 */
INP_LOCK_ASSERT(inp);
if (tp != NULL) {
#ifdef INET6
isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
#endif
maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
romtu =
#ifdef INET6
isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
#endif /* INET6 */
tcp_maxmtu(&inp->inp_inc);
if (!maxmtu)
maxmtu = romtu;
else
maxmtu = min(maxmtu, romtu);
if (!maxmtu) {
tp->t_maxopd = tp->t_maxseg =
#ifdef INET6
isipv6 ? tcp_v6mssdflt :
#endif /* INET6 */
tcp_mssdflt;
return inp;
}
mss = maxmtu -
#ifdef INET6
(isipv6 ?
sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
#endif /* INET6 */
sizeof(struct tcpiphdr)
#ifdef INET6
)
#endif /* INET6 */
;
/*
* XXX - The above conditional probably violates the TCP
* spec. The problem is that, since we don't know the
* other end's MSS, we are supposed to use a conservative
* default. But, if we do that, then MTU discovery will
* never actually take place, because the conservative
* default is much less than the MTUs typically seen
* on the Internet today. For the moment, we'll sweep
* this under the carpet.
*
* The conservative default might not actually be a problem
* if the only case this occurs is when sending an initial
* SYN with options and data to a host we've never talked
* to before. Then, they will reply with an MSS value which
* will get recorded and the new parameters should get
* recomputed. For Further Study.
*/
if (tp->t_maxopd <= mss)
return inp;
tp->t_maxopd = mss;
if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
(tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
mss -= TCPOLEN_TSTAMP_APPA;
#if (MCLBYTES & (MCLBYTES - 1)) == 0
if (mss > MCLBYTES)
mss &= ~(MCLBYTES-1);
#else
if (mss > MCLBYTES)
mss = mss / MCLBYTES * MCLBYTES;
#endif
if (so->so_snd.sb_hiwat < mss)
mss = so->so_snd.sb_hiwat;
tp->t_maxseg = mss;
tcpstat.tcps_mturesent++;
tp->t_rtttime = 0;
tp->snd_nxt = tp->snd_una;
tcp_output(tp);
}
return inp;
}
/*
* Look-up the routing entry to the peer of this inpcb. If no route
* is found and it cannot be allocated, then return NULL. This routine
* is called by TCP routines that access the rmx structure and by tcp_mss
* to get the interface MTU.
*/
u_long
tcp_maxmtu(inc)
struct in_conninfo *inc;
{
struct route sro;
struct sockaddr_in *dst;
struct ifnet *ifp;
u_long maxmtu = 0;
KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
bzero(&sro, sizeof(sro));
if (inc->inc_faddr.s_addr != INADDR_ANY) {
dst = (struct sockaddr_in *)&sro.ro_dst;
dst->sin_family = AF_INET;
dst->sin_len = sizeof(*dst);
dst->sin_addr = inc->inc_faddr;
rtalloc_ign(&sro, RTF_CLONING);
}
if (sro.ro_rt != NULL) {
ifp = sro.ro_rt->rt_ifp;
if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
maxmtu = ifp->if_mtu;
else
maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
RTFREE(sro.ro_rt);
}
return (maxmtu);
}
#ifdef INET6
u_long
tcp_maxmtu6(inc)
struct in_conninfo *inc;
{
struct route_in6 sro6;
struct ifnet *ifp;
u_long maxmtu = 0;
KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
bzero(&sro6, sizeof(sro6));
if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
sro6.ro_dst.sin6_family = AF_INET6;
sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
sro6.ro_dst.sin6_addr = inc->inc6_faddr;
rtalloc_ign((struct route *)&sro6, RTF_CLONING);
}
if (sro6.ro_rt != NULL) {
ifp = sro6.ro_rt->rt_ifp;
if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
else
maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
IN6_LINKMTU(sro6.ro_rt->rt_ifp));
RTFREE(sro6.ro_rt);
}
return (maxmtu);
}
#endif /* INET6 */
#ifdef IPSEC
/* compute ESP/AH header size for TCP, including outer IP header. */
size_t
ipsec_hdrsiz_tcp(tp)
struct tcpcb *tp;
{
struct inpcb *inp;
struct mbuf *m;
size_t hdrsiz;
struct ip *ip;
#ifdef INET6
struct ip6_hdr *ip6;
#endif
struct tcphdr *th;
if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
return 0;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (!m)
return 0;
#ifdef INET6
if ((inp->inp_vflag & INP_IPV6) != 0) {
ip6 = mtod(m, struct ip6_hdr *);
th = (struct tcphdr *)(ip6 + 1);
m->m_pkthdr.len = m->m_len =
sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
tcpip_fillheaders(inp, ip6, th);
hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
} else
#endif /* INET6 */
{
ip = mtod(m, struct ip *);
th = (struct tcphdr *)(ip + 1);
m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
tcpip_fillheaders(inp, ip, th);
hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
}
m_free(m);
return hdrsiz;
}
#endif /*IPSEC*/
/*
* Move a TCP connection into TIME_WAIT state.
* tcbinfo is unlocked.
* inp is locked, and is unlocked before returning.
*/
void
tcp_twstart(tp)
struct tcpcb *tp;
{
struct tcptw *tw;
struct inpcb *inp;
int tw_time, acknow;
struct socket *so;
INP_INFO_WLOCK_ASSERT(&tcbinfo); /* tcp_timer_2msl_reset(). */
INP_LOCK_ASSERT(tp->t_inpcb);
tw = uma_zalloc(tcptw_zone, M_NOWAIT);
if (tw == NULL) {
tw = tcp_timer_2msl_tw(1);
if (tw == NULL) {
tcp_close(tp);
return;
}
}
inp = tp->t_inpcb;
tw->tw_inpcb = inp;
/*
* Recover last window size sent.
*/
tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
/*
* Set t_recent if timestamps are used on the connection.
*/
if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
(TF_REQ_TSTMP|TF_RCVD_TSTMP))
tw->t_recent = tp->ts_recent;
else
tw->t_recent = 0;
tw->snd_nxt = tp->snd_nxt;
tw->rcv_nxt = tp->rcv_nxt;
tw->iss = tp->iss;
tw->irs = tp->irs;
tw->t_starttime = tp->t_starttime;
tw->tw_time = 0;
/* XXX
* If this code will
* be used for fin-wait-2 state also, then we may need
* a ts_recent from the last segment.
*/
tw_time = 2 * tcp_msl;
acknow = tp->t_flags & TF_ACKNOW;
tcp_discardcb(tp);
so = inp->inp_socket;
ACCEPT_LOCK();
SOCK_LOCK(so);
so->so_pcb = NULL;
tw->tw_cred = crhold(so->so_cred);
tw->tw_so_options = so->so_options;
sotryfree(so);
inp->inp_socket = NULL;
if (acknow)
tcp_twrespond(tw, TH_ACK);
inp->inp_ppcb = (caddr_t)tw;
inp->inp_vflag |= INP_TIMEWAIT;
tcp_timer_2msl_reset(tw, tw_time);
INP_UNLOCK(inp);
}
/*
* The appromixate rate of ISN increase of Microsoft TCP stacks;
* the actual rate is slightly higher due to the addition of
* random positive increments.
*
* Most other new OSes use semi-randomized ISN values, so we
* do not need to worry about them.
*/
#define MS_ISN_BYTES_PER_SECOND 250000
/*
* Determine if the ISN we will generate has advanced beyond the last
* sequence number used by the previous connection. If so, indicate
* that it is safe to recycle this tw socket by returning 1.
*
* XXXRW: This function should assert the inpcb lock as it does multiple
* non-atomic reads from the tcptw, but is currently * called without it from
* in_pcb.c:in_pcblookup_local().
*/
int
tcp_twrecycleable(struct tcptw *tw)
{
tcp_seq new_iss = tw->iss;
tcp_seq new_irs = tw->irs;
new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
return 1;
else
return 0;
}
struct tcptw *
tcp_twclose(struct tcptw *tw, int reuse)
{
struct inpcb *inp;
inp = tw->tw_inpcb;
INP_INFO_WLOCK_ASSERT(&tcbinfo); /* tcp_timer_2msl_stop(). */
INP_LOCK_ASSERT(inp);
tw->tw_inpcb = NULL;
tcp_timer_2msl_stop(tw);
inp->inp_ppcb = NULL;
#ifdef INET6
if (inp->inp_vflag & INP_IPV6PROTO)
in6_pcbdetach(inp);
else
#endif
in_pcbdetach(inp);
tcpstat.tcps_closed++;
crfree(tw->tw_cred);
tw->tw_cred = NULL;
if (reuse)
return (tw);
uma_zfree(tcptw_zone, tw);
return (NULL);
}
int
tcp_twrespond(struct tcptw *tw, int flags)
{
struct inpcb *inp = tw->tw_inpcb;
struct tcphdr *th;
struct mbuf *m;
struct ip *ip = NULL;
u_int8_t *optp;
u_int hdrlen, optlen;
int error;
#ifdef INET6
struct ip6_hdr *ip6 = NULL;
int isipv6 = inp->inp_inc.inc_isipv6;
#endif
INP_LOCK_ASSERT(inp);
m = m_gethdr(M_DONTWAIT, MT_HEADER);
if (m == NULL)
return (ENOBUFS);
m->m_data += max_linkhdr;
#ifdef MAC
mac_create_mbuf_from_inpcb(inp, m);
#endif
#ifdef INET6
if (isipv6) {
hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
ip6 = mtod(m, struct ip6_hdr *);
th = (struct tcphdr *)(ip6 + 1);
tcpip_fillheaders(inp, ip6, th);
} else
#endif
{
hdrlen = sizeof(struct tcpiphdr);
ip = mtod(m, struct ip *);
th = (struct tcphdr *)(ip + 1);
tcpip_fillheaders(inp, ip, th);
}
optp = (u_int8_t *)(th + 1);
/*
* Send a timestamp and echo-reply if both our side and our peer
* have sent timestamps in our SYN's and this is not a RST.
*/
if (tw->t_recent && flags == TH_ACK) {
u_int32_t *lp = (u_int32_t *)optp;
/* Form timestamp option as shown in appendix A of RFC 1323. */
*lp++ = htonl(TCPOPT_TSTAMP_HDR);
*lp++ = htonl(ticks);
*lp = htonl(tw->t_recent);
optp += TCPOLEN_TSTAMP_APPA;
}
optlen = optp - (u_int8_t *)(th + 1);
m->m_len = hdrlen + optlen;
m->m_pkthdr.len = m->m_len;
KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
th->th_seq = htonl(tw->snd_nxt);
th->th_ack = htonl(tw->rcv_nxt);
th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
th->th_flags = flags;
th->th_win = htons(tw->last_win);
#ifdef INET6
if (isipv6) {
th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
sizeof(struct tcphdr) + optlen);
ip6->ip6_hlim = in6_selecthlim(inp, NULL);
error = ip6_output(m, inp->in6p_outputopts, NULL,
(tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
} else
#endif
{
th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
m->m_pkthdr.csum_flags = CSUM_TCP;
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
ip->ip_len = m->m_pkthdr.len;
if (path_mtu_discovery)
ip->ip_off |= IP_DF;
error = ip_output(m, inp->inp_options, NULL,
((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
NULL, inp);
}
if (flags & TH_ACK)
tcpstat.tcps_sndacks++;
else
tcpstat.tcps_sndctrl++;
tcpstat.tcps_sndtotal++;
return (error);
}
/*
* TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
*
* This code attempts to calculate the bandwidth-delay product as a
* means of determining the optimal window size to maximize bandwidth,
* minimize RTT, and avoid the over-allocation of buffers on interfaces and
* routers. This code also does a fairly good job keeping RTTs in check
* across slow links like modems. We implement an algorithm which is very
* similar (but not meant to be) TCP/Vegas. The code operates on the
* transmitter side of a TCP connection and so only effects the transmit
* side of the connection.
*
* BACKGROUND: TCP makes no provision for the management of buffer space
* at the end points or at the intermediate routers and switches. A TCP
* stream, whether using NewReno or not, will eventually buffer as
* many packets as it is able and the only reason this typically works is
* due to the fairly small default buffers made available for a connection
* (typicaly 16K or 32K). As machines use larger windows and/or window
* scaling it is now fairly easy for even a single TCP connection to blow-out
* all available buffer space not only on the local interface, but on
* intermediate routers and switches as well. NewReno makes a misguided
* attempt to 'solve' this problem by waiting for an actual failure to occur,
* then backing off, then steadily increasing the window again until another
* failure occurs, ad-infinitum. This results in terrible oscillation that
* is only made worse as network loads increase and the idea of intentionally
* blowing out network buffers is, frankly, a terrible way to manage network
* resources.
*
* It is far better to limit the transmit window prior to the failure
* condition being achieved. There are two general ways to do this: First
* you can 'scan' through different transmit window sizes and locate the
* point where the RTT stops increasing, indicating that you have filled the
* pipe, then scan backwards until you note that RTT stops decreasing, then
* repeat ad-infinitum. This method works in principle but has severe
* implementation issues due to RTT variances, timer granularity, and
* instability in the algorithm which can lead to many false positives and
* create oscillations as well as interact badly with other TCP streams
* implementing the same algorithm.
*
* The second method is to limit the window to the bandwidth delay product
* of the link. This is the method we implement. RTT variances and our
* own manipulation of the congestion window, bwnd, can potentially
* destabilize the algorithm. For this reason we have to stabilize the
* elements used to calculate the window. We do this by using the minimum
* observed RTT, the long term average of the observed bandwidth, and
* by adding two segments worth of slop. It isn't perfect but it is able
* to react to changing conditions and gives us a very stable basis on
* which to extend the algorithm.
*/
void
tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
{
u_long bw;
u_long bwnd;
int save_ticks;
/*
* If inflight_enable is disabled in the middle of a tcp connection,
* make sure snd_bwnd is effectively disabled.
*/
if (tcp_inflight_enable == 0) {
tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
tp->snd_bandwidth = 0;
return;
}
/*
* Figure out the bandwidth. Due to the tick granularity this
* is a very rough number and it MUST be averaged over a fairly
* long period of time. XXX we need to take into account a link
* that is not using all available bandwidth, but for now our
* slop will ramp us up if this case occurs and the bandwidth later
* increases.
*
* Note: if ticks rollover 'bw' may wind up negative. We must
* effectively reset t_bw_rtttime for this case.
*/
save_ticks = ticks;
if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
return;
bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
(save_ticks - tp->t_bw_rtttime);
tp->t_bw_rtttime = save_ticks;
tp->t_bw_rtseq = ack_seq;
if (tp->t_bw_rtttime == 0 || (int)bw < 0)
return;
bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
tp->snd_bandwidth = bw;
/*
* Calculate the semi-static bandwidth delay product, plus two maximal
* segments. The additional slop puts us squarely in the sweet
* spot and also handles the bandwidth run-up case and stabilization.
* Without the slop we could be locking ourselves into a lower
* bandwidth.
*
* Situations Handled:
* (1) Prevents over-queueing of packets on LANs, especially on
* high speed LANs, allowing larger TCP buffers to be
* specified, and also does a good job preventing
* over-queueing of packets over choke points like modems
* (at least for the transmit side).
*
* (2) Is able to handle changing network loads (bandwidth
* drops so bwnd drops, bandwidth increases so bwnd
* increases).
*
* (3) Theoretically should stabilize in the face of multiple
* connections implementing the same algorithm (this may need
* a little work).
*
* (4) Stability value (defaults to 20 = 2 maximal packets) can
* be adjusted with a sysctl but typically only needs to be
* on very slow connections. A value no smaller then 5
* should be used, but only reduce this default if you have
* no other choice.
*/
#define USERTT ((tp->t_srtt + tp->t_rttbest) / 2)
bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
#undef USERTT
if (tcp_inflight_debug > 0) {
static int ltime;
if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
ltime = ticks;
printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
tp,
bw,
tp->t_rttbest,
tp->t_srtt,
bwnd
);
}
}
if ((long)bwnd < tcp_inflight_min)
bwnd = tcp_inflight_min;
if (bwnd > tcp_inflight_max)
bwnd = tcp_inflight_max;
if ((long)bwnd < tp->t_maxseg * 2)
bwnd = tp->t_maxseg * 2;
tp->snd_bwnd = bwnd;
}
#ifdef TCP_SIGNATURE
/*
* Callback function invoked by m_apply() to digest TCP segment data
* contained within an mbuf chain.
*/
static int
tcp_signature_apply(void *fstate, void *data, u_int len)
{
MD5Update(fstate, (u_char *)data, len);
return (0);
}
/*
* Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
*
* Parameters:
* m pointer to head of mbuf chain
* off0 offset to TCP header within the mbuf chain
* len length of TCP segment data, excluding options
* optlen length of TCP segment options
* buf pointer to storage for computed MD5 digest
* direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
*
* We do this over ip, tcphdr, segment data, and the key in the SADB.
* When called from tcp_input(), we can be sure that th_sum has been
* zeroed out and verified already.
*
* This function is for IPv4 use only. Calling this function with an
* IPv6 packet in the mbuf chain will yield undefined results.
*
* Return 0 if successful, otherwise return -1.
*
* XXX The key is retrieved from the system's PF_KEY SADB, by keying a
* search with the destination IP address, and a 'magic SPI' to be
* determined by the application. This is hardcoded elsewhere to 1179
* right now. Another branch of this code exists which uses the SPD to
* specify per-application flows but it is unstable.
*/
int
tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
u_char *buf, u_int direction)
{
union sockaddr_union dst;
struct ippseudo ippseudo;
MD5_CTX ctx;
int doff;
struct ip *ip;
struct ipovly *ipovly;
struct secasvar *sav;
struct tcphdr *th;
u_short savecsum;
KASSERT(m != NULL, ("NULL mbuf chain"));
KASSERT(buf != NULL, ("NULL signature pointer"));
/* Extract the destination from the IP header in the mbuf. */
ip = mtod(m, struct ip *);
bzero(&dst, sizeof(union sockaddr_union));
dst.sa.sa_len = sizeof(struct sockaddr_in);
dst.sa.sa_family = AF_INET;
dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
ip->ip_src : ip->ip_dst;
/* Look up an SADB entry which matches the address of the peer. */
sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
if (sav == NULL) {
printf("%s: SADB lookup failed for %s\n", __func__,
inet_ntoa(dst.sin.sin_addr));
return (EINVAL);
}
MD5Init(&ctx);
ipovly = (struct ipovly *)ip;
th = (struct tcphdr *)((u_char *)ip + off0);
doff = off0 + sizeof(struct tcphdr) + optlen;
/*
* Step 1: Update MD5 hash with IP pseudo-header.
*
* XXX The ippseudo header MUST be digested in network byte order,
* or else we'll fail the regression test. Assume all fields we've
* been doing arithmetic on have been in host byte order.
* XXX One cannot depend on ipovly->ih_len here. When called from
* tcp_output(), the underlying ip_len member has not yet been set.
*/
ippseudo.ippseudo_src = ipovly->ih_src;
ippseudo.ippseudo_dst = ipovly->ih_dst;
ippseudo.ippseudo_pad = 0;
ippseudo.ippseudo_p = IPPROTO_TCP;
ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
/*
* Step 2: Update MD5 hash with TCP header, excluding options.
* The TCP checksum must be set to zero.
*/
savecsum = th->th_sum;
th->th_sum = 0;
MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
th->th_sum = savecsum;
/*
* Step 3: Update MD5 hash with TCP segment data.
* Use m_apply() to avoid an early m_pullup().
*/
if (len > 0)
m_apply(m, doff, len, tcp_signature_apply, &ctx);
/*
* Step 4: Update MD5 hash with shared secret.
*/
MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
MD5Final(buf, &ctx);
key_sa_recordxfer(sav, m);
KEY_FREESAV(&sav);
return (0);
}
#endif /* TCP_SIGNATURE */