freebsd-dev/sys/netpfil/ipfw/dn_sched_fq_codel.h
Don Lewis 91336b403a Import Dummynet AQM version 0.2.1 (CoDel, FQ-CoDel, PIE and FQ-PIE).
Centre for Advanced Internet Architectures

Implementing AQM in FreeBSD

* Overview <http://caia.swin.edu.au/freebsd/aqm/index.html>

* Articles, Papers and Presentations
  <http://caia.swin.edu.au/freebsd/aqm/papers.html>

* Patches and Tools <http://caia.swin.edu.au/freebsd/aqm/downloads.html>

Overview

Recent years have seen a resurgence of interest in better managing
the depth of bottleneck queues in routers, switches and other places
that get congested. Solutions include transport protocol enhancements
at the end-hosts (such as delay-based or hybrid congestion control
schemes) and active queue management (AQM) schemes applied within
bottleneck queues.

The notion of AQM has been around since at least the late 1990s
(e.g. RFC 2309). In recent years the proliferation of oversized
buffers in all sorts of network devices (aka bufferbloat) has
stimulated keen community interest in four new AQM schemes -- CoDel,
FQ-CoDel, PIE and FQ-PIE.

The IETF AQM working group is looking to document these schemes,
and independent implementations are a corner-stone of the IETF's
process for confirming the clarity of publicly available protocol
descriptions. While significant development work on all three schemes
has occured in the Linux kernel, there is very little in FreeBSD.

Project Goals

This project began in late 2015, and aims to design and implement
functionally-correct versions of CoDel, FQ-CoDel, PIE and FQ_PIE
in FreeBSD (with code BSD-licensed as much as practical). We have
chosen to do this as extensions to FreeBSD's ipfw/dummynet firewall
and traffic shaper. Implementation of these AQM schemes in FreeBSD
will:
* Demonstrate whether the publicly available documentation is
  sufficient to enable independent, functionally equivalent implementations

* Provide a broader suite of AQM options for sections the networking
  community that rely on FreeBSD platforms

Program Members:

* Rasool Al Saadi (developer)

* Grenville Armitage (project lead)

Acknowledgements:

This project has been made possible in part by a gift from the
Comcast Innovation Fund.

Submitted by:	Rasool Al-Saadi <ralsaadi@swin.edu.au>
X-No objection:	core
MFC after:	2 weeks
Differential Revision:	https://reviews.freebsd.org/D6388
2016-05-26 21:40:13 +00:00

168 lines
4.7 KiB
C

/*-
* Copyright (C) 2016 Centre for Advanced Internet Architectures,
* Swinburne University of Technology, Melbourne, Australia.
* Portions of this code were made possible in part by a gift from
* The Comcast Innovation Fund.
* Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* FQ_Codel Structures and helper functions
*
* $FreeBSD$
*/
#ifndef _IP_DN_SCHED_FQ_CODEL_H
#define _IP_DN_SCHED_FQ_CODEL_H
/* list of queues */
STAILQ_HEAD(fq_codel_list, fq_codel_flow) ;
/* fq_codel parameters including codel */
struct dn_sch_fq_codel_parms {
struct dn_aqm_codel_parms ccfg; /* CoDel Parameters */
/* FQ_CODEL Parameters */
uint32_t flows_cnt; /* number of flows */
uint32_t limit; /* hard limit of fq_codel queue size*/
uint32_t quantum;
}; /* defaults */
/* flow (sub-queue) stats */
struct flow_stats {
uint64_t tot_pkts; /* statistics counters */
uint64_t tot_bytes;
uint32_t length; /* Queue length, in packets */
uint32_t len_bytes; /* Queue length, in bytes */
uint32_t drops;
};
/* A flow of packets (sub-queue).*/
struct fq_codel_flow {
struct mq mq; /* list of packets */
struct flow_stats stats; /* statistics */
int deficit;
int active; /* 1: flow is active (in a list) */
struct codel_status cst;
STAILQ_ENTRY(fq_codel_flow) flowchain;
};
/* extra fq_codel scheduler configurations */
struct fq_codel_schk {
struct dn_sch_fq_codel_parms cfg;
};
/* fq_codel scheduler instance */
struct fq_codel_si {
struct dn_sch_inst _si; /* standard scheduler instance */
struct dn_queue main_q; /* main queue is after si directly */
struct fq_codel_flow *flows; /* array of flows (queues) */
uint32_t perturbation; /* random value */
struct fq_codel_list newflows; /* list of new queues */
struct fq_codel_list oldflows; /* list of old queues */
};
/* Helper function to update queue&main-queue and scheduler statistics.
* negative len + drop -> drop
* negative len -> dequeue
* positive len -> enqueue
* positive len + drop -> drop during enqueue
*/
__inline static void
fq_update_stats(struct fq_codel_flow *q, struct fq_codel_si *si, int len,
int drop)
{
int inc = 0;
if (len < 0)
inc = -1;
else if (len > 0)
inc = 1;
if (drop) {
si->main_q.ni.drops ++;
q->stats.drops ++;
si->_si.ni.drops ++;
io_pkt_drop ++;
}
if (!drop || (drop && len < 0)) {
/* Update stats for the main queue */
si->main_q.ni.length += inc;
si->main_q.ni.len_bytes += len;
/*update sub-queue stats */
q->stats.length += inc;
q->stats.len_bytes += len;
/*update scheduler instance stats */
si->_si.ni.length += inc;
si->_si.ni.len_bytes += len;
}
if (inc > 0) {
si->main_q.ni.tot_bytes += len;
si->main_q.ni.tot_pkts ++;
q->stats.tot_bytes +=len;
q->stats.tot_pkts++;
si->_si.ni.tot_bytes +=len;
si->_si.ni.tot_pkts ++;
}
}
/* extract the head of fq_codel sub-queue */
__inline static struct mbuf *
fq_codel_extract_head(struct fq_codel_flow *q, aqm_time_t *pkt_ts, struct fq_codel_si *si)
{
struct mbuf *m = q->mq.head;
if (m == NULL)
return m;
q->mq.head = m->m_nextpkt;
fq_update_stats(q, si, -m->m_pkthdr.len, 0);
if (si->main_q.ni.length == 0) /* queue is now idle */
si->main_q.q_time = dn_cfg.curr_time;
/* extract packet timestamp*/
struct m_tag *mtag;
mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL);
if (mtag == NULL){
D("timestamp tag is not found!");
*pkt_ts = 0;
} else {
*pkt_ts = *(aqm_time_t *)(mtag + 1);
m_tag_delete(m,mtag);
}
return m;
}
#endif